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the first part of this proposal studies novel ways of assigning sampling weights to the random
walk.

2) Estimation: The sampling mechanism induces dependence between samples (friends are
similar in many ways). Current estimators do not correct for this dependence. This proposal
shows that current estimators are inadmissible. Moreover, in certain regimes, new estimators
can obtain faster rates of convergence.

3) Diagnostics: One key limitation of network driven sampling is the dependence between sam-
ples. My preliminary theoretical research shows how this dependence manifests and suggests
diagnostic tools.

2 notation

Denote the population as a node set V with N elements. We obtain a sample of size n from V by
starting from some seed node(s) and following the edges in the graph G = (V,E). If every sample
refers exactly one additional sample, then we obtain a chain of random variables

X(0) ! X(1) ! · · · ! X(n� 1) 2 V.

In the chain sample, the nodes are indexed by the integers 0, 1, 2, . . . , n � 1. In many network
sampling applications it is sensible to allow for each sample to refer multiple additional samples.
Instead of a chain, this produces a tree–a rooted, directed, and cycle free graph–that will be denoted
by T. The root of this tree 0 2 T indexes the seed node.1 The decendents of the root node index
the nodes that the seed refers. Symbols ⌧ and � will be used to denote generic nodes in T. By
network driven sampling, we obtain the sample of nodes

{X(⌧) 2 V : ⌧ 2 T}.

In this notation, X(0) 2 V is the seed node.

The randomization for the sampling procedure is characterized by a Markov transition matrix
P 2 RN⇥N . Denote �0 2 T as the “parent” node of � 2 T. Under the Markov model studied in

1
If there are multiple seed nodes, then T is a forest, or a collection of trees and there are multiple roots.
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Figure 1: In the left panel, only the seed node is sampled. In the next panel, the seed node refers
two friends that create wave 1 of the sample. This continues for two more waves. On the right, is
the sampling tree T.
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Network driven sampling does 
not require a sampling frame.
• Standard sampling techniques like random digit 

dialing require a sampling frame 
   “simple random sample”  

• No sampling frame for: 

• homeless, twitter discussions, refugees,  
sex workers, jazz musicians. 

• Even with a sampling frame, low response rates!



Respondent driven sampling (RDS) and 
snowball sampling are often used in social 

science research.

• To study the hard-to-reach and/or marginalized 
populations.   

• Particularly prevalent in HIV research.  

• Three risk populations:  
Men who have sex with men (MSM),  
people who inject drugs (PWID), and  
Female sex workers (FSW)



RDS for HIV is the 
motivating example, but 
network driven sampling 

appears elsewhere.



RDS relies on friends 
passing coupons.

• Find seeds from a convenience sample.  

• Give each seed three coupons to refer friends. 

• The coupons have a dual incentive structure 

• Pay the person for making a referral 

• Pay the person being referred 

• Iterate through referral tree
Heckathorn, 1997.



Abdul-Quader, et al (2006).



• The CDC manages the National HIV Behavioral 
Surveillance System 

• RDS every few years in 20 major 
metropolitan areas. 

• The WHO and UNAIDS have published an 
extensive manual for how to properly implement 
RDS

RDS is increasingly popular



We wish to estimate the 
proportion of the 

population that is HIV+.



A Major Assumption

• If people make random referrals then we can 
make statistical inferences using probabilistic 
tools and techniques 

• confidence intervals and p-values. 

• Suppose you have X friends in the target 
population.  The friend you refer is chosen 
uniformly at random from these X people.

Salganik and Heckathorn, 2004 



A Major Assumption

• Under this model, the passing of the coupon is 
a random walk on the social network.  

• For simplicity, temporarily suppose that there is 
only one coupon.

Salganik and Heckathorn, 2004 



Friendships can be plotted as a graph.
The circles are “nodes” or people. 

The lines are “edges” or friendships.





Unbiased estimation requires 
the inclusion probabilities.

• People with large degrees are more likely to be 
sampled.



Using the random walk (and other) assumptions, 
we can approximate the inclusion probabilities.

The stationary distribution:

Salganik and Heckathorn, 2004 

⇡j = lim

t!1
P (referral t is person j|seed is person i)



Using the random walk (and other) assumptions, 
we can approximate the inclusion probabilities.

• Assumptions: 

• uniform selection of friends, with replacement. 

• reversible Markov chain (i.e.“symmetric”).  

• social network is connected and aperiodic 

• Asymptotic

Salganik and Heckathorn, 2004 

⇡j / number of friends of person j



Volz-Heckathorn (2008) estimator uses the 
stationary distribution to construct a 

Horvitz-Thompson estimator.

deg(t) = # of friends of person t

yt =

⇢
1 if person t is HIV positive
0 if person t is HIV negative

Asymptotically unbiased! 

wt =
1/deg(t)Pn
j 1/deg(j)

µ̂V H =
nX

t

wtyt



What is the standard error of 
this estimator?



Computing the standard error is an 
essential step for creating confidence 

intervals and testing hypotheses. 



What is the standard error of 
this estimator?

Usually, sigma is unknown.

�p
n

Classical standard error for 
simple random sample. 



What is the standard error of 
this estimator?

�p
n

�̂p
n

You can estimate it!

In this talk, we will find the analogue  
to the first formula for RDS.

Classical standard error for 
simple random sample. 



Key difficulty with RDS data: 
samples are dependent.  

• Friends are similar in many ways, including HIV 
status. 

• If Fred refers Bill, they are likely to have similar 
HIV status.  



Need to decide what to 
model as “random”

• Salganik and Heckathorn (and co-authors) 
typically model referrals as random. 

• Giles and Handcock and others make an 
additional assumption that the network is 
random. 

• There are currently three bootstrap techniques 
that build off of these assumptions.



Previous standard error estimators have 
modeled traits y as a first order Markov 

Chain
• Salganik (2006). “Variance estimation, design 

effects, and sample size calculations for respondent-
driven sampling.” Journal of Urban Health. 

• This is an additional modeling assumption beyond 
what is needed for the unbiased-ness of VH. 

• Underestimates variance. Neely [2009], Verdery et 
al. [2013]  

• In Q/A, I can address when the “first order 
assumption” holds and when it does not. 



Recap
• RDS is a network link tracing technique 

• Three bits:  social network, referral tree, HIV status 

• Assumption of random referrals allow for statistical 
inference 

• VH estimator is asymptotically unbiased 

• We need to understand the variance.
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se(µ̂SRS) =
�p
n



The Markov transition matrix 
describes how coupons are 

passed along the social network.

• Markov transition matrix   P  is N x N.   
N = population size.  (n will be sample size) 

•   

• e.g. VH assumption: i chooses friend uniformly 
at random, so that

P (person i refers person j|person i has 1 coupon) = Pij

Pij =
1(i, j friends)

deg(i)



Regularity conditions on P
• Assume P is reversible wrt the  

stationary distribution.   

• For random walk, equivalent to assuming an 
undirected network. 

• Assume 
 
          (akin to connected and aperiodic)

|�2(P )| < 1

⇡iPij = ⇡jPji

⇡j = lim

t!1
P (referral t is person j|seed is person i)



Each person can refer up to three 
(sometimes five) future participants.

• To represent the referral process, we need a 
“tree” 

• Call this object T.  It is a graph, that contains 
elements 1, …, n corresponding to the n 
samples. 

• If i refers j into the study, then i —> j . 





1 2Seed

Standard Markov chain

{X(i) 2 people : i = 1, . . . , n}



Markov transitions on the referral tree.

Seed (T, P )-walk on G

{X(i) 2 people : i = 1, . . . , n}
{X⌧ 2 people : ⌧ 2 T}













Each node in the graph is 
either infected or not.

• For person  i = 1, …, N 

yi =

⇢
1 i sick
0 i not sick

We want to estimate y averaged across  
all nodes 1, …, N in the social network.

Everything holds if y is continuous.



These terms constitute the core 
of the model and the notation.

I. Markov transition matrix P  
  (underneath P, there is a social network) 

II.Referral tree   , 

III.Health status yj , j = 1, . . . , N

T {1, . . . , n} ⇢ T
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V ar(µ̂) =
NX

`=2

hy, f`i2⇡G(�`)



“Bottlenecks” can prevent 
representative samples.

• Suppose a town with two communities: EAST and WEST.  

• All seeds belong to EAST. 

• Few friendships cross the town. 

• Will you collect enough data from WEST? 

• What if EAST and WEST have same incidence of HIV?  

• We need a mathematical way to express these 
“bottlenecks”…



Lemma 1.1. Let P be reversible with respect to the stationary

distribution ⇡. The eigenvectors of P , denoted as f
1

, . . . , fN , are
real valued functions of the nodes i 2 V and orthonormal with

respect to the inner product

hfa, fbi⇡ =

X

i2V
fa(i)fb(i)⇡i. (2)

When |�
2

| < 1, the leading eigenvector is constant vector of ones,

f
1

= 1. Moreover, the probability of a transition from i 2 V to

j 2 V in t steps can be written as

P(X(t) = j|X(0) = i) = P t
ij = ⇡j + ⇡j

NX

`=2

�t
`f`(i)f`(j).

The second eigenvector f
2

will play a fundamental role in the rest of the paper and it is impor-
tant to have some intuition about this quantity. In the previous example with two communities
EAST and WEST, suppose that P corresponds to the simple random walk. If EAST and WEST
correspond to the most dominant partition in the network, then f

2

(i) and f
2

(j) will have the same
signs (i.e. +/-) when i and j belong to the same community. In this sense, f

2

will partition the
graph into EAST and WEST. This concept is made rigorous by the Cheegar bound [Chung, 1997]
and is the fundamental reason that spectral clustering can partition a graph [Von Luxburg, 2007].

1.1.2 Markov chain indexed by a tree

Let T be a rooted tree–a connected graph with n nodes, no cycles, and a vertex 0. Unless stated
otherwise, we will presume that this tree is fixed. In RDS, the seed participant is vertex 0 in T.

For any node in the tree � 2 T, denote �0 2 T as the parent of � (the node one step closer
to the root). Let D(�) ⇢ T denote the set of � and all its descendants in T. The Markov chain
indexed by T is the set of random variables {X� : � 2 T} satisfying the Markov property

P(X�|X�0 , X⌧ : ⌧ 2 S) = P(X�|X�0)

for any set S ✓ (� [ D(�))c. Just as in the standard Markov chain, the transition matrix P 2
[0, 1]N⇥N describes the following probabilities,

P(X� = i|X�0 = j) = Pij , for i, j 2 V.

Benjamini and Peres [1994] refers to this process as a (T, P )-walk on G . Unless stated otherwise, it
will be presumed throughout that under the (T, P )-walk on G, X

0

is initialized from the stationary
distribution of P .

6

Chapter 12 of Levin et al. [2009]  



Eigenvectors are a mathematical 
refinement for the concept of “bottlenecks”

Eigenvectors indicate the bottlenecks

eigenvalues indicate the “strength”  
of the bottleneck.

f`,�` ` = 1, . . . , N

These are well studied objects in linear algebra  
and spectral graph theory.



f`(i) An eigenvector assigns a value  
to each node.

THEN: i and j are on the  
same side of this bottleneck.

IF:

Eigenvectors are a mathematical 
refinement for the concept of “bottlenecks”

sign(f`(i)) = sign(f`(j))



For example, the EAST and WEST 
bottleneck would be represented by one 

eigenvector.

• The two communities are EAST and WEST.  

• If this is the biggest bottleneck in the network, 
then the second eigenvector will have opposite 
signs on nodes from EAST and WEST. 



Lemma 1.1. Let P be reversible with respect to the stationary

distribution ⇡. The eigenvectors of P , denoted as f
1

, . . . , fN , are
real valued functions of the nodes i 2 V and orthonormal with

respect to the inner product

hfa, fbi⇡ =

X

i2V
fa(i)fb(i)⇡i. (2)

When |�
2

| < 1, the leading eigenvector is constant vector of ones,

f
1

= 1. Moreover, the probability of a transition from i 2 V to

j 2 V in t steps can be written as

P(X(t) = j|X(0) = i) = P t
ij = ⇡j + ⇡j

NX

`=2

�t
`f`(i)f`(j).

The second eigenvector f
2

will play a fundamental role in the rest of the paper and it is impor-
tant to have some intuition about this quantity. In the previous example with two communities
EAST and WEST, suppose that P corresponds to the simple random walk. If EAST and WEST
correspond to the most dominant partition in the network, then f

2

(i) and f
2

(j) will have the same
signs (i.e. +/-) when i and j belong to the same community. In this sense, f

2

will partition the
graph into EAST and WEST. This concept is made rigorous by the Cheegar bound [Chung, 1997]
and is the fundamental reason that spectral clustering can partition a graph [Von Luxburg, 2007].

1.1.2 Markov chain indexed by a tree

Let T be a rooted tree–a connected graph with n nodes, no cycles, and a vertex 0. Unless stated
otherwise, we will presume that this tree is fixed. In RDS, the seed participant is vertex 0 in T.

For any node in the tree � 2 T, denote �0 2 T as the parent of � (the node one step closer
to the root). Let D(�) ⇢ T denote the set of � and all its descendants in T. The Markov chain
indexed by T is the set of random variables {X� : � 2 T} satisfying the Markov property

P(X�|X�0 , X⌧ : ⌧ 2 S) = P(X�|X�0)

for any set S ✓ (� [ D(�))c. Just as in the standard Markov chain, the transition matrix P 2
[0, 1]N⇥N describes the following probabilities,

P(X� = i|X�0 = j) = Pij , for i, j 2 V.

Benjamini and Peres [1994] refers to this process as a (T, P )-walk on G . Unless stated otherwise, it
will be presumed throughout that under the (T, P )-walk on G, X

0

is initialized from the stationary
distribution of P .

6

Chapter 12 of Levin et al. [2009]  



1084 blogs 
edges are hyperlinks 
avg degree 30 
Half support Kerry 
Half support Bush



hy, f`i2⇡Eigenvectors correspond to bottlenecks. 
Each one has a value on each node. 
Bottlenecks are problematic when they correlate with y.



Eigenvalues indicate the 
strength of the bottleneck.

For all `, � 1  �`  1

�1 = 1 Don’t worry about the first eigenvalue.

If �2 = 1, then the graph is not connected!

If �2 is close to one, then the graph has a strong bottleneck.



V ar(µ̂) =
NX

`=2

hy, f`i2⇡G(�`)



The G function measures the  
“stringiness” vs the “bushy-ness”  

of the tree T.

• Draw two observations I and J uniformly at 
random from T.  

• D = d(I,J), graph distance in T. 

• Then, 

G(z) = E(zD) for |z| < 1



“Bushy” “Stringy”

m~2 m~1

average number of referrals = m

Bushy trees have larger 
referral rates.



G is an increasing function. 
G decreases when n increases. 
G is larger for bushy trees.

log scale

G(z) = E(zD) for |z| < 1
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  The G function 
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IV. Designed RDS



Sampling variance theorem

µ̂ =
1

n

X

i2T

yi

• Suppose that (1) the Markov chain satisfies 
regularity conditions and that (2) the seed node 
is sampled from the stationary distribution.



Sampling variance theorem

µ̂ =
1

n

X

i2T

yi

V ar(µ̂) =
NX

`=2

hy, f`i2⇡G(�`)

• Suppose that (1) the Markov chain satisfies 
regularity conditions and that (2) the seed node 
is sampled from the stationary distribution.



Sampling variance theorem

µ̂ =
1

n

X

i2T

yi

Squared correlation between    and bottleneck y `

V ar(µ̂) =
NX

`=2

hy, f`i2⇡G(�`)



Sampling variance theorem

µ̂ =
1

n

X

i2T

yi

G function evaluated at each eigenvalue. 
Recall: eigenvalue is large if bottleneck is strong.

V ar(µ̂) =
NX

`=2

hy, f`i2⇡G(�`)



Proof sketch

Cov⇡(Y�, Y⌧ ) =
NX

`=2

�

d(�,⌧)
` hy, f`i2⇡

By reversibility:

By spectral representation:

Summing over all (sigma, tau) and exchanging 
summations yields the result. 

For �, ⌧ 2 T, d(�, ⌧) = t =) (X�, X⌧ )
d
= (X(0), X(t))



The theorem is stated for sample average.  
Variance of Horvitz-Thompson is a slight 

adjustment.

y⇡(i) =
y(i)

⇡iN
µ̂HT =

1

n

X

i2T

y⇡i

wt =
1/deg(t)Pn
j 1/deg(j)

µ̂V H =
nX

t

wtyt



The theorem is stated for sample average.  
Variance of Horvitz-Thompson is a slight 

adjustment.

V ar(µ̂HT ) =
NX

`=2

hy, f`i2G(�`)

hy, f`i2 =
NX

i=1

y(i)f`(i)
1

N
no pi!

y⇡(i) =
y(i)

⇡iN
µ̂HT =

1

n

X

i2T

y⇡i



Two example networks to 
study this formula.

• Political Blog data from 2004 US presidential 
election 

• Colorado Project 90 data. Census of 
heterosexuals at risk for HIV, living around 
Colorado Springs in ~1990. 

• Both study the 2-core of the largest connected 
component.



1084 blogs 
edges are hyperlinks 
avg degree 30 
Half support Kerry 
Half support Bush





The standard error is large because the 
bottleneck aligns with the outcome of interest.



Bushy tree creates much 
larger standard errors.



Project 90
• “Fully observed” network on at risk and 

marginalized population. 

• CDC funded census of heterosexuals at risk for 
HIV transmission & living around Fort Collins, 
CO in ~1990. 

• 2-core of largest connected component  

• N =  3615 people, mean degree = 9.7





Data includes several 
covariates on the nodes.
gender  
sex.worker  
pimp  
sex.work.client  
drug.dealer  
drug.cook  
thief  
retired  
housewife

disabled  
unemployed  
homeless  
Native American  
Black  
Asian/Pacific Islander  
White  
Other



Breaches in data 
privacy have 
allowed the  

identification of some 
individuals! 



Jim?!



Picture



Picture

Gov Engler?!





Picture

Hira and Raoul?? 



Different covariates can have 
drastically different standard errors.
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For standard rates, we need the tree 
to grow in a way that G is order 1/n.

c Gn(�2) + o(Gn(�2))  V arRDS(µ̂)  c Gn(�2)

If y is correlated with f2, then under a certain technical 
condition,



How much larger is an RDS confidence interval 
compared to an SRS confidence interval using the 
same number of samples? 

                  If             , then 

Design effect

y = f2

DE =
VarRDS(µ̂)

VarSRS(µ̂)
=

G(�2)

1/n
= nG(�2)



Because G characterizes the 
rates of convergence, we would 
like upper and lower bounds on 
G that depend on the sample 

size n (i.e. the number of nodes 
in the referral tree)



Under an m-tree, there is an 
easy lower bound.

h(T)  logm n

The height of the m-tree is bounded:

G(�
2

) = E�D
2

� �2h(T)
2

� �2 logm n
2

= n� logm 1/�2
2



Under an m-tree 
(i.e. everyone refers m people), 
there is an easy lower bound.

h(T)  logm n

The height of the m-tree is bounded:

This fails to converge  
at the desired rate if

G(�
2

) = E�D
2

� �2h(T)
2

� �2 logm n
2

= n� logm 1/�2
2

m > 1/�2
2



m > 1/�2
2

• Lower bounds hold when tree is Galton Watson under the 
N log N assumption.  m = expected # referrals. 

• Upper bounds require more work and an additional 
assumption. 

• gives a matching threshold.  rate matches (up to log 
terms). 

• Galton Watson trees satisfy this additional assumption 
under a bounded fourth moment assumption.

m < 1/�2
2

nlogm �2n�1/2

Threshold:

standard  
error:
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• Close to 1 when bottleneck is strong 

• Values larger than 0.9 not uncommon  

• Say  

• If the average person refers more people than 
this, then the DE grows with n. 

�j : � 1 < �j < 1

�j = 0.7 ) 1

�2
j

⇡ 2

�j = 0.9 ) 1

�2
j

⇡ 1.23

A recap of the scary story
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There is a fundamental conflict between 
obtaining “enough data” and an unbiased 

sample.
• Volz-Heckathorn is asymptotically unbiased. 

• Want longer chain 

• Chains often die. 

• Need several referrals to prevent chain death. 

• This gives you a bushy tree.   

• As you gain more samples, standard errors 
decrease, but design effect can grow.



Outline
I. Model and notation.  

  Network, Markov transitions, sampling tree,  
  node features. 

II. Key mathematical pieces.   
  eigenvectors of P  
  The G function 

III. The true sampling variance 

A. A scary story 

IV. Designed RDS



• We derived variance of VH estimator under 
the assumptions needed for unbiasedness 
& initialization from stationary distribution. 

• The variance depends on  
(1) the bottlenecks in the referral process, 
(2) how y correlates with the bottlenecks,
(3) the tree structure. 

• There is a fundamental conflict between 
obtaining “enough data” and an unbiased 
sample. If referral rate is too large, then 
design effect grows with n.
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Bottlenecks prevent 
accurate estimates

• If the bottleneck is too strong, you get a 
growing design effect!



Designed RDS

• Joint research with Mohammad Khabbazian, 
Zoe Russek, and Bret Hanlon.



Designed RDS

• Seeks to minimize bottlenecks 

• Classically, a sample design is defined as a 
way of assigning a probability to everyone in 
the population 

• Designed RDS seeks referrals that cross 
bottlenecks



How do you do this?

• You could ask for it, 

• “Please refer someone from neighborhood x” 

• Problems with this:  

• Need to know which bottlenecks are important 

• Hard to model as random



Anti-cluster sampling

“Please refer two people who don’t 
know each other” 

and/or 

“Please refer someone who doesn’t 
know the person who referred you”



Disclaimer: 
This is work 
in progress.



Anti-cluster sampling
• This can be modeled as a new Markov transition 

matrix P for the same graph G 

• Random walk is “choose a friend uniformly at 
random” 

• Anti-cluster can be modeled as “from your set of 
friends, find all pairs that don’t know each other and 
select one pair uniformly at random.” 

• These sampling probabilities can be computed with 
matrix multiplication.



Under a “balanced” Stochastic Blockmodel  
with “within-block” probabilities larger than “out-of-block”  

probabilities, AC-RDS has smaller bottlenecks.



Work in progress

• Our current theory presumes that the underlying 
network is a stochastic block model  

• Does it work in practice? 

• Need experiments! 



• We derived variance of VH estimator 
under the assumptions needed for 
unbiasedness & initialization from 
stationary distribution. 

• The variance depends on (1) the tree 
structure and (2) how y correlates with 
the bottlenecks. 

• There is a fundamental conflict between 
obtaining “enough data” and an 
unbiased sample. If referral rate is too 
large, then design effect grows with n.
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