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Network driven sampling does
not require a sampling frame.

e Standard sampling techniques like random digit
dialing require a sampling frame
‘'simple random sample”

e No sampling frame for:

* homeless, twitter discussions, refugees,
sex workers, jJazz musicians.

e Fven with a sampling frame, low response rates!



Respondent driven sampling (RDS) and
snowball sampling are often used In social
science research.

e To study the hard-to-reach and/or marginalized
populations.

e Particularly prevalent in HIV research.

e [hree risk populations:

Men who have sex with men (MSM),
people who inject drugs (PWID), and
Female sex workers (FSW)




RDS for HIV is the
motivating example, but
network driven sampling

appears elsewnere.



RDS relies on friends
DassIiNg coupons.

® Find seeds from a convenience sample.
e (Give each seed three coupons to refer friends.
® [he coupons have a dual incentive structure

e Pay the person for making a reterral

e Pay the person being referred

¢ [terate through referral tree
Heckathorn, 1997.
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RDS Is increasingly popular

e The CDC manages the National HIV Behavioral
Surveillance System

» RDS every few years in 20 major
metropolitan areas.

e The WHO and UNAIDS have published an
extensive manual for how to properly implement
RDS




We wish to estimate the
poroportion of the
population that i1s HIV+.



A Major Assumption

ma
(e]®

e |f people make random referrals then we can

Ke statistical inferences using probabillistic

S and technigques

confidence intervals and p-values.

e Suppose you have X friends in the target
oopulation. The friend you refer is chosen
uniformly at random from these X people.

Salganik and Heckathorn, 2004



A Major Assumption

e Under this model, the passing of the coupon Is
a random walk on the social network.

e -or simplicity, temporarily suppose that there is
only one coupon.

Salganik and Heckathorn, 2004



Friendships can be plotted as a graph.
The circles are “nodes” or people.
The lines are “edges” or friendships.







Unbiased estimation requires
the Inclusion probabilities.

e People with large degrees are more likely to be
sampled.



Using the random walk (and other) assumptions,
we can approximate the inclusion probabilities.

The stationary distribution:

T = tlim P(referral t is person j|seed is person %)
— 00

Salganik and Heckathorn, 2004



Using the randomr

We can approxin

walk (and other) assumptions,
ate the inclusion probabillities.

m; o number of friends of person j

e Assumptions:

e uniform selection of friends, with replacement.

* reversible Markov chain (i.e.“symmetric”).

e soclal network Is connected and aperiodic

* Asymptotic

Salganik and Heckathorn, 2004



Volz-Heckathorn (2008) estimator
stationary distribution to constr

Jses the

UCT a

Horvitz-Thompson estimator.

| 1 1if person t i1s HIV positive
=Y 0 if person t 1s HIV negative

deg(t) = # of friends of person ¢

1/deg(t)

Qv H = WYt Wt — n ;
zt: i 1/deg(j)

Asymptotically unbiased!



What Is the standard error of
this estimator?



Computing the standard error is an
essential step for creating confidence
INntervals and testing hypotheses.



What Is the standard error of
this estimator?

Classical standard error for o
simple random sample. \/ﬁ

Usually, sigma is unknown.



What Is the standard error of
this estimator?

Classical standard error for o
simple random sample. \/7
Tl

5.

You can estimate It!

NG

In this talk, we will find the analogue
to the first formula for RDS.




Key difficulty with RDS data:
samples are dependent.

® Friends are similar in many ways, including HIV
status.

o |f Fred refers Bill, they are likely to have similar
IV status.




Need to decide what to
model as “random’

e Salganik and Heckathorn (and co-authors)
typically model referrals as random.

e (Giles and Handcock and others make an
additional assumption that the network Is
random.

e [here are currently three bootstrap technigues
that build off of these assumptions.



Previous stan

dard error estimators have

modeled tral

e Salganik (2006).

Sy as a first order Markov
Chain

“Variance estimation, design

effects, and sample size calculations for respondent-
driven sampling.” Journal of Urban Health.

e [his is an additional modeling assumption beyond
what Is needed for the unbiased-ness of VH.

e Jnderestimates
al. [2013]

variance. Neely [2009], Verdery et

e In Q/A, | can address when the “first order
assumption” holds and when it does not.



Recap

e BRDS is a network link tracing technique
e [hree bits: social network, referral tree, HIV status

e Assumption of random referrals allow for statistical
iInference

¢ \/H estimator is asymptotically unbiased

e \\le need to understand the variance.



Outline

|. Model and notation.
Markov transitions, sampling tree,
node features.

Il. Key mathematical pieces.
eigenvectors of P
The G function

A~ o
1. The true sampling variance ~ S€(fsrs) = NG
A. A scary story

V. Designed RDS



The Markov transition matrix
describes how coupons are
passed along the social network.

e Markov transition matrix P 1s N x N.
N = population size. (n will be sample size)

e P(person ¢ refers person j|person ¢ has 1 coupon) = F;;

e c.g. VH assumption: | chooses friend uniformly
at random, so that

P = 1(z, 5 friends)

deg(i)




Regularity conditions on P

e Assume P Is reversible wrt the

stationary distribution. Tillij = ML

* For random walk, equivalent to assuming an
undirected network.

e Assume |A2(P)| < 1
(akin to connected and aperiodic)

T = tlim P(referral ¢ is person j|seed is person %)
— OO



Each person can refer up to three
(sometimes five) future participants.

e [0 represent the referral process, we need a

Iitree!!

e Call this object T. Itisa grap
elements 1, ..., n correspondi
samples.

N, that contains

ng to the n

o |f | refers | into the study, then i —> | .






Standard Markov chain

{X (i) € people:t=1,...,n}

=00




Markov transitions on the referral tree.
{X (i) € people:t=1,...,n}
{X, € people : 7 € T}

%\ (T, P)-walk on G

u .
HEE B



















Each node in the graph is
either infected or not.

e Forperson 1=1, ..., N

e <( 1 12 sick
99793 0 i not sick

\

We want to estimate y averaged across
all nodes 1, ..., N in the social network.

Everything holds if y is continuous.



These terms constitute the core
of the model and the notation.

|. Markov transition matrix P
(underneath P, there is a social network)

|.Referral tree 7, {1,...,n} CT

lll.Health status y;,7=1,...,N
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‘Bottlenecks” can prevent
representative samples.

e Suppose a town with two communities: EAST and WEST.
e All seeds belong to EAST.

e Few friendships cross the town.

e \Will you collect enough data from WEST?

o \What if EAST and WEST have same incidence of HIV?

¢ \\We need a mathematical way to express these
“bottlenecks”...



Lemma 1.1. Let P be reversible with respect to the stationary
distribution w. The eigenvectors of P, denoted as f1,..., fn, are

real valued functions of the nodes 1 € V' and orthonormal with

respect to the inner product

faafb Zfa fb (2)

eV

Chapter 12 of Levin et al. [2009]



Elgenvectors are a Ir

refinement for the concep

- of “bott

athemati

cal
enecks”

Eigenvectors indicate the bottlenecks

fg,Angl,...

, N

eigenvalues indicate the “strength”
of the bottleneck.

These are well studied objects In linear algebra

and spectral graph

theory.



Elgenvectors are a Ir

refinement for the concep

- of “bott

athemati

cal
enecks”

- An eigenvector assigns a value
fe(7) . °

to each node.

IF: sign(fe(i)) = sign(fe(j))

HEN: I and | are
same side of this

on the
bottleneck.



e [he two communities are

For example, the EAST and WES]
bottleneck would be represented by one

elgenvector.

{

signs on nodes from EAST and W

~AST and W

- this Is the biggest bottleneck in the ne
nen the second eigenvector will have o

-5 T

'WOrk,

—S T

oposite



Lemma 1.1. Let P be reversible with respect to the stationary

distribution w. The eigenvectors of P, denoted as f1,..., fn, are
real valued functions of the nodes 1 € V' and orthonormal with

respect to the inner product

faafb Zfa fb (2)

eV

When |As| < 1, the leading eigenvector is constant vector of ones,
f1 = 1. Moreover, the probability of a transition from 1 € V to

7€V it steps can be written as

P(X(t) = j|X(0) =)= P —wﬁ@zm@ ) fo().

Chapter 12 of Levin et al. [2009]



Political Blogs

1084 blogs

edges are hyperlinks
avg degree 30

alf support Kerry
alf support Bush




Eigenvectors correspond to bottlenecks. <y f€>2
) 7T

Each one has a value on each node.
Bottlenecks are problematic when they correlate with .

Political Blogs A2 =0.89 ’y = 0.89

ha = 0.55 hs = 0.53 he = 0.53
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Eigenvalues indicate the
strength of the bottleneck.

Forall ¢/, —1 <)\ <1

A1 =1 Don’t worry about the first eigenvalue.

If Ao = 1, then the graph is not connected!

If A5 is close to one, then the graph has a strong bottleneck.






The G function measures the
‘stringiness” vs the “bushy-ness”
of the tree T.

e Draw two observations | and J uniformly at
random from T.

e D =d(l,J), graph distance in T.

* [hen

G(z) = E(27) for |2 < 1



Bushy trees have larger
referral rates.

“‘Bushy” “Stringy”

m~2 m~1

average number of referrals = m



G(z) = E(z7) for |2| < 1
G Is an increasing function.

(G decreases when n increases.
G is larger for bushy trees.

Black = 100 observations, Red = 500 observations

1.000

log scale

=)
o
N
o
Q
0
Q
(=)

0.010
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Sampling variance theorem
e Suppose that (1) the Markov chain satisfies
regularity conditions and that (2) the seed node

IS sampled from the stationary distribution.

ﬂ:%Zyi

1€’




Sampling variance theorem
e Suppose that (1) the Markov chain satisfies
regularity conditions and that (2) the seed node

IS sampled from the stationary distribution.




Sampling variance theorem

ﬂ:%Zyi

1€
N

Var(p) = > i, f)2500)

(=2

|

Squared correlation between y and bottleneck ¢



Sampling variance theorem

1
:EZT

N
V&T‘ Z y7f€

=2

T

G function evaluated at each eigenvalue.
Recall: eigenvalue is large if bottleneck is strong.



Proof sketch

By reversibility:
For o,7 € T,d(o,7) =t = (X,, X,) = (X(0), X(t))

By spectral representation:

N
COUW (Y07 YT) — Z )\?(U’T) <y7 f€>721'
(=2

Summing over all (sigma, tau) and exchanging
summations vyields the result.



The theorem Is stated for sample average.
Variance of Horvitz-Thompson is a slight
adjustment.

T y(Z) } — ! n
— WHT — — Yi
y" (1) N - ;

1/deg(t)

Qv H = WYt Wt — n ;
zt: > 1/deg(j)



The theorem Is stated for sample average.
Variance of Horvitz-Thompson is a slight

adjustment.

TN y(@) A _ l m
y" (i) = N HHT = ;yz
N
Var(jigr) = Z (y, f1)°G ()
1=

N

. 1)* = Syl feli) 5 o pi

1=1



Two example networks to
study this formula.

e Political Blog data from 2004 US presidential
election

e Colorado Project 90 data. Census of
heterosexuals at risk for HIV, living around
Colorado Springs in ~1990.

e Both study the 2-core of the largest connected
component.



Political Blogs

1084 blogs

edges are hyperlinks
avg degree 30

alf support Kerry
alf support Bush




Political Blogs Ay = 0.89 Az = 0.89

g = 0.55 hs = 0.53 e = 0.53




The standard error is large because the
bottleneck aligns with the outcome of interest.

Standard error for the VH estimator in estimating
the proportion of Kerry blogs in the political blog network
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Busny tree creates much
larger stanadard errors.

Standard error for the VH estimator in estimating
the proportion of Kerry blogs in the political blog network
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Project 90

e “Fully observed” network on at risk and
marginalized population.

°
H

DC funded census of heterosexuals at risk for

V transmission & living around Fort Collins,

CO in ~1990.

o ).

core of largest connected component

e N = 3615 people, mean degree = 9.7



Project 90 collected the network of heterosexuals
at risk for HIV in Colorado Springs circa 1990




Data Includes several
covariates on the noges.

ender .
J disablead
sex.worker
. unemployed
PIMP
. nomeless
sex.work.client . .
Native American
drug.dealer
drug.cook Black
. J Asian/Pacific Islander
thief .
retired White
Other

housewife



homeless

Breaches in data
privacy have
allowed the
identification of some
individuals!



homeless






Gov Engler?!
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drug.cook

Hira and Raoul??



Different covariates can have
drastically different standard errors.

Mean number of offspring = 1 Mean number of offspring = 1.2 Mean number of offspring = 2

o 0 0
o = white = =
female
=~ unemployed

drug.dealer

- gex.worker

-
>
—
o
-
O
=
L
O
~
©
g,
c
S
)

Standard Error of VH
Standard Error of VH

200 1000

number of samples number of samples number of samples
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For standard rates, we need the tree
to grow In a way that G is order 1/n.

If vy is correlated with 2, then under a certain technical
condition,

¢ Gn(A2) +0(Gr(A2)) < Varrps(it) < ¢ Gn(A2)



Design effect

How much larger is an RDS confidence interval
compared to an SRS confidence interval using the
same number of samples?

If y=fo, then

pE — Yaraps(i) _ G(A2) _ nG(As)

N Vargprs(jt) 1/n




Because G characterizes the
rates of convergence, we would
Ike upper and lower bounds on

G that depend on the sample
size n (I.e. the number of nodes

N the referral tree)



Under an m-tree, there i1s an
easy lower bound.

The height of the m-tree is bounded:

h(T) < log,, n

G(A2) = EAD > \2MT) > p2logmn = log,, 1/2;




Under an m-tree
(I.e. everyone refers m people),
there Is an easy lower bound.

The height of the m-tree is bounded:

h(T) <log,, n

B0 = BAP 3 23" 5 23450 = o 1/

This fails to converge 2
t the desired rate if m > 1/)\2

Q



Threshold: m<1/x5 | m> 1/)5

standard —1/2 nlogm Ao

error:

e | ower bounds hold when tree is Galton Watson under the
N log N assumption. m = expected # referrals.

e Upper bounds require more work and an additional
assumption.

* gives a matching threshold. rate matches (up to log
terms).

* (Galton Watson trees satisty this additional assumption
under a bounded fourth moment assumption.



Design Effect of RDS
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A recap of the scary story

Ain — 1T <A <1

e Close to 1 when bottleneck is strong

¢ Values larger than 0.9 not uncommon

|
’Say )\J:O7$P%2
J

¢ |f the average person refers more people than
this, then the DE grows with n.




Design Effect of RDS
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There is a fundamental conflict between
obtaining "enough data”™ and an unbiased
sample.

¢ \/olz-Heckathorn is asymptotically unbiased.
e \Want /longer chain

e Chains often die.

e Need several referrals to prevent chain death.
® [his gives you a bushy tree.

* As you gain more samples, standard errors
decrease, but design eftect can grow.
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‘'om statior

® [he variance depends on

(1) the bottlenecks in tr

(2) how y correlates with t
(3) the tree structure.

ary distribution.

e referral process,

he bottlenecks,

e [here Is a fundamental conflict between
obtaining "enough data”™ and an unbiased

sample.

design

f referral rate is too large, then
effect grows with n.
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Bottlenecks prevent
accurate estimates

e |f the bottleneck is too strong, you get a
growing design effect!




Designed RDS

e Joint research with Mohammad Khabbazian,
/Z0e Russek, and Bret Hanlon.



Designed RDS

e Seeks to minimize bottlenecks

e Classically, a sample design is defined as a
way of assigning a probability to everyone in
the population

e Designed RDS seeks reterrals that cross
bottlenecks




How do you do this”

® You could ask for it,

e "Please refer someone from neighborhood X"
® Problems with this:

 Need to know which bottlenecks are important

e Hard to model as random



Antil-cluster sampling

“Please refer two people who don’t
know each other”

and/or

“Please refer someone who doesn’t
know the person who referred you”



Disclaimer:
This is work
In progress.




Antil-cluster sampling

¢ This can be modeled as a new Markov transition
matrix P for the same graph G

e Random walk is “choose a friend unitormly at
random”

e Anti-cluster can be modeled as “from your set of
friends, find all pairs that don’'t know each other and
select one pair uniformly at random.”

® [hese sampling probabilities can be computed with
matrix multiplication.



Under a “balanced” Stochastic Blockmodel
with “within-block™ probabillities larger than “out-of-block”
orobabilities, AC-RDS has smaller bottlenecks.

Lemma 5 (Spectral gap of the population graph). Let A := E[A]| = ZBZ" under the stochastic

block model with k& blocks of equal sizes. Let Bi; = p and B;; =qfori# j. f 0 < g < p < 1, then

0 < Ao (P "‘(‘.) < /\.!(P H”') < 1.




Work In progress

e Qur current theory presumes that the underlying
network is a stochastic block model

e Does it work in practice”

 Need experiments!



e \\e derived variance of VH estimator

Unbilasedness & In

stationary distributi

under the assumptior

itia

on.

S needed for
ization from

e The variance depends on (1) the tree
structure and (2) how y correlates with

the bottlenecks.

e There iIs a fundamental conflict between
obtaining “enough data”™ and an

unbiased sample. If reterral rate is too
arge, then design etfect grows with n.
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