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1)  Intro to 
clustering

2)  Spectral 
clustering
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Useful
Subjective 
Computationally 
Challenging

Clustering divides a data set 
into sets of similar points. 
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• Urbanization 

• Irises

• Financial sectors

• Dolphin social 
network

• Natural image 
patches

Image from NASA

Clustering has many applications
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Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris 
Society, 59, 2–5

Clustering has many applications

• Urbanization

• Irises 

• Financial sectors

• Dolphin social 
network

• Natural image 
patches
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Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris 
Society, 59, 2–5

Clustering has many applications

• Urbanization

• Iris species 

• Financial sectors

• Dolphin social 
network

• Natural image 
patches
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Daily closing stock prices for all S&P 500
Going back to 2005

Clustering has many applications

• Urbanization

• Iris species

• Financial sectors 

• Dolphin social 
network

• Natural image  
patches

data overwhelm
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Clustering has many applications

• Urbanization

• Iris species

• Financial sectors

• Dolphin social 
network 

• Natural image 
patches
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D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, and S.M. Dawson. The 
bottlenose dolphin community of Doubtful Sound features a large proportion of long-
lasting associations.  Behavioral Ecology and Sociobiology,  54:396–405, 2003. 

Community structure in large networks 21

(a) Zachary’s karate club network . . .
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Figure 5: Depiction of several small social networks that are common test sets for community detection algorithms
and their network community profile plots. (5(a)–5(b)) Zachary’s karate club network. (5(c)–5(d)) A network of
dolphins. (5(e)–5(f)) A network of monks. (5(g)–5(h)) A network of researchers researching networks.

Clustering has many applications

• Urbanization

• Iris species

• Financial sectors

• Dolphin social 
network 

• Natural image 
patches
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Gallant Neuroscience lab

Clustering has many applications

• Urbanization

• Iris species

• Financial sectors

• Dolphin social 
network

• Natural image 
patches

what you are seeing changes what 
is going on in the back of your 
brain.


fMRI can measure this. 
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Clustering has many applications

• Urbanization

• Iris species

• Financial sectors

• Dolphin social 
network

• Natural image 
patches
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Useful
Subjective 
Computationally 
Challenging

Clustering divides a data set 
into sets of similar points. 
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Grouping similar objects is natural.   
But, how do you define “similar”?
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On those remote pages [of an ancient Chinese 
encyclopedia] it is written that animals are divided into  
(a) those that belong to the Emperor, (b) embalmed ones, 
(c) those that are trained, (d) suckling pigs, (e) mermaids, 
(f) fabulous ones, (g) stray dogs, (h) those that are 
included in this classification, (e) those that tremble as if 
they were mad, (j) innumerable ones, (k) those drawn 
with a very fine camel’s hair brush, (l) other, (m) those 
that have just broken a flower vase, (n) those that 
resemble flies from a distance. 

- Jorge Luis Borges, Other Inquisitions
14

Grouping similar objects is natural.   
But, how do you define “similar”?



Useful
Subjective 
Computationally 
Challenging

Clustering divides a data set 
into sets of similar points. 
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Log daily closing stock prices for all S&P 500,  2005 - Present. 
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While clustering is natural for humans.  
Clustering large data sets is difficult.   

We need to teach computers how to cluster!

18



While clustering is natural for humans.  
Clustering large data sets is difficult.   

We need to teach computers how to cluster!

• Computers only understand algorithms. 

• Often, clustering algorithm are motivated by 
optimization problems. 

19



Partitions
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Partitions

Community structure in large networks 21

(a) Zachary’s karate club network . . .
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Figure 5: Depiction of several small social networks that are common test sets for community detection algorithms
and their network community profile plots. (5(a)–5(b)) Zachary’s karate club network. (5(c)–5(d)) A network of
dolphins. (5(e)–5(f)) A network of monks. (5(g)–5(h)) A network of researchers researching networks.
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Clustering as an optimization problem

min
C

f(C)

C:  any partition  
f:  measures how bad C is

22



Convexity
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Convexity
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Convexity
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Convexity
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Convexity
Minimizing convex functions on convex sets is “easy”

Set the derivative equal to zero or

Just go downhill!
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Usually, clustering problems are not convex.

x1, . . . , xn � Rd
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Usually, clustering problems are not convex.

x1, . . . , xn � Rdk-means

f(c1, . . . , ck) =
�

i

min
j
⇥xi � cj⇥2

2
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Usually, clustering problems are not convex.

x1, . . . , xn � Rdk-means

f(c1, . . . , ck) =
�

i

min
j
⇥xi � cj⇥2

2
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Usually, clustering problems are not convex.

x1, . . . , xn � Rdk-means

f(c1, . . . , ck) =
�

i

min
j
⇥xi � cj⇥2

2

min
c1,...ck

f(c1, . . . , ck)
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32

Aij =
�

1 if node i is connected to node j
0 otherwise

.

A � {0, 1}n�nSymmetric adjacency matrix



Normalized cuts:

Shi, Malik (2000).  Normalized Cuts and Image Segmentation, IEEE Transactions 
Pattern Analysis and Machine Learning, 22, 888-905.

Community structure in large networks 21

(a) Zachary’s karate club network . . .
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(g) Network science network . . .
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Figure 5: Depiction of several small social networks that are common test sets for community detection algorithms
and their network community profile plots. (5(a)–5(b)) Zachary’s karate club network. (5(c)–5(d)) A network of
dolphins. (5(e)–5(f)) A network of monks. (5(g)–5(h)) A network of researchers researching networks.

min
P,Q

�
i�P,j�Q Aij�

i�P,j�P⇥Q Aij
+

�
i�P,j�Q Aij�

i�Q,j�P⇥Q Aij

Aij =
�

1 if node i is connected to node j
0 otherwise

.

33

A � {0, 1}n�nSymmetric adjacency matrix



Normalized cuts:

It can be shown that normalized cuts is 
equivalent to the following problem:

subject to 
yT D1 = 0

min
y

yT (D �A)y
yT Dy

yi ⇥ {�1/b, b} ⇤i

Community structure in large networks 21

(a) Zachary’s karate club network . . .
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Figure 5: Depiction of several small social networks that are common test sets for community detection algorithms
and their network community profile plots. (5(a)–5(b)) Zachary’s karate club network. (5(c)–5(d)) A network of
dolphins. (5(e)–5(f)) A network of monks. (5(g)–5(h)) A network of researchers researching networks.
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There are _________ many partitions of n 
data points into 2 clusters. 
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There are very many 
partitions of the data points

There are _________ many partitions of n 
data points into 2 clusters. 

2n�1 � 1

(a,b)  (b,a)  (ab, )  ( ,ab)

36



(a,b)  (b,a)  (ab, )  ( ,ab)

There are _________ many partitions of n 
data points into 2 clusters. 

2n�1 � 1

There are very many 
partitions of the data points

37



Champion has postulated that there are 

283 atoms in the universe.

Not possible to look at all partitions!

There are _________ many partitions of n 
data points into 2 clusters. 

2n�1 � 1

Matthew Champion, "Re: How many atoms make up the universe?", 1998

There are very many 
partitions of the data points

38



Clustering poses 
several challenges.

• The approach you choose is often 
subjective 

• Difficult to optimize.

• Must rely on approximations:  
Local optima, “convex relaxation.”

39



The algorithm
Relationship to 
normalized cuts
Euclidean version
Advantages

Spectral Clustering

40



The algorithm  
(with graph data)

A � {0, 1}n�n
Adjacency matrix

21

3

4

5 6
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The algorithm  
(with graph data)

D � Rn�n

A � {0, 1}n�n
.

Dii =
�

j

Aij

Adjacency matrix

L = I �D�1A

21

3

4

5 6
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The algorithm  
(with graph data)

D � Rn�n

Find the eigenvector corresponding to the second 
smallest eigenvalue. 

A � {0, 1}n�n
.

Dii =
�

j

Aij

Adjacency matrix

L = I �D�1A

y � Rn

21

3

4

5 6

43



The algorithm  
(with graph data)

D � Rn�n

Find the eigenvector corresponding to the second 
smallest eigenvalue. 

A � {0, 1}n�n
.

Dii =
�

j

Aij

Adjacency matrix

L = I �D�1A

y � Rn Ly = �y

Eigenvectors are beautiful AND

elusive. 


it is difficult to exactly define the 
vectors .  

21

3

4

5 6

-.5-.5
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.3

.5 .5

yi < 0 =� i ⇥ A
yi � 0 =⇥ i ⇤ B
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The algorithm
Relationship to 
normalized cuts
Euclidean version 
Advantages

Spectral Clustering
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Recall normalized cuts:

min
P,Q

�
i�P,j�Q Aij�

i�P,j�P⇥Q Aij
+

�
i�P,j�Q Aij�

i�Q,j�P⇥Q Aij

subject to 
yT D1 = 0

min
y

yT (D �A)y
yT Dy

yi ⇥ {�1/b, b} ⇤i

46



Spectral clustering is a “convex relaxation” 
of normalized cuts

Because of the restriction to a discrete set, this problem 
is not convex.   “Relax” the problem.   Optimize over

The optimum is the second smallest eigenvector of     .L

y � Rn, yT D1 = 0

subject to 
yT D1 = 0

min
y

yT (D �A)y
yT Dy

yi ⇥ {�1/b, b} ⇤i
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The algorithm
Relationship to 
normalized cuts
Euclidean version 
Advantages

Spectral Clustering
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The algorithm  
(with graph data)

D � Rn�n

Find the eigenvector corresponding to the second 
smallest eigenvalue. 

A � {0, 1}n�n
.

Dii =
�

j

Aij

Adjacency matrix

L = I �D�1A

y � Rn Ly = �y

21

3

4

5 6

-.5-.5

-.3

.3

.5 .5

yi < 0 =� i ⇥ A
yi � 0 =⇥ i ⇤ B
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The algorithm  
(with Euclidean data)

Kij = exp(�⇥xi � xj⇥2
2/�2)

D � Rn�n

.

Dii =
�

j

Kij

L = I �D�1K

Here the subjectivity of the 
similarity function is obvious!  Need 
to choose a function for K_{ij}

Find the eigenvector corresponding to the second 
smallest eigenvalue. 

y � Rn Ly = �y

K � Rn�n

yi < 0 =� i ⇥ A
yi � 0 =⇥ i ⇤ B
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The algorithm
Relationship to 
normalized cuts
Euclidean version 
Advantages

Spectral Clustering
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Because it relies on a “local” measure 
of similarity, spectral clustering can 

detect oddly shaped clusters. 

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−4
−2

0
2

4

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−4
−2

0
2

4

“k-nearest neighbors” 

Another similarity function
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Spectral clustering . . .

• is computationally tractable.

• is a “convex relaxation” of normalized cuts.

• is able to find oddly shaped clusters.

• has interesting connections to 
• spectral graph theory, 
• random walks on graphs,
• and electrical network theory.

In contrast to regression , clustering is 
much more subjective. 


there are several different clustering 
algorithms? 


What criteria should you use to decide?
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1)  Intro to 
clustering

2)  Spectral 
clustering

3)  Research
56



Why should you trust 
spectral clustering?

Statistical 
Estimation
Stochastic 
Blockmodel
Theorem

57



x1, . . . , xn � Rp

y1, . . . , yn � R
For example, say you have the GPA of some students

and some predictors (height, SAT score, # roommates, etc.)

58

Yi = Xi� + erroriSay                        with a few conditions 
on the error distribution, is a reasonable model for the 
data. 

A statistical model to 
study an algorithm



One desirable result:

�̂n = argminb�Rd

n�

i=1

(Yi �Xib)2

�̂n � �

What can be said about

This would suggest that least squares is reasonable. 

59

Yi = Xi� + errori

A statistical model to 
study an algorithm



To study the estimation 
performance of spectral 
clustering,  we need a 

statistical model. 
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Statistical 
Estimation
Stochastic 
Blockmodel
Theorem

Why should you trust 
spectral clustering?
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• Divide nodes into k blocks
• Let each block have an equal 

proportion of the nodes
• Edges: independent, Bernoulli 

with probability 
p if nodes in same block 
r otherwise

A simple example of the 
Stochastic Block Model

Clustering: estimate block membership for each node
62



Statistical 
Estimation
Stochastic 
Blockmodel
Theorem

Why should you trust 
spectral clustering?
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Theorem

Under the previously described Stochastic 
Block Model, for         ,  the number of 
“misclustered” nodes is bounded

p �= r

as the number of nodes                and 
the number of blocks      

n�⇥
k = k(n)�⇥

number of misclustered nodes = o(k3 log2 n) a.s.

R., Chatterjee, Yu.  Spectral clustering and the high-dimensional 
Stochastic Blockmodel.  Annals of Statistics, pending minor revisions. 64



Clustering is useful, subjective, and 
computationally challenging.

Spectral clustering uses the 
eigenvectors of the graph Laplacian 
to relax a non-convex problem.

Spectral clustering can estimate the 
blocks in the Stochastic Blockmodel.

Conclusions
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