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Overview

These notes continue from our discussion of simple linear regression and the two-sample t-test as a
special case. We now move on to:

• The motivation for multiple linear regression.

• The fundamental idea of confounding.

• The role of randomized controlled trials (RCTs) as the “gold standard” for causal
inference, and why we often use regression (especially when randomization is not feasible).

1 Multiple Linear Regression Model

1.1 General Setup

In simple linear regression, we modeled

Yi = β0 + β1 xi + εi, εi ∼ N (0, σ2),

where xi was a single predictor (possibly a 0–1 treatment indicator). To allow for multiple predic-
tors, we extend this to:

Yi = β0 + β1 xi1 + β2 xi2 + · · ·+ βp xip + εi.

Here:

• Yi is again the outcome (e.g. lifespan, GPA, miles per gallon, etc.).

• xi1, xi2, . . . , xip are p different predictors (features).

• β0, β1, . . . , βp are unknown regression coefficients.

• εi is an error/noise term, often assumed i.i.d. with mean 0 (and sometimes normally dis-
tributed with variance σ2).
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1.2 Example: Vitamins and Lifespan

• Let xi1 be an indicator for “Takes vitamins” (1) vs. “Does not take vitamins” (0).

• Let xi2, xi3, . . . , xip be other confounders or relevant covariates such as

– Exercise frequency (hours/week).

– Cigarette use (packs/day) or a 0–1 indicator for any smoking.

– Daily diet metrics (e.g., fruit/vegetable intake).

– Sleep duration (hrs/night).

– Socioeconomic status (income, etc.).

• The multiple regression model would then be

Yi = β0 + β1(vitamin usage)i +

p∑
k=2

βk xik + εi,

where Yi might be lifespan in years. If all relevant confounders are measured and included,
then (under linearity assumptions) β1 can be interpreted as the effect of taking vitamins
“holding the other predictors constant.”

2 Confounding and Randomized Controlled Trials (RCTs)

2.1 Definition of Confounding

Confounding arises when some third variable (the confounder) causes both the treatment X and
the outcome Y , thereby inducing a correlation between X and Y even if there is no direct causal
path from X to Y.

Confounder
↓↘

X Y
In the vitamins–lifespan scenario, “healthy habits” could be a broad confounder:

Healthy habits −→ (Takes vitamins?) and −→ (Longer lifespan).

Merely observing who takes vitamins vs. not may thus confound the apparent relationship unless
we account for those habits.

2.2 Gold Standard: Randomized Controlled Trials

• In an RCT, the researcher assigns treatment vs. control at random, breaking the arrow from
confounder → treatment. Hence, there is no correlation induced by the confounder.

• If X (treatment) truly is randomly assigned, a simple t-test (or simple linear regression with
a 0–1 dummy for treatment) is valid for causal inference.

• However, many treatments (e.g. smoking, certain demographics, or ethically problematic
exposures) cannot be randomized. Also, RCTs can be expensive, time-consuming, or infea-
sible in many scenarios.
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2.3 What if We Cannot Randomize?

• Then we try multiple linear regression (or other observational-study methods).

• If all important confounders are measured and included as covariates xi2, . . . , xip, then (under
modeling assumptions) β1 reflects a causal effect of xi1 on Yi (e.g. the vitamins-lifespan
question).

• In practice, we always worry about unmeasured confounding. If some key confounder is not
included, the regression can yield biased inferences.

2.4 Downstream Variables (What Not to Include)

• If a variable is caused by Y (the outcome), or is a downstream effect of Y , including it in the
regression can create new biases.

• Generally, we only want to control for (i.e. include) predictors that cause Y , not those that
occur after Y . (Such variables are often called mediators or descendants of Y .)

3 Interpretation of Regression Coefficients in the Multiple Setting

When fitting the model
Yi = β0 + β1 xi1 + · · · + βp xip + εi,

each slope βj can be thought of as a partial effect of xij on Yi, holding all other predictors fixed.
Symbolically, some texts write:

βj =
∂E[Y | X]

∂xj
,

assuming a linear form. Practically:

• β1 is often the treatment effect of interest if xi1 indicates a treatment/exposure.

• The other βj ’s adjust for any confounders xij . This is sometimes called controlling for xij or
conditioning on those covariates.

• β0 is the intercept (often not of primary interest); it is the mean of Y when all xij = 0.

4 Key Takeaways & Next Steps

1. Multiple linear regression allows us to include any number of predictors xi1, . . . , xip,
potentially reducing the bias from confounding when we cannot do a randomized experiment.

2. We rely on the assumptions that (i) all relevant confounders are measured and included, (ii)
the linear form is appropriate (or sufficiently flexible), and (iii) no unmeasured confounders
are driving the treatment–outcome relationship.
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3. RCTs remain the gold standard for establishing causality precisely because they break the
link from hidden confounders to X. But in many real-world studies, randomization is infeasible
or unethical.

4. In upcoming lectures, we will see how to estimate βj ’s from data and how to interpret p-values,
confidence intervals, and model fit.

End of Jan. 30 Lecture Notes.
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