
The official Cheat Sheet for the DataCamp course

DATA ANALYSIS THE DATA.TABLE WAY

General form: DT[i, j, by] “Take DT, subset rows using i, then calculate j grouped by by”

CREATE A DATA TABLE

Create a
data.table
and call it DT.

library(data.table)
set.seed(45L)
DT <- data.table(V1=c(1L,2L),

V2=LETTERS[1:3],
V3=round(rnorm(4),4),
V4=1:12)

> DT
 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 B -0.3825 2
3: 1 C -1.0604 3
4: 2 A 0.6651 4
5: 1 B -1.1727 5
6: 2 C -0.3825 6
7: 1 A -1.0604 7
8: 2 B 0.6651 8
9: 1 C -1.1727 9
10: 2 A -0.3825 10
11: 1 B -1.0604 11
12: 2 C 0.6651 12

SUBSETTING ROWS USING
What? Example Notes Output

Subsetting rows by numbers. DT[3:5,] #or DT[3:5] Selects third to fifth row. V1 V2 V3 V4
1: 1 C -1.0604 3
2: 2 A 0.6651 4
3: 1 B -1.1727 5

Use column names to select rows in i based on
a condition using fast automatic indexing. Or
for selecting on multiple values:
DT[column %in% c("value1","value2")],
which selects all rows that have value1 or
value2 in column.

DT[V2 == "A"] Selects all rows that have value A in column
V2.

 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 A 0.6651 4
3: 1 A -1.0604 7
4: 2 A -0.3825 10

 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 1 C -1.0604 3

...
7: 2 A -0.3825 10
8: 2 C 0.6651 12

DT[V2 %in% c("A","C")] Select all rows that have the value A or C in
column V2.

MANIPULATING ON COLUMNS IN

What? Example Notes Output

Select 1 column in j. DT[,V2] Column V2 is returned as a vector. [1] "A" "B" "C" "A"
"B" "C" ...

Select several columns in j. DT[,.(V2,V3)] Columns V2 and V3 are
returned as a data.table.

 V2 V3
1: A -1.1727
2: B -0.3825
3: C -1.0604

…

.() is an alias to list(). If .() is used, the returned value is a data.table. If .() is not used, the result is a vector.

Call functions in j. DT[,sum(V1)] Returns the sum of all
elements of column V1 in a vector.

[1] 18

Computing on several columns. DT[,.(sum(V1),sd(V3))] Returns the sum of all
elements of column V1 and the standard
deviation of V3 in a data.table.

 V1 V2
1: 18 0.7634655

Assigning column names to
computed columns.

DT[,.(Aggregate = sum(V1),
Sd.V3 = sd(V3))]

The same as above, but with new names. Aggregate Sd.V3
1: 18 0.7634655

Columns get recycled if different
length.

DT[,.(V1, Sd.V3 = sd(V3))] Selects column V1, and compute std. dev. of V3,
which returns a single value and gets recycled.

 V1 Sd.V3
1: 1 0.7634655
2: 2 0.7634655

...
11: 1 0.7634655
12: 2 0.7634655

Multiple expressions can be
wrapped in curly braces.

DT[,{print(V2)
plot(V3)
NULL}]

Print column V2 and plot V3. [1] "A" "B" "C" "A"
"B" "C" ...
#And a plot

DOING GROUP
What? Example Notes Output

Doing j by group. DT[,.(V4.Sum = sum(V4)),by=V1] Calculates the sum of V4, for every group in
V1.

 V1 V4.Sum
1: 1 36

Doing j by several groups
using .().

DT[,.(V4.Sum = sum(V4)),by=.(V1,V2)] The same as above, but for every group in V1
and V2.

V1 V2 V4.Sum
1: 1 A 8
2: 2 B 10
3: 1 C 12
4: 2 A 14
5: 1 B 16
6: 2 C 18

Call functions in by. DT[,.(V4.Sum = sum(V4)),by=sign(V1-1)] Calculates the sum of V4, for every group in
sign(V1-1).

sign V4.Sum
1: 0 36
2: 1 42

Assigning new column
names in by.

DT[,.(V4.Sum = sum(V4)),
by=.(V1.01 = sign(V1-1))]

Same as above, but with a new name for the
variable we are grouping by.

 V1.01 V4.Sum
1: 0 36
2: 1 42

Grouping only on a subset by
specifying i.

DT[1:5,.(V4.Sum = sum(V4)),by=V1] Calculates the sum of V4, for every group in
V1, after subsetting on the first five rows.

 V1 V4.Sum
1: 1 9
2: 2 6

Using .N to get the total
number of observations of each
group.

DT[,.N,by=V1] Count the number of rows for every group in
V1.

 V1 N
1: 1 6
2: 2 6

BY J

ADDING/UPDATING COLUMNS BY REFERENCE IN USING :=
What? Example Notes Output

Adding/updating a column by
reference using := in one line.
Watch out: extra assignment
(DT <- DT[...]) is redundant.

DT[, V1 := round(exp(V1),2)] Column V1 is updated by what is after :=. Returns the result invisibly.
Column V1 went from: [1] 1 2 1
2 … to [1] 2.72 7.39 2.72
7.39 …

Adding/updating several
columns by reference using :=.

DT[, c("V1","V2") := list
(round(exp(V1),2), LETTERS
[4:6])]

Column V1 and V2 are updated by what is
after :=.

Returns the result invisibly.
Column V1 changed as above.
Column V2 went from: [1] "A"
"B" "C" "A" "B" "C" … to: [1]
"D" "E" "F" "D" "E" "F" …

Using functional :=. DT[, ':=' (V1 =
round(exp(V1),2),
V2 = LETTERS[4:6])][]

Another way to write the same line as
above this one, but easier to write
comments side-by-side. Also, when [] is
added the result is printed to the screen.

Same changes as line above this
one, but the result is printed to the
screen because of the [] at the end
of the statement.

Remove a column instantly
using :=.

DT[, V1 := NULL] Removes column V1. Returns the result invisibly.
Column V1 became NULL.

Remove several columns
instantly using :=.

DT[, c("V1","V2") := NULL] Removes columns V1 and V2. Returns the result invisibly. Col-
umn V1 and V2 became NULL.

Wrap the name of a variable
which contains column names in
parenthesis to pass the contents
of that variable to be deleted.

Cols.chosen = c("A","B")
DT[, Cols.chosen := NULL] Watch out: this deletes the column with

column name Cols.chosen.
Returns the result invisibly.
Column with name Cols.chosen
became NULL.

DT[, (Cols.chosen) := NULL] Deletes the columns specified in the
variable Cols.chosen (V1 and V2).

Returns the result invisibly.
Columns V1 and V2 became NULL.

INDEXING AND KEYS
What? Example Notes Output

Use setkey() to set a key on a DT.
The data is sorted on the column we
specified by reference.

setkey(DT,V2) A key is set on column V2. Returns results
invisibly.

Use keys like supercharged rownames
to select rows.

DT["A"] Returns all the rows where the key column (set to
column V2 in the line above) has the value A.

 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 A 0.6651 4
3: 1 A -1.0604 7
4: 2 A -0.3825 10

DT[c("A","C")] Returns all the rows where the key column (V2) has the
value A or C.

 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 A 0.6651 4

...
7: 1 C -1.1727 9
8: 2 C 0.6651 12

The mult argument is used to control
which row that i matches to is
returned, default is all.

DT["A", mult ="first"] Returns first row of all rows that match the value A in
the key column (V2).

 V1 V2 V3 V4
1: 1 A -1.1727 1

DT["A", mult = "last"] Returns last row of all rows that match the value A in
the key column (V2).

 V1 V2 V3 V4
1: 2 A -0.3825 10

The nomatch argument is used to
control what happens when a value
specified in i has no match in the rows
of the DT. Default is NA, but can be
changed to 0.
0 means no rows will be
returned for that non-matched row of i.

DT[c("A","D")] Returns all the rows where the key column (V2) has the
value A or D. A is found, D is not so NA is returned for
D.

 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 A 0.6651 4
3: 1 A -1.0604 7
4: 2 A -0.3825 10
5: NA D NA NA

DT[c("A","D"), nomatch
= 0]

Returns all the rows where the key column (V2) has the
value A or D. Value D is not found and not returned
because of the
nomatch argument.

 V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 A 0.6651 4
3: 1 A -1.0604 7
4: 2 A -0.3825 10

by=.EACHI allows to group by each
subset of known groups in i. A key
needs to be set to use by=.EACHI.

DT[c("A","C"),
sum(V4)]

Returns one total sum of column V4, for the rows of the
key column (V2) that have values A or C.

[1] 52

DT[c("A","C"),
sum(V4), by=.EACHI]

Returns one sum of column V4 for the rows of column
V2 that have value A, and
another sum for the rows of column V2 that have value
C.

 V2 V1
1: A 22
2: C 30

Any number of columns can be set as
key using setkey(). This way rows
can be selected on 2 keys which is an
equijoin.

setkey(DT,V1,V2) Sorts by column V1 and then by column V2 within each
group of column V1.

Returns results
invisibly.

DT[.(2,"C")] Selects the rows that have the value 2 for the first key
(column V1) and the value C for the second key (column
V2).

 V1 V2 V3 V4
1: 2 C -0.3825 6
2: 2 C 0.6651 12

DT[.(2,
c("A","C"))]

Selects the rows that have the value 2 for the first key
(column V1) and within those rows the value A or C for
the second key (column V2).

 V1 V2 V3 V4
1: 2 A 0.6651 4
2: 2 A -0.3825 10
3: 2 C -0.3825 6
4: 2 C 0.6651 12

ADVANCED DATA TABLE OPERATIONS
What? Example Notes Output

.N contains the number of rows or the
last row.

Usable in i: DT[.N-1] Returns the penultimate row of the
data.table.

 V1 V2 V3 V4
1: 1 B -1.0604 11

Usable in j: DT[,.N] Returns the number of rows. [1] 12

.() is an alias to list() and means
the same. The .() notation is not
needed when there is only one item in
by or j.

Usable in j: DT[,.(V2,V3)] #or
DT[,list(V2,V3)]

Columns V2 and V3 are returned as a
data.table.

 V2 V3
1: A -1.1727
2: B -0.3825
3: C -1.0604

...

Usable in by: DT[, mean(V3),
by=.(V1,V2)]

Returns the result of j, grouped by all
possible combinations of groups
specified in by.

 V1 V2 V1
1: 1 A -1.11655
2: 2 B 0.14130
3: 1 C -1.11655
4: 2 A 0.14130
5: 1 B -1.11655
6: 2 C 0.14130

.SD is a data.table and holds all the
values of all columns, except the one
specified in by. It reduces
programming time but keeps
readability. .SD is only accessible in j.

DT[, print(.SD), by=V2] To look at what .SD
contains.

#All of .SD (output
too long to display
here)

DT[,.SD[c(1,.N)], by=V2] Selects the first and last row grouped by
column V2.

 V2 V1 V3 V4
1: A 1 -1.1727 1
2: A 2 -0.3825 10
3: B 2 -0.3825 2
4: B 1 -1.0604 11
5: C 1 -1.0604 3
6: C 2 0.6651 12

DT[, lapply(.SD, sum), by=V2] Calculates the sum of all columns in .SD
grouped by V2.

V2 V1 V3 V4
1: A 6 -1.9505 22
2: B 6 -1.9505 26
3: C 6 -1.9505 30

.SDcols is used together with .SD, to
specify a subset of the columns of .SD to
be used in j.

DT[, lapply(.SD,sum), by=V2,
.SDcols = c("V3","V4")]

Same as above, but only for columns V3
and V4 of .SD. V2 V3 V4

1: A -1.9505 22
2: B -1.9505 26
3: C -1.9505 30 .SDcols can be the result of a

function call.
 DT[, lapply(.SD,sum), by=V2,
.SDcols = paste0("V",3:4)]

Same result as the line above.

CHAINING HELPS TACK EXPRESSIONS TOGETHER AND
AVOID (UNNECESSARY) INTERMEDIATE ASSIGNMENTS

What? Example Notes Output

Do 2 (or more) sets of statements
at once by chaining them in one
statement. This
corresponds to having in SQL.

DT<-DT[, .(V4.Sum = sum(V4)),by=V1]
DT[V4.Sum > 40] #no chaining

First calculates sum of V4, grouped by V1. Then
selects that group of which the sum is > 40
without chaining.

 V1 V4.Sum
1: 1 36
2: 2 42

DT[, .(V4.Sum = sum(V4)),
by=V1][V4.Sum > 40]

Same as above, but with chaining. V1 V4.Sum
1: 2 42

Order the results by chaining. DT[, .(V4.Sum = sum(V4)),
by=V1][order(-V1)]

Calculates sum of V4, grouped by V1, and then
orders the result on V1.

 V1 V4.Sum
1: 2 42
2: 1 36

USING THE set()-FAMILY
What? Example Notes Output

set() is used to repeatedly
update rows and columns by
reference. Set() is a loopable
low overhead version of :=.
Watch out: It can not handle
grouping operations.

Syntax of set(): for (i in from:to) set(DT, row, column, new value).

rows = list(3:4,5:6)
cols = 1:2
for (i in seq_along(rows))
{ set(DT,

i=rows[[i]],
j = cols[i],
value = NA) }

Sequence along the values of rows,
and for the values of cols, set the
values of those elements equal to NA.

Returns the result invisibly.
> DT

V1 V2 V3 V4
1: 1 A -1.1727 1
2: 2 B -0.3825 2
3: NA C -1.0604 3
4: NA A 0.6651 4
5: 1 NA -1.1727 5
6: 2 NA -0.3825 6
7: 1 A -1.0604 7
8: 2 B 0.6651 8

setnames() is used to create
or update column names by
reference.

Syntax of setnames():
setnames(DT,"old","new")[]

Changes (set) the name of column old to new. Also, when [] is added at the
end of any set() function the result is printed to the screen.

setnames(DT,"V2","Rating") Sets the name of column V2 to Rating. Returns the result invisibly.

setnames(DT,c("V2","V3"),
c("V2.rating","V3.DataCamp"))

Changes two column names. Returns the result invisibly.

setcolorder() is used to
reorder columns by reference.

setcolorder(DT, "neworder") neworder is a character vector of the new column name ordering.

setcolorder(DT,
c("V2","V1","V4","V3"))

Changes the column ordering to the
contents of the vector.

Returns the result invisibly. The new
column order is now [1] "V2" "V1"
"V4" "V3"

i

J

J

https://www.datacamp.com/courses/data-analysis-the-data-table-way?utm_source=data.table%20cheat%20sheet&utm_medium=cheat%20sheet&utm_campaign=data.table%20cheat%20sheet

