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Abstract

The task of query-by-example search is to retrieve, from among a collection of

data, the observations most similar to a given query. A common approach to this

problem is based on viewing the data as vertices in a graph in which edge weights

reflect similarities between observations. Errors arise in this graph-based framework

both from errors in measuring these similarities and from approximations required

for fast retrieval. In this thesis, we use tools from graph inference to analyze and

control the sources of these errors. We establish novel theoretical results related to

representation learning and to vertex nomination, and use these results to control the

effects of model misspecification, noisy similarity measurement and approximation

error on search accuracy. We present a state-of-the-art system for query-by-example

audio search in the context of low-resource speech recognition, which also serves as

an illustrative example and testbed for applying our theoretical results.
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Chapter 1

Introduction and Motivation

Researchers throughout the sciences are now generating data from both observa-

tion and simulation at increasingly large scales, aided by the ubiquity of inexpensive

sensors and storage. Indeed, some posit that we have entered a new “fourth paradigm”

(Hey et al. 2009) of scientific research, in which collection, curation and analysis of

massive data sets are central to the advancement of our understanding of the natural

world. Under this fourth paradigm, methods for analyzing, exploring and summa-

rizing data sets are paramount. One such operation is query-by-example similarity

search, in which a researcher, having found an observation of interest, called the query,

wishes to find more like it from among a collection of observations called the search

collection. Problems of this sort arise in machine learning in the form of recommender

systems (Resnick and Varian 1997), in genomics in the form of sequence similarity

search (Lipman and Pearson 1985; Altschul et al. 1990), and in computer vision in
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CHAPTER 1. SEARCH AND INDEXING PROBLEMS

the form of content-based retrieval (Datta et al. 2008), among countless other appli-

cations. Owing to computational constraints and model misspecification, similarity

search on large data sets can incur errors that negatively impact the quality of search

results and downstream performance. This thesis aims to better control and mitigate

the sources of these errors using tools from graph inference.

The typical approach to query-by-example similarity search consists of first em-

bedding the search collection into some finite-dimensional normed linear space in such

a way that the similarity structure of the data is preserved. Next, one constructs an

index for performing (approximate) near neighbor retrieval. Given a query, this index

allows the fast retrieval of near neighbors of the embedded query observation from

the search collection. We call these near neighbors the query results. In applying

this approach, it is typical that one must accept approximation error from a number

of sources. Under most realistic circumstances, any given embedding technique will

preserve the similarity structure of the search collection only approximately. Ad-

ditionally, the size of the search collection may make it prohibitively expensive to

construct this embedding exactly, and a researcher may have to settle instead for an

approximate embedding. The approximate, probabilistic nature of large-scale near-

neighbor search adds yet another source of error. Finally, the similarity measure itself

may be a source of error, since it is often infeasible in practice to precisely compute the

researcher’s intended or desired notion of similarity. This makes it necessary to use

some other, more readily computed similarity function that is only an approximation

2



CHAPTER 1. SEARCH AND INDEXING PROBLEMS

to the one actually intended.

In this thesis, we explore how these various approximation errors influence the

performance of the search system and attempt to minimize their effects using tech-

niques from graph inference. In particular, we focus on the effects of replacing the

intended, ideal notion of similarity, which we call the oracle similarity function, with

a more feasible approximation, which we call the ersatz similarity function. We mo-

tivate the choice to focus on this source of error by observing, firstly, that it tends

to dominate the error introduced by embedding and near-neighbor retrieval, and sec-

ondly that selection of the oracle similarity (and its approximation) occurs prior to

the construction of embeddings and the near-neighbor index. A better understanding

of the effects of these choices is central to improving systems for large-scale search

and for analyzing and summarizing large data sets generally.

1.1 Similarity Search and Indexing of Large

Data Sets

The problem of query-by-example search is to find, from among a large number of

observations, those that are most similar to a given query observation. This notion of

similarity depends, of course, on the domain and application at hand. For example,

in the case of astronomy data, a researcher looking to find stars with similar spectra

will have in mind a different notion of similarity than does a researcher looking to

3



CHAPTER 1. SEARCH AND INDEXING PROBLEMS

find stars with similar redshifts (Morison 2008).

Having chosen a similarity function, how should we perform retrieval from the

search collection when presented with a query? Näıvely, one could compute the

similarity of the query to all observations in the search collection and return those that

score highest. This brute force approach is, of course, infeasible for search collections

of even moderate size. Near-neighbor retrieval, discussed in detail in Appendix C,

suggests a way forward: if one can represent observations as points in such a way

that similar observations have corresponding points that are near one another, then

we can recast similarity search as near-neighbor retrieval and apply the existing tools

of near-neighbor search to the similarity search problem. Of course, this only raises

the new issue of representing the search collection by geometric points. Fortunately,

this problem is itself well-studied in the areas of dimensionality reduction, manifold

learning and metric embedding (see Appendix B for an overview of these areas).

The tools of embeddings and near-neighbor retrieval suggest the following commonly-

used pipeline. Having chosen a notion of similarity, one first embeds the search col-

lection into a metric space in which it is easy to perform near-neighbor retrieval. By

construction, this embedding is such that observations are similar if and only if their

embedded points are near one another. Having embedded the search collection, one

then builds an index to facilitate near-neighbor retrieval on the embedded points.

Upon arrival of a query observation, one simply embeds the query, finds the points

nearest to it, and returns their corresponding observations.

4



CHAPTER 1. SEARCH AND INDEXING PROBLEMS

1.1.1 Sources of Error

Unfortunately, approximation error is introduced at every step of this proposed

pipeline. All scalable algorithms for near neighbor retrieval are only approximate,

and typically involve an accuracy guarantee that holds only probabilistically. Fur-

ther, most embedding techniques preserve the similarity structure of the data only

approximately, and thus in the above pipeline, near-neighbor retrieval is actually re-

trieving only the observations that are approximately the most similar to the query.

But both of these sources of error are, in some sense, secondary to the approximation

error introduced, before either of these steps take place, by the similarity measure

itself.

This approximation error arises from the fact that in most cases of interest, even

writing down a sensible notion of similarity is a challenge. Consider an image retrieval

task, in which we have a database of images of common objects, and the goal is to

retrieve from the database all images that contain the same object as is pictured in

a given query image. Here, the ideal notion of similarity is easy to state: two images

are similar if and only if they contain the same object. Unfortunately, while most

humans can readily identify whether or not, say, a cat is present in a given photo, the

same task is a notoriously hard problem in computer vision (Krizhevsky et al. 2012;

Szegedy et al. 2013). Thus, even though this ideal notion of similarity is an easy one

to state, and even easy for most humans, it is an infeasible one for use in retrieval.

In such a situation, a researcher must settle for a simpler notion of similarity that

5



CHAPTER 1. SEARCH AND INDEXING PROBLEMS

is more easily computed. For example, in the image retrieval task just described,

a researcher may instead use a similarity scoring function based on low-level image

features. Using an ersatz similarity function yields computational tractability at the

cost of accuracy, in that the ersatz similarity does not fully capture the similarity

that was originally intended. We illustrate the typical search pipeline as well as many

of these computational and approximation concerns in Chapter 2, where we present

a system for performing large-scale query-by-example search on speech audio.

A second source of difficulty arises from related but distinct computational con-

cerns. In general, even having chosen an ersatz similarity, there remains the matter

of actually computing the embedding of the search collection. In some cases, it may

still be prohibitively expensive to compute even the ersatz function for all pairs of

observations in the search collection. In such a case, a researcher may back off to

computing an approximation of the ersatz function or computing the ersatz function

for only a fraction of the pairs of observations in the search collection. We explore how

such tradeoffs influence the quality of the embedded points in Chapter 3. Our main

result of the chapter shows that a certain class of embeddings are largely unaffected

by these various sources of approximation error, provided certain mild assumptions

hold concerning the search collection and the nature of the approximation.

6
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1.1.2 Reranking Candidate Matches

A technique commonly applied in large-scale search, called reranking (Mei et al.

2014), is to retrieve results in two passes. A first pass performs an inexpensive coarse-

grained search on the entire collection, which returns a set of candidate matches far

larger than the intended set of results to be returned to the user. A second-pass

search, the reranking step, provides a more expensive, more accurate assessment of

similarity. This second pass is applied only to the candidate matches, with the goal

of refining the ranking of the matches returned by the first pass.

The retrieval system described in the previous sections makes fast large-scale

similarity search possible at the cost of introducing approximation error at several

steps in the pipeline. Our theoretical results in Chapter 3 suggest that the errors

introduced by the ersatz function and the embedding step are not overly large. Is

it possible to devise a reranking procedure so that we do not merely control these

errors, but reduce their effect on the quality of search results?

It is natural to take a reranking approach in which we use this standard pipeline

to perform a fast first-pass search. A näıve approach to this reranking problem would

be to simply reorder the search results in decreasing order of similarity to the query,

but this approach yields a ranking that reflects the oracle similarity only as well as

the ersatz similarity does. If we think of the ersatz similarity function as an estimate

of the oracle similarity, then it makes sense to make use of the pairwise similarities for

all of the candidate matches. These pairwise similarity scores, taken jointly, define

7
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a weighted graph whose vertices correspond to the candidate matches, in which we

expect similarity among the candidate matches to yield graph structure that better

reflects the oracle similarity. This intuition motivates the results presented in Chapter

4, in which we consider the vertex nomination problem. The vertex nomination

problem, which we discuss in detail in Appendix E, generalizes this reranking idea

by considering a semi-supervised problem in which a few vertices are marked as

“interesting” in a given graph G = (V,E), and one wishes to rank the remaining

vertices from V so that other vertices also believed to be interesting concentrate at

the top of the list. In Chapter 5, we adapt the vertex nomination scheme presented in

4 to the reranking problem discussed above and show that it improves the performance

of the audio search system presented in Chapter 2.

1.2 Roadmap

We begin in Chapter 2 by presenting a basic system for performing query-by-

example search on large collections of speech audio data. This system illustrates

the design issues typical of similarity search, and serves as a testbed for the ideas

introduced in later chapters. In Chapter 3, we give more detailed attention to the

Laplacian eigenmaps embedding (Belkin and Niyogi 2003) used in the system intro-

duced in Chapter 2. We prove that the Laplacian eigenmaps embedding is robust

to misspecification and occlusion of the sort discussed in Section 1.1.1. In Chapter

8
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4, we consider the vertex nomination problem, motivated by the reranking problem

discussed in Section 1.1.2. We introduce a maximum-likelihood-based technique for

solving the vertex nomination problem and prove its consistency under the stochastic

block model. In Chapter 5, we apply our vertex nomination scheme to the reranking

problem and show that it improves the performance of the system presented in Chap-

ter 2. We close in Chapter 6 with a discussion of our overall results and directions

for future research.
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Chapter 2

Low-resource Audio Search Using

Fixed-Dimensional Embeddings of

Audio Segments

In this chapter, we present a system for performing large-scale search of speech

audio in the low-resource setting, where little or no training data is available for build-

ing a search system. The low-resource setting is in contrast to the situation usually

considered in speech recognition, in which it is assumed that large collections of anno-

tated speech data are available for training statistical models. While such quantities

of data are available for well-studied languages such as English and Mandarin, this is

not the case for the vast majority of the world’s languages. As such, there is a need for

approaches to large-scale audio search and related tasks that can operate even with

10
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little or no training data. More broadly, this low-resource setting is the norm in many

applications beyond speech processing. That is, in many domains and applications,

little or no labeled data are available for training supervised statistical models. As

such, unsupervised and semi-supervised systems, such as the one presented in this

chapter and discussed more broadly throughout this thesis, are crucial.

In the first half of this chapter, we explore a number of methods for representing

segmental audio data as fixed-dimensional vectors in such a way that nearness in

Euclidean space approximately preserves some notion of linguistic similarity. Such

a representation is necessary before we can apply the pipeline discussed in Chapter

1. We consider several methods, varying in the required amount of supervisory in-

formation, and compare them on a word discrimination task. We will see that, in

particular, an embedding based on Laplacian eigenmaps (Belkin and Niyogi 2003)

achieves promising performance on this task. In the second half of this chapter, we

will apply these Laplacian eigenmaps embeddings in a large-scale audio search task

using a framework akin to that described in Chapter 1. We will see that this search

system improves over an earlier system that operated at the frame level rather than

performing search at the segmental level.

The material in this chapter appeared originally in slightly altered form in Levin

et al. (2013) and Levin et al. (2015). A more detailed introduction to the problem

of audio search and indexing, as well as a brief overview of relevant background in

speech processing and keyword search can be found in Appendix A. Overviews of

11
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fixed-dimensional embeddings and locality-sensitive hashing (LSH), which are central

to the search system presented in this chapter, are given in Appendices B and C,

respectively.

2.1 Fixed-Dimensional Embeddings of Variable-

Length Audio Segments

Historically, the workhorse of speech recognition has been the hidden Markov

model (Gales and Young 2008). The speech signal is represented as a sequence of

vectors called frames. The basic speech recognition architecture consists of an acous-

tic model, which models the distribution of frames conditioned on a given hidden

state, and a language model, which models sequences of states (Jelinek 1997). The

hidden states, which can broadly be interpreted as corresponding to phones or other

basic units of speech, constitute a sequence of latent variables, assumed to obey

the Markov property. That is, the transition the sequence of state transitions is

memoryless. Such frame-level independence assumptions make estimation of model

parameters and hidden state trajectories feasible (Rabiner 1989), but these assump-

tions come with well-documented drawbacks (see, for example, Gillick et al. 2011).

As a simple example, note that the Markov assumption implies that the number of

frames spent in a given state should follow a geometric distribution, while actual du-

rations of speech segments, such as syllables or vowels, do not appear to follow such

12
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a distribution (Rosen 2005).

One way forward in light of the shortcomings of frame-based models is to model

acoustic features over longer durations, in the hope of capturing segment-level and

contextual information. Approaches of this sort, such as sparse exemplar mod-

els (Sainath et al. 2012), construct super-vectors of concatenated frames, often fol-

lowed by dimensionality reduction. While larger windows allow for the modeling of

some segment-level information, these windows are still of fixed length. Owing to vari-

ation in segment duration (due to, for example, inter- and intra-speaker variability),

these fixed-context windows do not always align with meaningful linguistic segments.

In contrast, template-based and segmental approaches use variable-length acoustic

windows, which enables modeling of whole linguistic units. Template-based acoustic

models typically rely on dynamic time warping (DTW; Sakoe and Chiba 1978) to

quantify the similarity of phone or word segments (Wachter et al. 2007; Heigold et al.

2012) (refer to Appendix A for an overview of the DTW algorithm and related work).

Unfortunately, DTW often misestimates word segment similarity due to, among other

factors, oversensitivity to longer phonetic segments (e.g., vowels). Furthermore, DTW

alignment requires time polynomial in the duration of the segments being compared.

This runtime requirement can prove especially burdensome when comparing test au-

dio to a large repository of exemplars. This drawback could be avoided by embedding

arbitrary-length segments into fixed-dimensional spaces in which common distances

provide estimates of linguistic dissimilarity. Such embeddings would

13
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(i) enable the application of standard distance learning techniques (Labiak and

Livescu 2011; Kulis 2012) to template-based acoustic modeling and

(ii) support a new generation of efficient segment-based audio indexing algorithms,

enabling highly scalable spoken term discovery (Park and Glass 2008; Jansen et al.

2010; Jansen and Van Durme 2011) and query-by-example search (Jansen and Van

Durme 2012; Zhang and Glass 2009; Metze et al. 2013) (for an overview of the tasks

of spoken term discovery and query-by-example search, refer to Appendix A).

Existing segmental acoustic models use fixed-dimensional representations of hy-

pothesized variable-length segments. The various types of segmental models provide

several ways of constructing these representations. These include downsampling (Zue

et al. 1989; Glass 2003; Ostendorf 1996; Abdel-Hamid et al. 2013), phonetic acoustic

model-derived features (Zweig et al. 2011; Layton and Gales 2005), and convolutional

deep neural networks (Maas et al. 2012). These techniques do not necessarily produce

linguistically meaningful embeddings, but rather rely on supervision in the segmental

feature space for linguistic discrimination. Furthermore, with the exception of basic

downsampling, these approaches do not extend well to low- or zero-resource settings,

in which supervised training data is limited or non-existent.

With these motivations, we explore multiple unsupervised and supervised ap-

proaches to extracting fixed-dimensional embeddings of variable-length audio signals.

Our goal is to identify embeddings that preserve word discrimination under simple

cosine or Euclidean distances. To apply our techniques to large amounts of speech, we
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require built-in out-of-sample extension capabilities. We consider three operational

settings in which we have access to varying levels of information. At one extreme,

we assume that we see each unlabeled speech segment in isolation with no additional

training data. Here we are limited, essentially, to downsampling methods. At the

opposite extreme, with a training set of word exemplars of known type, we can learn

feature maps that maintain word type discrimination. Finally, in the intermediate

case, we have a training set of segments of unknown types, but we can still exploit

the class-independent distribution of the exemplars. In each of these three cases, we

explore both linear and non-linear embeddings and evaluate their effectiveness on a

word type discrimination task in a multi-speaker corpus of conversational telephone

speech. In all cases, we consider only low-resource settings, i.e., no more than a few

hours of labeled speech.

2.2 Embedding Methods

Our goal is to define a function that maps audio signals of arbitrary length to a

continuous vector space that parsimoniously encodes the underlying linguistic content.

Formally, let X denote the set of all arbitrary-length acoustic vector time series,

X = {X = x1x2 . . . xT | T ∈ Z+}, with each xt ∈ Rp, where p is the dimensionality of

some frame-level acoustic feature representation (e.g. MFCC, PLP). We would like

to learn functions f : X → Rd that map acoustic feature vector time series in X to
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points in Rd such that f(X) and f(Y ) are similar if and only if X and Y are acoustic

observations generated by similar linguistic units (e.g., phones, morphemes, syllables,

words). For now we restrict the discussion and experiments to word segments, but

the methods apply similarly to any meaningful unit. We consider three settings for

learning these functions, relying on varying amounts of available information:

1. (NoTrain) We may access each test word segment X ∈ X in isolation with no

additional information.

2. (UnsupTrain) We have a collection of Ntrain word exemplars Xtrain = {Xi}Ntrain
i=1 ,

with each Xi ∈ X .

3. (SupTrain) In addition to a collection of Ntrain word segments Xtrain ⊂ X , we

have the corresponding word labelsWtrain = {wi}Ntrain
i=1 for those word segments.

In what follows, we define approaches for these three settings. More detailed expla-

nation and discussion of many of these methods can be found in Appendix B.

2.2.1 Time series downsampling

If no information is available to us aside from a given feature vector time series, we

must adopt strategies to select a fixed-sized set of observations. The simplest approach

is to uniformly downsample so that any segment is represented by a constant number k

of vectors: given a feature vector time series X = x1x2 . . . xT ∈ X , with each xt ∈ Rp,

we sample vectors from X at intervals of T/k with suitable interpolation as needed.
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The downsampled time series is concatenated into a single vector of dimensionality

d = kp. A more sophisticated approach is to perform non-uniform downsampling of

the time series using HMMs. For a segment X = x1x2 . . . xT ∈ X , we train a k-state

left-to-right HMM, modeling the acoustics with a single spherical Gaussian in each

state. This approach segments X non-uniformly into k regions. Concatenating the

means of these regions into a single vector yields an embedding into Rkp regardless

of the length of X. While we restrict our experiments to this HMM-based approach,

other HMM-based techniques may be applicable to our setting (e.g., see Tang et al.

2010), as may other non-uniform downsampling approaches (Zue et al. 1989; Glass

2003).

2.2.2 Vector of distances to reference set

When we have access to a collection of training word exemplars Xtrain, we can

consider more sophisticated embedding techniques. Here, we designate a reference

set of r exemplars, Xref = {Xmi |1 ≤ mi ≤ Ntrain, i = 1, . . . , r} ⊆ Xtrain, that covers a

broad selection of word types and speakers. Given a feature vector time series X ∈ X ,

we form a vector u ∈ Rr with the i-th component of u given by DTW(X,Xmi), where

DTW(·, ·) is the DTW alignment cost between pairs of segments. We refer to u

as a reference vector for segment X. Note that this is a special case of a Lipschitz

embedding in which each reference set has cardinality one (Hjaltason and Samet 2003)

and that we use the term reference set in a slightly different sense. We can think
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of this reference vector as representing a word in terms of its similarity to a set of

exemplars that forms a “basis” for the space of all words. Thus, this and similar such

representations can be applied even to word types not seen in the training set.

One of our motivations for deriving fixed-dimensional word embeddings is to avoid

costly DTW alignments over large collections of speech, such as in Jansen and Van

Durme (2011, 2012). Here, we are explicitly constructing a representation that re-

quires computing DTW alignment cost against a set of reference examples. While

this is an expensive operation, it is still linear in the size of the speech collection

if the reference set is fixed. In the context of indexing for search applications, these

DTW calculations need only be performed once offline for the entire search collection,

allowing sublinear-time search using approximate nearest neighbor techniques (Indyk

and Motwani 1998). As commonly employed for costly Lipschitz embeddings, in-

ducing sparsity would also mitigate the computational burden (e.g., see Hristescu

and Farach-Colton 1999). In general, the approaches presented here replace DTW

alignments with simple Euclidean or cosine distance computations. Thus, letting m

and n be the lengths of the vector time series being aligned and letting p be the

dimensionality of the vectors in the time series, we replace an operation requiring

time O(mnp) with an operation requiring time O(d), where d is the dimensionality

of our embedding. Thus, when using the techniques in Indyk and Motwani (1998) to

search for a query term of length m in a vector time series of length N , we require

only O(logN) time using approximate nearest neighbor search, rather than O(Nmp)
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operations required by DTW-based search.

2.2.3 Linear embedding techniques

Linear dimensionality reduction techniques use a collection of labeled or unlabeled

data to derive a linear map from the original feature space to a space of lower dimen-

sionality. Applying such techniques to the reference vectors defined in Section 2.2.2,

we obtain a projection matrix P ∈ Rd×r, where d < r. Given a new segment X ∈ X ,

we project its reference vector u ∈ Rr to u′ = Pu ∈ Rd. In the absence of word type

information, we may derive P using principal components analysis (PCA). If word

labels are available, supervised techniques such as linear discriminant analysis (LDA)

can be used. Note that if we use Euclidean distance to compare embedded segment

pairs, then operating in the linear embedding space defined by projection matrix P

is equivalent to using a Mahalanobis distance parameterized by matrix M = P TP in

the original r-dimensional space.

PCA and LDA. PCA is a well-established unsupervised dimensionality reduction

technique. Given Xtrain ⊂ X , we construct the reference vector of each Xi ∈ Xtrain.

The d < r top (largest-magnitude eigenvalue) eigenvectors of the resulting covariance

matrix form a basis of lower dimensionality that best preserves the variance of the

data.

When we have word type labels Wtrain = {w1, . . . , wNtrain
} for the training exem-

plars, multi-class LDA can be used. Multi-class LDA finds a set of vectors pointing
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along the directions in which between-class variability is maximized while within-class

variability is minimized. Specifically, we form a basis of the first d largest-eigenvalue

non-trivial solutions v to the generalized eigenproblem ΣBv = λΣWv, where ΣB and

ΣW are the between- and within-class covariance matrices of the training data, re-

spectively. In our implementation, we regularize the within-class covariance matrix

with shrinkage by adding a scaled identity matrix.

Metric learning to rank (MLR) Another supervised option is to use one of

many existing techniques for discriminatively learning a Mahalanobis distance, given

by a positive semidefinite matrix M , with distance between vectors u1, u2 defined

as
√

(u1 − u2)TM(u1 − u2). Here we use MLR (McFee and Lanckriet 2010), as it

optimizes a criterion closely related to our task. MLR is a large-margin approach

that aims to separate vectors that are similar to a given query vector from those that

are dissimilar by a margin given by a ranking loss, which in our case is mean average

precision Given the learned matrix M , we find a matrix U whose i-th row is
√
|λi|vi,

where vi is the i-th eigenvector of M with corresponding eigenvalue λi. We obtain

projection matrix P by retaining only the first d rows of U .

2.2.4 Nonlinear graph embedding techniques

Numerous non-linear dimensionality reduction techniques are available for con-

sideration (e.g., Roweis and Saul 2000; Hinton and Roweis 2002) We use Laplacian

eigenmaps (Belkin and Niyogi 2003), including a variant proposed in Belkin et al.

20



CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

(2006) that defines an out-of-sample extension. In the supervised setting, we can

encode word type information by adding graph edges that reflect word identity.

Laplacian eigenmaps. We begin by constructing a graph G with one vertex

per training example and edges reflecting the nearest neighbor structure under DTW

alignment cost. The binary-valued adjacency matrix Ann ∈ RNtrain×Ntrain has Ann
ij = 1

if and only if example i is one of the k nearest neighbors of example j or vice versa.

Given matrix Ann, the normalized graph Laplacian operator is defined as Lnn =

I − S 1
2AnnS

1
2 , where S is diagonal with Sii =

∑
j A

nn
ij . Following Belkin and Niyogi

(2003), we wish to find a set of d projection maps {h1, . . . , hd}, where hi : V (G)→ R,

such that vertices near one another under the topology of G are mapped to similar

locations in Rd. Since the graph Laplacian operator acts as a measure of smoothness

of functions defined on the graph, the desired set {hi} is defined implicitly by the

eigenvectors of Lnn with the d smallest eigenvalues (after discarding the first trivial

eigenvector, which has eigenvalue 0). Each eigenvector encodes the image of the

vertex set under a map in {hi}.

A problem arises when we wish to project a segment with no corresponding ver-

tex in G into this d-dimensional space. Without some procedure for out-of-sample

extension, this technique has little practical utility. An out-of-sample solution for

Laplacian eigenmaps is given in Belkin et al. (2006) and is summarized below. We

construct matrices Ann and Lnn as described above. Our new optimization problem

takes the form
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h∗ = arg min
h∈Hκ

hTLnnh + ξ‖h‖2
κ, (2.1)

where Hκ is the reproducing kernel Hilbert space for some positive semi-definite

kernel function κ :X×X →R, h = 〈h(X1), . . . , h(XNtrain
)〉T is the vector of values of

h computed on the vertices of the graph, and ξ is a non-negative regularization term.

We use a kernel function of the form

κ(Xi, Xj) = exp

{
− [max(0,DTW(Xi, Xj)− η)]2

2σ2

}
,

where DTW(·, ·) is DTW alignment cost and η, σ ∈ R. By the RKHS representer

theorem (Belkin et al. 2006; Berlinet and Thomas-Agnan 2004), the j-th component

of our projection map is

h∗j(X) =

Ntrain∑
i=1

α
(j)
i κ(Xi, X), (2.2)

where the {α(j)
i } are given by solutions to the generalized eigenvector problem (LnnK+

ξI)α = λKα, with K being the Gram matrix with entries Kij = κ(Xi, Xj) for

Xi, Xj ∈ Xtrain. Intuitively, this eigenproblem attempts to find mappings from Xtrain

to R such that word exemplars that are connected in graph G take similar values. In

the out-of-sample extension, the kernelization performs an interpolation (similar to

the Nyström method; see Appendix B) such that a test exemplar “similar” to a vertex
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in G takes a similar value. Given the d eigenvectors with the smallest eigenvalues

(ignoring the trivial one, as above), we can map an arbitrary segment X ∈ X to a

point v ∈ Rd given by v = (h1(X), . . . , hd(X))T according to Equation 2.2.

Supervised graph embedding. When available, it is desirable to incorporate

class label information into the Laplacian eigenmaps approach. Notable recent al-

gorithms for this problem include locality preserving discriminant analysis (Tomar

and Rose 2012), locality sensitive discriminant analysis (LSDA Cai et al. 2007), and

marginal Fisher analysis (Yan et al. 2007). In our approach, we construct kernel

matrix K and matrix Ann as described above. Additionally, we construct a matrix

Asup such that Asup
ij = 1 if i 6= j and wi = wj, and Asup

ij = 0 if wi 6= wj or if

i = j. Thus, Asup captures our knowledge of which pairs of words ought to be ad-

jacent to one another in an “ideal” graph reflecting the true class labels. We can

combine our supervised and unsupervised information into a single graph Laplacian

L = Lnn + βLsup, β ∈ R is non-negative and Lnn and Lsup are the normalized graph

Laplacians of Ann and Asup, respectively. L captures both acoustic similarity and

true word label information in a single operator. This is analogous to LSDA, but

where we linearly combine the normalized Laplacians of within- and between-class

graphs rather than the adjacency matrices. Replacing Lnn with L, we proceed as in

the previous algorithm, constructing a subspace from the first d non-trivial solutions

to Equation 2.1.

LDA applied to graph embeddings. We again assume that we have a labeled
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set of vector time series, which we use to learn an embedding into Rd′ using Laplacian

eigenmaps as described above. This map is applied to the training set exemplars and

an LDA projection is learned from the resulting vectors and their labels to produce

a final embedding into Rd. This two-step process provides an alternate means of

introducing supervision into the graph embedding framework. We note that other

supervised projections could also be used here, e.g. via Mahalanobis distance learning

as in Section 2.2.3, but here we limit ourselves to LDA.

2.3 Comparing Embeddings: Evaluation

To evaluate the techniques described above, we use the task in Carlin et al. (2011),

designed to evaluate the word discrimination performance of acoustic front ends and

acoustic models that do not explicitly model phones. An evaluation set of preseg-

mented words Xtest is presented. For each pair (Xi, Xj) ∈ Xtest×Xtest for i 6= j, we

compute D(Xi, Xj) under the representation and distance D being evaluated. We set

a threshold τ such that we declare words Xi and Xj to be the same if D(Xi, Xj) ≤ τ

and declare them to be different otherwise. Discriminative power is then quantified

by the average precision (AP), the area under the precision-recall curve, which char-

acterizes discrimination performance at all possible settings of τ . Let NSW(τ) denote

the number of same-label word pairs with distance less than or equal to τ under

the model. We define the model’s precision PSW(τ) and recall RSW(τ) at operating
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threshold τ as

PSW(τ) =
NSW(τ)

N(τ)
RSW(τ) =

NSW(τ)

NSW

, (2.3)

where N(τ) denotes the total number of word pairs in the corpus whose distance

under the model is less than or equal to τ (i.e., the number of hypothesized same-

word pairs) and NSW is the number of true same-word pairs in the corpus. Thus, to

evaluate one of our candidate algorithms, we embed the test set according to that

algorithm, compute all pairwise distances between the embedded points and compute

the area under the precision-recall curve.

We assembled two collections of words from the Switchboard English corpus, Xtrain

and Xtest, containing Ntrain = 10383 and Ntest = 11024 words, respectively. Both sets

were constrained to include only words of 6 or more orthographic characters and to

be at least 50 frames in length (0.5 s). The train and test sets contained 5539 and

3392 word types, respectively, with 6971 unique word types in all. The train set was

constructed to have a broad sampling of word types, with at most 5 tokens of any given

word type and with each token of a given type taken from a different speaker. The

resulting word set covered 360 conversation sides and 156 unique speakers. The test

set was identical to that in Carlin et al. (2011). It was constructed to reflect a content

word distribution encountered in a typical conversational speech setting. It consisted

of all words meeting the above length criteria from 360 conversation sides covering 236

unique speakers, none of whom appeared in the train set. To investigate the effect of

acoustic front end on this task, we performed this evaluation using vector time series of
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39-dimensional perceptual linear prediction (PLP) feature vectors and 15-dimensional

truncated frequency-domain linear prediction (FDLP) feature vectors (Thomas et al.

2009). Previous work has indicated that truncating the spectrum in this way from

13 to 5 dimensions yields a gain in this task relative to front ends with more detailed

spectral content (Jansen et al. 2013). Cosine distance, defined for vectors a, b as 1−

aT b/‖a‖‖b‖, generally outperformed Euclidean distance for the embedding techniques

described here. The basic reference vector and PCA experiments used Euclidean

distance between embedded points. All other experiments used cosine distance.

2.3.1 Baselines (the NoTrain condition)

Using DTW alignment cost as an inter-word distance measure establishes a base-

line for our task. A successful algorithm will be one that can improve upon this

result or maintain comparable performance without supervision while being compu-

tationally less expensive. Table 2.1 shows the performance of this baseline approach

on both PLP and FDLP acoustic features. Also listed in Table 2.1 are the results

using uniform and nonuniform downsampling approaches outlined in 2.2.1, where we

consider target sample sizes of n ∈ {5, 10, 25, 50} and use cosine distance to compare

the resulting supervectors. As is the case for the DTW baseline, the downsampling

results using FDLP are consistently comparable to or better than PLP. The gains of

nonuniform sampling over uniform are marginal, with the best downsampling APs

roughly 1/3 that of the baseline DTW performance for n ≥ 10.
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Table 2.1: Average precision scores achieved by our baseline algorithms in the
NoTrain condition, by feature type (all scores are given as proportions).

Ave. Prec.
Algorithm PLP FDLP

Baseline DTW 0.198 0.226

Uniform Downsampling

n = 5 0.036 0.040
n = 10 0.062 0.069
n = 25 0.072 0.081
n = 50 0.074 0.082

Non-uniform Downsampling

n = 5 0.050 0.033
n = 10 0.086 0.080
n = 25 0.081 0.088
n = 50 0.076 0.086

2.3.2 Unsupervised embeddings (the UnsupTrain con-

dition)

Next we evaluated the reference vectors described in Section 2.2.2. A drawback

of this approach (and the approaches that depend on it) is that constructing an

acoustic segment’s reference vector requires computing |Xref| = r DTW alignment

costs. Lower-dimensional reference vectors, if still effective in distinguishing words,

would allow us to maintain similar performance with fewer DTW calculations required

to embed a given word. To examine this possibility, we selected reference sets Xref ⊆

Xtrain of various sizes r. Reference sets were selected randomly, but biased to favor

selecting clusters of same-word tokens. As reflected in Table 2.2, these results fall

short of the baseline DTW scores, but they do demonstrate that we can safely shrink

the size of our reference set by as much as a factor of 20 without paying too large
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Table 2.2: Average precision scores achieved by our basic reference vectors in the
UnsupTrain condition, by feature type (all scores are proportions).

Ave. Prec.
r PLP FDLP

100 0.041 0.078
500 0.089 0.137

1,000 0.089 0.142
5,000 0.094 0.149
10,000 0.096 0.150
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Figure 2.1: Average precision as a function of target space dimension for (a) unsu-
pervised embeddings (UnsupTrain) and (b) supervised embeddings (SupTrain).

a penalty in performance. We leave the problem of optimal reference set design for

future work.

We constructed train set reference vectors using a reference set of size r =10,000.

We applied PCA to these reference vectors, and applied the learned projection to the

test set reference vectors for evaluation. To apply Laplacian eigenmaps to our data,

we first calculated all pairwise DTW alignment costs for words in Xtrain and, based

on those costs, assembled the adjacency matrix Ann and Gram matrix K as described
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in Section 2.2. Laplacian eigenmaps require setting certain parameters in addition to

the target space dimensionality. Performance was reasonably stable for the number of

nearest neighbors (k), the regularizer weight (ξ), and the kernel function parameters

(η,σ) in the ranges k ∈ [7, 30], ξ ∈ [0.001, 0.1], η ∈ [0.01, 0.05], and σ ∈ [0.15, 0.04].

We report results for the best-performing parameter settings, leaving the challenge of

automatic selection for future work.

Figure 2.1(a) shows the performance of the unsupervised techniques outlined in

Section 2.2 for varying target space dimensionalities. We find that using PCA, we

can reduce dimension from 10,000 to 100 without substantial loss in performance, but

overall performance falls short of the DTW baseline. Laplacian eigenmaps matches

the DTW baseline for target dimensionalities d > 100 and greatly surpasses PCA

at all target dimensionalities, indicating a more efficient use of dimensions than is

possible with unsupervised linear methods.

2.3.3 Supervised embeddings (the SupTrain condi-

tion)

Analogously to PCA, multi-class LDA and MLR were performed on the train set

reference vectors with word types as class labels. 1 The resulting linear projections

were applied to the test set reference vectors for evaluation. We used a reference

1We used Brian McFee’s implementation of MLR, available at
https://github.com/bmcfee/mlr/
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set of size r = 10, 000, except for MLR applied to FDLP features, where we used

r = 5, 000. LDA performance depended moderately on the shrinkage scale factor,

observing a change of up to 0.1 AP as we varied the scale factor from 0 to 5. All

reported results used a scale factor of 1. MLR results depended moderately on the

slack parameter, with typical good values in the range [103, 105]. Supervised graph-

based embeddings were obtained using the procedure described in Section 2.2.4. Using

the optimal parameter settings for Laplacian eigenmaps and varying β, we found that

performance was stable for β ≥ 1, indicating that the utility of supervision dominates

that of the nearest neighbor graph structure. Finally, LDA was also applied to the

Laplacian eigenmaps embeddings, with the projection again learned on the training

set and evaluated on the test set.

Figure 2.1(b) shows the performance of the supervised techniques from Section 2.2

for varying target space dimensionalities. We find that LDA and MLR greatly im-

prove upon the DTW baselines, with AP stable down to 50 dimensions. Interestingly,

with supervision the 39-dimensional PLP features usually outperform the cepstral-

truncated 15-dimensional FDLP, indicating that increased spectral detail is useful

even when supervision is provided indirectly at the word level. Our supervised vari-

ant of Laplacian eigenmaps posts significant gains over its unsupervised counterpart,

but falls short of direct application of LDA and MLR to the reference vectors. This

indicates that supervised discriminative training of a linear embedding is better than

nonlinear embedding learned with implicit supervision. This suggests that discrimi-
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native nonlinear graph embedding techniques such as marginal Fisher analysis (Yan

et al. 2007) may succeed in our setting. LDA applied to the output of unsupervised

Laplacian eigenmaps outperforms LDA on its own, indicating that nonlinear graph

embedding improves the linear separability of word types.

2.3.4 Discussion

Representative average precision scores for all of our methods are summarized in

Table 2.3, organized according to the settings described in Section 2.2, along with the

target dimensionalities that yielded the listed scores. For comparison, we include the

setting in which an unsupervised Laplacian eigenmap embedding is learned from the

test set (UnsupTest). This yields the best FDLP performance (0.416 AP) reported

here while using only d = 20 dimensions. Unfortunately, since it lacks an out-of-

sample extension, this embedding is of limited practical utility.

Unsurprisingly, downsampling techniques, even nonuniform ones, fall short of the

exhaustive alignment search performed under DTW. Embedding each speech segment

with respect to a reference set encodes substantially more duration variability than

downsampling, but still does not match the DTW baseline. PCA applied to refer-

ence vectors yields good word discriminability with fewer dimensions, but only with

supervised embedding (LDA or MLR) do linear methods exceed the DTW baseline.

Nonlinear embedding using Laplacian eigenmaps matches DTW using no supervision

whatsoever, a significant result for zero-resource applications. Introducing super-
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Figure 2.2: Average precision as a function of reference set size.

vision into this algorithm produces substantial gains, but falls short of the linear

supervised embeddings produced by LDA and MLR. This indicates that nonlinearity

is most important in the unsupervised setting. Combining Laplacian eigenmaps with

LDA improves upon LDA alone, suggesting that Laplacian eigenmaps preserves or

perhaps magnifies the information that makes LDA effective on its own. While dif-

ferent supervised methods produce the best performance at different operating points

– the best performance on PLPs results from LDA applied to Laplacian eigenmaps

while MLR posts the best FDLP results – the supervised methods all outperform the

baselines and unsupervised methods.

Finally, the reference vectors required by some of our methods are expensive to

construct. Table 2.2 shows that reference set size can be reduced with negligible

loss in word discriminability. Figure 2.2 shows how reference set size affects task

performance, with LDA target dimensionality chosen optimally for each condition.

LDA beats the DTW baseline with as few as 1000 reference examples, a promising

result, though the large gains in Table 2.3 require several thousand.
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Table 2.3: Representative average precision scores attained for each of the embed-
ding schemes using r = 10, 000 reference examples (when applicable).

Ave. Prec.
Setting Algorithm d PLP FDLP

1. NoTrain Baseline DTW – 0.198 0.226
Unif. Downsamp. 25 · p 0.072 0.081

Nonunif. ” 25 · p 0.081 0.088
2. UnsupTrain Ref. Vector 10,000 0.096 0.150

PCA 200 0.081 0.139
LapEig w/ OOS 200 0.195 0.236

3. SupTrain Sup. LapEig 200 0.284 0.290
LDA 50 0.346 0.293
MLR 100 0.328 0.318

LapEig + LDA 50 0.365 0.302

UnsupTest Unsup. LapEig 20 0.253 0.416

2.4 Large-Scale Audio Keyword Search

Having explored a number of potential embeddings of acoustic segments, we turn

to applying them to the task of keyword search. In keyword search, we are given an

example utterance, and wish to locate occurrences of that utterance in a collection

of speech audio. Keyword search has received increasing attention in recent years

as speech data has become more ubiquitous and ever more integral to mobile phone

technology. Consider, for example, that in 2012, YouTube users uploaded one hour

of video every second. 2 To search audio collections of this magnitude, we must able

to build speech processing systems of unprecedented scale. Most previous approaches

have employed lattice indexing techniques (Miller et al. 2007), enabling search of

thousands of hours of speech in interactive time. Typical systems build a model to

map sequences of frames to segmental units (e.g., phones or words) that are more

2http://www.onehourpersecond.com Accessed October 30, 2016.
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amenable to standard lattice-based approaches. Unfortunately, these techniques re-

quire large collections of annotated speech audio to be used as training data, and such

training data sets are unavailable in most languages. As a result, the zero-resource

setting, in which detailed annotations are unavailable and linguistic structure must

be discovered without the aid of training data, has attracted attention both in the

speech processing community (Glass 2012) and among scientists interested in human

language acquisition (Jansen et al. 2013).

Query-by-example search, where search terms are presented as audio segments

rather than in graphemic or phonetic form, has applications in probing large collec-

tions of unstructured audio data (Anguera et al. 2013) and in voice interfaces (Chen

et al. 2014, 2015). The standard approach involves training a model to map query

audio to a sequence of symbols (e.g., a phonetic representation) and searching for

this sequence in a lattice built on the search collection (Parada et al. 2009). Finite

state automata techniques have made lattice search of this kind both fast and accu-

rate (Allauzen et al. 2004), but the nature of the required training data makes these

approaches infeasible in zero- and low-resource settings.

Dynamic time warping (DTW), explained in Appendix A, has been effective in

zero-resource query-by-example search (Park and Glass 2008; Jansen et al. 2010;

Anguera and Ferrarons 2013). Unfortunately, as mentioned in Section 2.1 and Ap-

pendix A, DTW sequence alignment requires time linear in the size of the search col-

lection, which limits its scalability. Techniques such as those in Mantena and Anguera
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(2013); Zhang and Glass (2011) have improved runtime by, in essence, reducing the

constants in this linear dependence. In contrast, the Randomized Acoustic Indexing

and Logarithmic-Time Search (RAILS) system introduced in Jansen and Van Durme

(2012) avoids this linear dependence altogether. Given an audio query, RAILS oper-

ates in two steps. First, for each frame of the query, similar frames (with similarity

defined by cosine distance between frames) are retrieved from the search collection

using logarithmic-time approximate nearest-neighbor retrieval (see Appendix C for

an overview of near-neighbor retrieval and related problems). As a second step, these

frame-level matches are extended to segment-level matches using image processing

techniques.

The RAILS system has two main limitations. First, its accuracy depends ulti-

mately on DTW as a measure of segment-level similarity, an issue mentioned above

and discussed at more length in Appendix A. Second, the process by which frame-level

matches are extended requires a computationally expensive digital image processing

step, which introduces a major runtime bottleneck. This motivates the Segmen-

tal RAILS (S-RAILS) system, an extension of the RAILS methodology that avoids

both of these shortcoming by performing search directly at the segment level using

the fixed-dimensional segmental embeddings explored above. As we have seen, such

embedding techniques show a marked improvement over a purely DTW-based ap-

proach as measured by performance on the evaluation task introduced in Carlin et al.

(2011). Further, by performing search directly at the segment level, we avoid the need
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to extend frame-level matches as in the original RAILS system. In what follows, we

introduce the S-RAILS system and evaluate its performance on a query-by-example

keyword search task on a corpus of telephone speech, in which our system improves

dramatically over the original RAILS system in both accuracy and runtime.

2.5 The S-RAILS System

The S-RAILS system is an adaptation of the RAILS query-by-example search

system presented in Jansen and Van Durme (2012). In RAILS, indexing consists of

building a structure to support fast approximate nearest-neighbor retrieval at the

frame level using an adaptation of the point location in equal balls (PLEB) algo-

rithm (Indyk and Motwani 1998). Given a query, the near neighbors of each frame

in the query are retrieved from the index along with scores reflecting their similarity.

These frame-level candidate matches are then extended to segment-level matches us-

ing digital image processing. We refer the reader to Appendix A for a more detailed

description.

These near neighbor frames along with their scores yield a sparse approximation

to the frame-level similarity matrix, the entries of which correspond to similarities

between frames in the query and frames in the search collection. Segments of the

search audio that are similar to the query give rise to approximately diagonal lines

in the similarity matrix. These diagonal lines in turn appear as peaks in the Hough
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transform of the matrix, and thus can be quickly located.

S-RAILS differs from the original RAILS system by indexing the acoustic features

of whole word-sized segments directly, altogether avoiding both the intermediate step

of frame-level indexing and the need to construct a similarity matrix. It operates as

follows:

1. Voice activity detection (VAD) locates regions likely to contain speech.

2. Each VAD region is split into overlapping segments from some minimum dura-

tion to some maximum duration. Each segment is mapped to a fixed-dimensional

vector using techniques discussed previously in this chapter.

3. An index is constructed for randomized approximate nearest-neighbor retrieval (In-

dyk and Motwani 1998) on the collection of fixed-dimensional embeddings. Each

segment created in the previous step appears as an entry in the index.

4. At query time, a query segment is mapped to its fixed-dimensional representa-

tion and the near-neighbors of that representation are retrieved from the index.

5. Candidate matches to a query can be rescored after retrieval, e.g., by computing

exact DTW scores as in Jansen and Van Durme (2012).

Figure 2.3 provides a system diagram of the S-RAILS system.
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Figure 2.3: Diagram of the S-RAILS audio search system.

2.5.1 Fixed-dimensional Segment Embeddings

To obtain fixed-dimensional representations of speech segments, we use the unsu-

pervised Laplacian eigenmaps embedding described in Section 2.2.4. Letting X denote

the set of all arbitrary-length feature vector time series, X = {X = x1, x2, . . . , xT :

T ∈ Z+}, where each xi ∈ Rp and p is the dimensionality of a speech frame, we

learn this embedding using a reference set R = {X1, X2, . . . , Xn} ⊂ X and a kernel

function

κ(Xi, Xj) = exp

{
− [max(0,DTW(Xi, Xj)− η)]2

2σ2

}
,

where DTW(·, ·) denotes DTW alignment cost and η, σ ∈ R are parameters to be

specified.

2.5.2 Near-neighbor retrieval

A crucial step in both RAILS and S-RAILS consists of retrieving a set of embed-

dings that are similar to a query embedding. Our goal is to build an index which,

given a query vector, returns vectors from the index that are near to the query vec-
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tor under cosine distance. To solve this problem, RAILS used an implementation

of point location in equal balls (PLEB) as presented in Indyk and Motwani (1998).

PLEB makes use of locality sensitive hash (LSH) functions, which capture the ge-

ometric proximity of pairs of items in the sense that nearby items are likely to be

hashed to the same value and distant items are unlikely to be hashed to the same

value. An overview of the state of the art in LSH and near neighbor search is given

in Appendix C.

The LSH variant used here is similar to that used in the original RAILS sys-

tem Jansen and Van Durme (2012). We map vectors to binary strings of length S,

which we call signatures. This mapping is chosen such that cosine distance between

two vectors can be approximated by some function of the Hamming distance between

their respective signatures. These signatures are generated by randomly choosing a

set of S hyperplanes through the origin in the vector space. Each bit of a vector’s

signature is determined by which side of a corresponding hyperplane it falls on. Pairs

of vectors with small cosine distance are unlikely to be separated by a randomly-

chosen hyperplane, and thus their signatures are likely to be similar. This permits

fast retrieval of the approximate near neighbors of a given query vector by computing

its signature and returning all vectors from the search collection whose signatures are

at a small Hamming distance from it.

The near-neighbor retrieval algorithm used in S-RAILS is discussed in detail

in Jansen and Van Durme (2011) and we summarize it here. We let B denote the
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beamwidth, a parameter that controls the number of near neighbors that we retrieve.

Retrieval is performed by sorting the signatures in the search collection and return-

ing signatures that share a prefix with the query signature. Given a collection of

signatures Z = {z1, z2, . . . , zN} with each zi ∈ {0, 1}S, we sort the elements of Z

in lexicographic order. Let π be a permutation of the integers 1, 2, . . . , N such that

zπ(1), zπ(2), . . . , zπ(N) is the lexicographic sort of the elements of Z. Given a query sig-

nature q ∈ {0, 1}S, we find via binary search the location where q belongs in the sorted

list and return the B signatures before that position and the B signatures after that

position. That is, if q belongs between zπ(i) and zπ(i+1) in the sorted list, we return

the set {zπ(a), zπ(a+1), . . . , zπ(b)}, where a = max{1, i−B+ 1} and b = min{N, i+B}.

Of course, in this lexicographic sorting scheme, a given ordering of the signature bits

means that bits appearing early in the signature have a greater influence over which

pairs of signatures are considered similar. This problem is mitigated by performing

several of these searches under different permutations of the signature bit ordering.

We denote by P the number of such permutations that we use. In practice, rather

than repeatedly permuting and sorting the signature list, we keep P separate lists of

the search collection signatures, each sorted according to a different one of the P per-

mutations. Retrieval of near-neighbors under this scheme requires time logarithmic

in N and linear in both P and S. We have observed in our experiments that runtime

depends only weakly on S compared to dependence on P and N .
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Table 2.4: S-RAILS performance on the development search collection, averaged
over all query types as a function of signature length S for fixed number of permuta-
tions P = 8 and beamwidth B = 10, 000. All scores are percentages.

Median Example Best Example
S FOM OTWV P@10 FOM OTWV P@10

64 22.3 9.8 9.1 48.7 26.2 45.4
128 27.5 11.4 11.4 56.0 30.4 55.1
512 30.4 14.0 14.4 57.7 33.8 59.1

1024 30.2 13.9 14.8 58.3 35.0 60.7

Table 2.5: S-RAILS performance on the development search collection, averaged
over all query types as a function of number permutations P for fixed beamwidth
B = 100, 000 and signature length S = 512. All scores are percentages.

Median Example Best Example
P FOM OTWV P@10 FOM OTWV P@10
4 31.3 13.6 15.2 60.7 34.1 58.7
8 33.1 14.5 15.4 63.0 35.2 59.6

2.6 Experiments

Our experiments follow those presented in Jansen and Van Durme (2012). We

evaluated our system in a query-by-example keyword search task on the Switchboard

corpus, a collection of conversational telephone speech. A 37-hour collection was set

Table 2.6: S-RAILS performance on the evaluation search set, averaged over all
query types as a function of beam width B for fixed number of permutations P = 8
and signature length S = 512. All scores are percentages except Real Time Speedup,
which is the ratio of search collection duration to the average time required to perform
a single query.

Median Example Best Example
B FOM OTWV P@10 FOM OTWV P@10 Real Time Speedup

100 7.6 6.0 39.3 19.8 15.5 85.3 307,000,000
1,000 15.0 9.7 38.3 34.1 21.8 87.4 40,800,000

10,000 26.0 12.7 38.6 47.7 26.3 91.6 5,770,000
100,000 37.3 15.1 38.6 56.9 29.6 89.3 510,000
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Table 2.7: Baseline RAILS performance, reproduced from Jansen and Van Durme
(2012), on the evaluation search set averaged over all query types as a function of
beamwidth B. All scores are percentages except Real Time Speedup, which is the
ratio of search collection duration to the average time required to perform a single
query.

Median Example Best Example
B FOM OTWV P@10 FOM OTWV P@10 Real Time Speedup

500 0.8 0.9 21.0 3.6 2.8 58.4 620,000
5,000 6.7 2.7 44.0 20.7 10.4 84.4 63,000

50,000 19.0 4.7 49.2 39.9 16.5 88.4 7,000
100,000 20.2 4.8 49.8 41.1 16.6 88.1 3,600

aside from which to draw query terms, a 48-hour development search collection was

used to explore the effect of different parameters on the system’s performance, and

a 433-hour evaluation set was used to obtain final performance metrics. Query word

types were chosen to have corpus-wide median duration of at least 0.5 seconds and

orthographic representation at least six characters long. This resulted in a collection

of 43 query word types:

absolutely basically benefit bottles business California college community companies

control crimes definitely deterrent employees expenses expensive important individual

insurance interesting mandatory Massachusetts newspaper organization performance

plastic policy positive process program punishment recently recycle recycling retire-

ment salary savings situation society understand unfortunately university vacation

Each query type appeared between 20 and 162 times in the query set, between 2

and 188 times in the development search collection, and between 39 and 1386 times

in the evaluation collection. More than half of the selected query types had median

duration less than 0.55 s and all query types had median duration less than 0.75 s.

We considered three common keyword search metrics:
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(i) Figure-of-merit (FOM), the average recall over the 10 operating points at which

the false alarm rate is 1, 2, . . . , 10 false alarms per hour of search audio.

(ii) Oracular term weighted value (OTWV), a weighted difference between the sys-

tem’s recall and false alarm rate. The oracular variant of this metric assumes an

optimal query-specific threshold. See Miller et al. (2007) for a detailed account

of this metric.

(iii) Precision at 10 (P@10), the fraction of the top ten ranked candidate matches

that are correct.

Metrics were computed separately for each query type, and are reported as unweighted

averages over all 43 query types. Performance is sensitive to the specific query exam-

ple. Thus, for each metric, we report both (i) the median query example performance,

and (ii) the best query example performance.

2.6.1 Selecting Index Parameters

Table 2.4 shows the effect of signature length on system performance for fixed

beamwidth B = 10, 000 and number of permutations P = 8. Performance saturates

at a signature length of 512 bits. These signatures are larger than the 64-bit signatures

used in RAILS owing to the fact that RAILS indexes 39-dimensional feature vectors

while S-RAILS indexes 1000-dimensional fixed-dimensional embeddings. As a result,

a larger number of bits are required to achieve suitably high fidelity in approximating
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cosine distance between vectors. Table 2.5 shows system performance as a function of

the number of permutations for fixed beamwidth B = 100, 000 and signature length

S = 512. We see that P = 8 yields a non-negligible performance gain over P = 4 in

the best-example case, though median performance is largely insensitive to P . These

two tables jointly suggest that performance saturates at a signature length of 512 bits

and P = 8. We use these parameters in the remainder of our evaluation.

2.6.2 Constructing the Index

To segment the search collection, candidate segment boundaries were placed at

3-frame intervals in all VAD regions. Resulting segments with duration at least 40

frames (400 ms) and at most 100 frames (1 s) were included in the index. To construct

Laplacian eigenmaps embeddings, we used a set of 10,383 unlabeled word examples

from the Switchboard corpus to define our similarity graph. As discussed previously,

the process of constructing Laplacian eigenmaps embeddings is slow, since a single

embedding requires computing a DTW alignment of a segment with every segment

in the similarity graph. Indeed, this process is currently the major bottleneck in con-

structing an index. In order to speed up the embedding process, rather than explicitly

computing DTW(X,Xi) for all i as in (2.2), we performed a spectral clustering of the

10,383-segment similarity graph and selected a representative segment (the medoid)

from each cluster. Given a segment X ∈ X to embed, its DTW alignment was com-

puted with each cluster representative. For representatives whose alignment cost was
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above some threshold, we set K(X,Xi) = 0 for all Xi in the corresponding cluster

rather than computing exact alignment costs. Experiments showed that 550 clusters

with a threshold of 0.17 yielded a very good approximation to the true values of

the kernel function. This approximation yielded a factor of 6 speedup with respect

to the exact computation, but even with this speedup, computing fixed-dimensional

embeddings of speech audio is approximately 130 times slower than real time on cur-

rent hardware. This process produced approximately 30 million 1,000-dimensional

embeddings in the case of the development search collection and approximately 280

million in the case of the evaluation search collection, which became the input to the

index.

2.6.3 Controlling False Positives

By the nature of the Laplacian eigenmaps embedding, word examples that are

not similar to any words in the reference set are mapped to locations near the origin.

At query time, when similarity search is performed under cosine distance, many of

these small-norm embeddings are retrieved as candidate matches. This results in

many false positives, reflected in the low median precision at 10 scores in Tables 2.4

and 2.5. To reduce this effect, we removed from the index all embeddings with norm

less than a set threshold τthresh. Table 2.8 summarizes the effect of this thresholding.

We found a threshold of 0.06 to be best, though performance was comparatively flat

for thresholds between 0.01 and 0.1. In experiments on the development search set,
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this resulted in 50% to 70% relative improvements in median precision at 10, as well

approximately 8% relative improvement in maximum precision at 10 and, somewhat

surprisingly, small improvements on all other metrics.

Table 2.8: Effect of signature threshold on S-RAILS performance on the develop-
ment search collection, averaged over all query types. All experiments use signature
length S = 512, number of permutations P = 8 and beamwidth B = 10, 000. All
scores are percentages.

Median Example Best Example
τthresh FOM OTWV P@10 FOM OTWV P@10

0.2 23.3 16.8 28.6 29.7 24.3 50.4
0.1 36.3 22.9 27.7 54.2 39.1 64.6

0.09 37.4 23.1 26.1 55.6 39.6 64.1
0.08 37.8 23.2 24.7 57.5 40.0 64.2
0.07 37.8 22.6 23.5 59.2 40.1 64.3
0.06 38.6 22.1 23.7 60.3 40.7 65.8
0.05 37.9 21.3 23.1 60.5 40.3 64.6
0.02 36.4 17.6 19.6 61.6 38.5 60.7
0.01 33.8 16.0 16.9 60.6 36.7 61.0

0.005 32.9 15.2 16.2 59.6 35.4 58.7
0.001 31.0 14.2 15.3 58.2 34.3 58.9

0.0001 30.5 14.0 14.4 57.7 33.8 59.1
0.0 30.4 14.0 14.4 57.7 33.8 59.1

2.6.4 Post-processing of query results

Owing to the segmentation scheme used in S-RAILS, the index contains many

entries corresponding to overlapping segments, and our embedding technique causes

these segments to be mapped to similar fixed-dimensional vectors. The result is that

at query time, if one of these segments is retrieved, many other overlapping segments

are likely to be retrieved, as well. To eliminate this redundancy, we performed a
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post-processing step in which retrieved segments whose midpoints were within a given

number of frames of one another were greedily merged by discarding the segment with

lower score. This operation was repeated until no further merge operations could be

performed. We found that merging pairs of segments whose midpoints were within

10 frames of one another proved effective.

2.6.5 Results

Table 2.6 shows system performance on the evaluation search set as a function of

beamwidth for fixed number of permutations P = 8 and signature length S = 512.

Table 2.7 shows performance of the original RAILS system for comparison. We note

that values of B in RAILS and S-RAILS are not directly comparable, since the two

systems operate on different objects, though both systems’ runtimes depend linearly

on the parameter. Comparing the best performance of the two systems, we see that S-

RAILS achieves more than 80% relative improvement over RAILS in median example

FOM and upwards of 200% relative improvement in median example OTWV. In

the case of best example performance, S-RAILS exhibits approximately 78% relative

improvement in OTWV and 38% relative improvement in FOM performance. P@10

scores are less decisive. S-RAILS improves marginally on RAILS in best example

P@10, but lags by a non-negligible margin in median example P@10. As alluded

to previously, this is due to a small number of particularly high-scoring false alarms

introduced by the embedding process. This issue might be ameliorated by a suitable
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rescoring procedure.

Comparing system runtimes paints a more impressive picture. S-RAILS tends

to achieve a speedup of between two and five orders of magnitude with respect to

RAILS at any given performance level. To take a particularly striking example, S-

RAILS with B = 100 achieves better median OTWV performance than RAILS with

B = 200, 000 while running more than 85,000 times faster.
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Chapter 3

Laplacian Eigenmaps in the

Presence of Noise and Occlusion

In Chapter 2, we compared the performance of several embedding techniques on a

word similarity task, and found that Laplacian eigenmaps embeddings yielded strong

performance in all training conditions. We saw subsequently that these embeddings

yield strong results on a large-scale audio search task. Under the pipeline described

in Chapter 1, we would have liked to compute an embedding using the entire search

collection as the reference set, but we saw that this was infeasible, since this would

require computing DTW alignments for all pairs of segments in the search collection.

This motivated our use of the Laplacian eigenmaps out-of-sample extension, which

allowed us to compute an embedding of a small number of examples (the reference

set), and extend that embedding to apply to the entire search collection, as well as
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the queries.

We observed in Chapter 2 that the quality of our embeddings thus depended on

the reference set. Hence, one way to improve the embedding of the search collection

would be to carefully choose a reference set from among the segments in the search

collection. Indeed, this was the intuition behind our centroid-based method to speed

up the out-of-sample embedding. It is natural to ask, however, whether we might

devise an embedding scheme that embeds the entire search collection more accurately.

In Chapter 1, we discussed the question of how well a given embedding preserves the

similarity structure of the search collection. The acoustic embeddings considered in

Chapter 2 rely on the computation of a matrix of pairwise DTW alignments. When

the reference set is large (as is the case when we wish to embed the entire search

collection), this matrix is expensive to compute. Further, we know DTW is at best

an approximation to some ideal notion of word similarity.

These concerns motivate the problem considered in this chapter, in which we

investigate the behavior of Laplacian eigenmaps when we replace the kernel matrix K

with a sparse, noisy approximation, in which we have noisy estimates of Kij for only

a handful of the entries of K . Our results show that from our sparse, noisy version

of K , we can obtain embeddings that are of quality comparable to those obtained

from using the full, clean version of K . These results have applications beyond the

search problems considered in this thesis, owing to the ubiquity of embeddings in

machine learning. Problems of the sort considered here limit the viability of many
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dimensionality reduction techniques, which tend to require the computation of all

pairwise distance or similarity functions on a set of objects.

The results presented in this chapter appeared first in Levin and Lyzinski (to

Appear).

3.1 Introduction and Motivation

Manifold-based dimensionality reduction techniques operate under the assump-

tion that data observed in a high-dimensional space lie on a low-dimensional mani-

fold (Tenenbaum et al. 2000; Roweis and Saul 2000; Belkin and Niyogi 2003; Belkin

et al. 2006). Owing to the ubiquity of large high-dimensional data sets, these tech-

niques have been well studied, with applications across many disparate fields (see Ap-

pendix B for a more thorough discussion of manifold learning and related material).

In addition to the classical linear techniques such as PCA (Jolliffe 2002), MDS (Cox

and Cox 2001) and CCA (Hotelling 1936; Hardoon et al. 2004), numerous manifold

embedding procedures have been proposed to discover intrinsic low-dimensional struc-

ture in nonlinear data. These nonlinear techniques, such as ISOMAP (Tenenbaum

et al. 2000) and Laplacian eigenmaps (Belkin and Niyogi 2003), typically attempt to

preserve some notion of local geometry in the embedding. As such, they tend to be

empirically robust to modest noise and outliers, but general theoretical results in this

direction are comparatively few.
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In this chapter, we theoretically and practically explore the robustness of Lapla-

cian eigenmaps to very general noise conditions. This work differs from most manifold

embedding robustness results in two key ways: first, we assume that the uncertainty

lies not in the observations themselves, but rather in our measurement of the pair-

wise similarities used to construct the kernel matrix. Second, the noise model is

entirely nonparametric: we make no distributional assumptions on the noise other

than unbiasedness (see Equation (3.2) below).

3.1.1 Problem Description

Suppose that X is a set of objects, endowed with a notion of similarity captured

by a kernel function σ : X × X → [0, 1]; i.e., x, y ∈ X are similar if σ(x, y) ≈ 1, and

x, y ∈ X are not similar if σ(x, y) ≈ 0. Given n observations x1, x2, . . . , xn ∈ X , we

can represent their similarities via a hollow, undirected weighted graph with adjacency

matrix K given by

Kij =


σ(xi, xj) if i 6= j

0 otherwise.

(3.1)

Manifold-based dimensionality reduction techniques seek to recover the low-dimensional

structure intrinsic in the similarities captured by K . We note that some manifold em-

bedding algorithms rely on distance or dissimilarity measures rather than similarities,

but the distinction is immaterial here.
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As discussed in Chapter 1, it is often the case that while a researcher may have

some oracle similarity σ in mind, one must typically fall back on an ersatz similarity

κ that only approximates σ. If κ only approximately captures the oracle notion of

similarity between observations, it is natural to ask how this influences the quality of

the embedding. Similarly, when κ(x, y) is expensive to compute, we might ask whether

an embedding of similar quality is possible based on an inexpensive approximation or

by computing κ(x, y) for only a fraction of all pairs of observations, and inferring the

rest of K , for example, by applying Chatterjee’s universal singular value thresholding

(USVT; Chatterjee 2015).

The Laplacian eigenmaps embeddings constructed in Chapter 2 serve as an illus-

trative example. Recall that for word examples xi and xj, the corresponding entry in

the kernel matrix is given by

κ(xi, xj) = exp{−d2(xi, xj)/2σ
2},

where d(xi, xj) is a function of the dynamic time warping (DTW) alignment cost (Sakoe

and Chiba 1978) between xi and xj. This choice of kernel function is only an approxi-

mation to an idealized notion of word similarity, that we cannot hope to compute– as

mentioned in Chapter 2, the inadequacies of DTW as a word similarity measure are

well known. Additionally, DTW alignment is computationally expensive, requiring

time that scales as the product of the lengths of the two aligned sequences. As such,
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a fast estimate of d(xi, xj) or κ(xi, xj) is acceptable, and we would prefer to avoid

computing all O(n2) alignments required to populate the kernel matrix.

3.1.2 Our Model

In light of the above, we consider the following model. We assume a fixed set of

observations x1, x2, . . . , xn ∈ X , and an oracle similarity function σ defined on X ×X ,

giving rise to a true but unknown symmetric kernel matrix

K = [Kij] = [σ(xi, xj)] ∈ [0, 1]n×n.

The embedding learned from K is the best embedding we could hope to learn, in

that it accurately and completely captures all the information available to us about

x1, x2, . . . , xn. The data processing inequality (Cover and Thomas 2006) implies that

given the data, kernel function and embedding procedure, adding noise and occlusion

to K cannot improve the embeddings from the standpoint of subsequent inference or

classification. Suppose, however, that rather than observing K , we observe a random

symmetric matrix Y ∈ Rn×n, whose entries are generated independently as

Yij = Yji =


Kij with probability p

0 with probability (1− p),

(3.2)
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where the Kij ∈ [0, 1] are independent random variables with EKij = Kij and p ∈

[0, 1] is the (expected) fraction of entries of K that are observed. We note that our

results hold for similarity functions bounded by any constant, and our use of the

range [0, 1] is without loss of generality. We can think of K as a corrupted version

of K , with errors reflecting, for example, the failure of the ersatz similarity κ to

fully reflect the oracle similarity σ, or approximation error arising from estimating

a computationally expensive κ(x, y). Similarly, we can view the sparsity of Y as

reflecting the fact that when n is large or κ is expensive to compute, we would like to

avoid computing all O(n2) pairwise similarities. Our model is meant to account for

general uncertainty in the kernel matrix, which may come from many sources (e.g.,

computational restrictions, estimation, etc.). Ultimately, we require only that errors

be entry-wise independent and unbiased.

When Kij ≈ 0 or Kij ≈ 1, our model allows Kij very little variance. In many

applications, the cases when κ(x, y) ≈ 0 or κ(x, y) ≈ 1 are less prone to error, which

is reflected in our model. Indeed, it is often easy to detect when two observations are

very similar or very dissimilar, whereas one expects higher variance in estimation of

similarity when, say, κ(x, y) = 1/2.

Remark 1 (Error Generalization). Our model is a good approximation to more

complicated error models. As an example, consider the Gaussian kernel κ(x, y) =

exp{−d2(x, y)/β2}, where β > 0 is the kernel bandwidth. A more natural but less

tractable error model is one in which Dij is an estimate (possibly biased) of d(xi, xj)
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and our kernel matrix is Kij = exp{−D2
ij/β

2}, say, Dij = d0 + Eij where Eij is a

random error term. A Taylor expansion of exp{−t2/β2} about d0 = d(xi, xj) shows

that (taking β = 1 without loss of generality and using the fact that Kij = ed
2
0)

Kij = Kij − 2d0e
−d20Eij + (4d2

0 − 2)e−d
2
0E2

ij +O(E3
ij).

We see that so long as the error term Eij is reasonably well-behaved, we still have

EKij ≈ Kij, and an approximate version of the results presented here will hold. More

broadly, we note that so long as |EKij −Kij| is suitably small for most entries, our

results can be extended to the case of biased errors. These observations are borne

out by experiment (See Figures 3.3 and 3.4).

In this paper, we theoretically and practically explore under what conditions it is

suitable to use the embedding learned from Y in place of K . Under such conditions,

we can obtain embeddings with quality comparable to those produced from K , at a

greatly reduced computational cost. In the present work, we consider the performance

of Laplacian eigenmaps (Belkin and Niyogi 2003; Belkin et al. 2006) under this model,

though we believe that the results extend to other embedding techniques, as well.

3.1.3 Laplacian Eigenmaps

As presented in Chapter 2, Laplacian eigenmaps (Belkin and Niyogi 2003; Belkin

et al. 2006) embeds the observed data X into Rd by first constructing the k-nearest-
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neighbor (k-NN) or ε-graph G = (V,E) from X . In the k-NN graph, an edge is present

between i and j if xi is among the k nearest neighbors (according to some distance

defined on X ) of xj or vice versa. In the ε-graph, i and j are adjacent if ‖xi−xj‖2 < ε

for a given threshold parameter ε. We define W , the weighted adjacency matrix of

G, by

Wij =


Kij if {i, j} ∈ E

0 else,

and let D ∈ Rn×n be the diagonal matrix defined by Dii =
∑

jWij for i ∈ [n]. Then

the normalized weighted graph Laplacian of G (Chung 1997) is given by L (W ) =

D−1/2WD−1/2. If the eigendecomposition of L (W ) is given by L (W ) = UΛU>

with the diagonal entries of Λ nonincreasing, then Laplacian eigenmaps embeds X

via U [:, 2 : d+ 1]—the first d nontrivial eigenvectors of L (W ). (note that U [:, 1] = ~1,

the trivial all-ones vector). This embedding optimally preserves the local geometry

of X in a least squares sense.

In the event that K is noisily and incompletely observed as Y , how does the

d-dimensional Laplacian eigenmaps embedding of Y compare with that of K ? Our

main result, Theorem 1, deals with the regularized matrix [Yij + r] rather than Y

itself, owing to the fact that when p is small, the matrix pK = EY may be quite

sparse, in the sense that some or all of the row sums
∑n

j=1 pKij are too small to

guarantee necessary concentration inequalities (Oliviera 2010; Tropp 2012; Le et al.

2016). Regularization prevents this pitfall, at the cost of changing the matrix to which
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we converge. We discuss regularization at more length in Section 3.2.3. Intuitively,

our main theorem states that the embedding produced from a regularized version of

Y is similar to that produced by K . This implies that we can avoid the O(n2) exact

computations for K , using instead the potentially less computationally expensive Y ,

with little loss in downstream performance.

Remark 2. We depart from Laplacian eigenmaps as originally described (Belkin

and Niyogi 2003) and as used in Chapter 2 in that we do not build a k-NN graph

or ε-graph from X . However, a suitably-chosen kernel function (e.g., the Gaussian

kernel) ensures that K approximates a k-NN or ε-graph, with Y a noisily-observed

subgraph of K .

3.1.4 Notation and conventions

For a set S, we denote the complement of S by Sc. For a matrix B ∈ Rn×n,

we let λ(B) denote the multi-set of eigenvalues of B, and for S ⊂ R, we define

λS(B) = λ(B) ∩ S. We let J ∈ Rn denote the matrix of all ones.

We make use of standard big-O notation, writing f(n) = O(g(n)) to mean that

there exists a constant C > 0 such that f(n) ≤ Cg(n) for suitably large n. Similarly,

we write f(n) = o(g(n)) to mean that f(n)/g(n) → 0 as n → ∞. We use f(n) =

Ω(g(n)) to denote that f grows at least as quickly as g does, i.e., to denote that

g(n) = O(f(n)), and we write f(n) = ω(g(n)) when g(n) = o(f(n)).

Throughout this chapter, all quantities are assumed to depend on n, a fact that we
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highlight by subscripting or superscripting with n (e.g., K = K (n)), but which we

will suppress in many places for ease of notation. Our main theorem, Theorem 1, is a

finite-sample result, with K (n) viewed as fixed for each n, and K(n) and Y (n) randomly

generated from K (n). We note that all of our results in this chapter can be restated as

holding almost surely as n→∞ by assuming suitable lower bounds on the constants

in the supporting Lemmas so as to ensure that the probabilities of the various “bad

events” are summably small. An application of the Borel-Cantelli lemma then implies

that our desired events hold almost surely. This modification can be made to work

either in the case (a) where we view Y,K and K as (growing, “nested”) principle

submatrices of infinite matrices, or (b) in the case where we consider a sequence of

fixed matrices (K (n))∞n=1.

In this chapter, we assume K to be fixed for each n (i.e., not random– the

randomness lies entirely in Y and K). This assumption is made primarily for the

sake of brevity and simplicity, since randomness in K would have to come from

random selection of the sample x1, x2, . . . , xn ∈ X according to some distribution F

on X . Clearly, the properties of K depend on the properties of F and X , but a

thorough exploration of precisely how F and X influence K is beyond the scope of

this thesis.

59



CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

3.2 Related Work

We briefly survey some existing work from the fields of manifold learning, ma-

trix completion and matrix concentration as it relates to the work presented in this

chapter. These works are discussed in more detail in Appendices B and D.

3.2.1 Manifold Learning

Manifold learning is a general class of techniques for nonlinear dimensionality

reduction that seek to embed a collection of observations into Euclidean space in a

way that preserves some aspect of the structure of those observations. For example,

given a collection of objects and some notion of distance on those objects, we may wish

to embed the objects into Euclidean space in such a way that all pairwise distances are

(approximately) preserved (Indyk 2001; Linial 2002). A host of different embedding

techniques have been proposed in the literature (see, for example, Roweis and Saul

2000; Tenenbaum et al. 2000; Cox and Cox 2001; Hinton and Roweis 2002; Donoho

and Grimes 2003; Coifman and Lafon 2006) to preserve the numerous different notions

of structure in the data. As outlined in Yan et al. (2007), it is possible to view many

of these approaches as special cases of a more general framework

There is a large amount of literature dedicated to improving the performance of

manifold learning and dimensionality reduction algorithms in the presence of noise

and missing data; see, for example, Chang and Yeung (2006); Hein and Maier (2007);
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Candès et al. (2011); Shahid et al. (2015). The present work differs from most such

results in the following key ways: We assume that the uncertainty lies not in the

observations themselves, but rather in the computation of the pairwise similarities

or distances used to construct the kernel matrix, and our model of this uncertainty

is nonparametric. Additionally, we make no assumption that the observations lie in

Euclidean space. Rather, the objects under study are arbitrary (e.g., they may be

time series, graphs, etc.), and information about the geometry of X comes through

the ersatz kernel function κ.

With the rise of big data and the continued popularity of kernel methods, much

research has gone toward faster construction and embedding of the kernel matrix

by speeding up the evaluation of the kernel function itself (Williams and Seeger

2001; Le et al. 2013), the embedding procedure (Baglama and Reichel 2005; Brand

2006), and construction of the kernel matrix as a whole (Fine and Scheinberg 2001).

Construction of the kernel matrix is often the major bottleneck in machine learning

systems (Hofmann et al. 2008; Levin et al. 2013, 2015). In our model, embedding

the partially observed noisy kernel matrix Y allows for potentially dramatic speedups

compared to the computation of the full, clean kernel K . A similarly-motivated idea

was explored in Chen et al. (2009), where the authors presented a pair of divide-and-

conquer algorithms for approximately constructing k-NN graphs on observations in

Euclidean space. However, unlike our approach, they do not consider noise in the

observations themselves or in the assessment of distances between observations.

61



CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Another close analogue to our present work is Rohe et al. (2011a), in which the

authors theoretically and empirically explored the robustness properties of spectral

clustering: i.e., Laplacian eigenmaps applied to a binary adjacency matrix followed by

k-means clustering. In the language of this thesis, they considered the inner product

kernel matrix K ∈ Rn×n on a fixed (but unknown) subset X ⊂ Rd. From this kernel,

they observed the matrix Y ∈ {0, 1}n×n with independent entries

Yij = Yji =


1 with probability Kij

0 with probability (1−Kij).

(3.3)

They compared the Laplacian spectral embedding based on K with that based on Y .

Their key result showed that, under some mild assumptions on the spectrum of L (K )

(the normalized Laplacian of K ), the eigenspace of L (Y ) does not significantly

differ from the corresponding eigenspace of L (K ) (after suitable rotation). As a

result, they prove that spectral clustering of L (Y ) consistently estimates the clusters

obtained by spectrally clustering L (K ). While our main theorem uses results (Rohe

et al. 2011a, Prop. 2.1 and Thm. 2.2) developed in that paper, the generality of our

occlusion model (3.2) compared to (3.3) requires new proof techniques. Additionally,

our manifolds do not necessarily have a well-defined cluster structure (as the stochastic

blockmodel graphs of Rohe et al. (2011a) do), and so we do not consider consistency

of clustering of our embedding. Rather, in Theorem 1, we prove that the relevant

eigenvectors of L (Y ) do not significantly differ from the corresponding eigenvectors of
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L (K ). As in Rohe et al. (2011a), we expect the consistency of subsequent inference

to similarly follow.

3.2.2 Matrix Completion and Data Imputation

A natural approach to applying Laplacian eigenmaps to Y is to first impute the

missing entries of Y using matrix completion techniques. For example, with the

additional assumption that K is approximately low-rank, it would be possible to

impute the missing data via the techniques developed in compressed sensing (Candès

and Recht 2009, see Appendix D for a survey of the relevant literature). While

some compressed sensing papers have considered matrix completion in the presence

of both noise and occlusion (Candès and Plan 2009; Chen et al. 2013), most also

require bounds on the incoherence of matrix K , a requirement that need not hold in

general for the kernel matrices we consider here.

Some matrix completion work has considered imputing missing entries in a dis-

tance matrix (Alfakih et al. 1999; Trosset 2000; Javanmard and Montanari 2013).

Among these, the work by Javanmard and Montanari (2013) is closest in spirit to the

problem considered here. Javanmard and Montanari (2013) considered the problem of

placing n objects into d-dimensional Euclidean space based on noisy, occluded mea-

surements of the O(n2) pairwise distances. Their semidefinite programming-based

approach solves this problem under a very general error model, where nothing is

known about the errors other than a bound on their magnitude. However, their
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model differs from ours in two key ways. First, the observations in question are as-

sumed to lie in d-dimensional Euclidean space, while ours need only be endowed with

a kernel function. Second, they assume that distance measurements are taken on all

pairs of points within a fixed radius of one another. However, under our model, all

entries of K are equally likely to be (noisily) observed.

Chatterjee (2015) considered the problem of completing an arbitrary matrix based

on partial, noisy observations, with no specific assumptions on the matrix structure.

His universal singular value thresholding (USVT) procedure constructs a minimax

optimal estimate for K based on its occluded, noisy measurement Y (as defined

in (3.2)). Though we believe that the results obtained in this paper would hold in a

qualitatively similar way if we used USVT applied to matrix Y prior to embedding,

analyzing the behavior of the USVT estimate of K under the graph Laplacian is

theoretically challenging, and we do not pursue it further here. In empirical com-

parisons, we found our method and Chatterjee’s USVT performed nearly identically

across our data sets. We do note that USVT requires an expensive SVD computation,

and yields a dense matrix as an estimate of K , instead of the sparse Y , which may

be computationally intractable for large n.

3.2.3 Matrix Concentration

Recent years have seen a flurry of results proving concentration results for sums

of random matrices (Oliviera 2010; Tropp 2012; Chaudhuri et al. 2012; Amini et al.
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2013; Joseph and Yu 2014; Qin and Rohe 2013; Le et al. 2016; Tropp 2015), in

the spirit of their well-established scalar analogues (Chung and Lu 2006). Many

existing concentration results require assumptions about the density of the underlying

graphs (Rohe et al. 2011a; Oliviera 2010). For example, many such results hold only

in the dense regime and require a lower bound on the average degree (i.e., a lower

bound on the row sums of the expected value of the random matrix). It is well known

that the high variance associated with small average degree precludes concentration

of the Laplacian for general weighted graphs (Chung et al. 2003; Le et al. 2016; Klopp

et al. 2015). This is an issue for the problem considered in the present work, especially

when we observe only a small fraction of the matrix entries.

Existing empirical and theoretical results show that regularization yields the de-

sired concentration of the graph Laplacian for sparse graphs (see Chaudhuri et al.

2012; Amini et al. 2013; Joseph and Yu 2014; Qin and Rohe 2013; Le et al. 2016,

and references therein). This regularization typically takes the form of either adding

a small number to each entry of the adjacency matrix, as in Le et al. (2016), or by

adding to the degree matrix directly, as in Qin and Rohe (2013). Our result draws

on this line of work by investigating the behavior of the Laplacian eigenmaps em-

beddings when regularization is applied. In this sense, the current work is a natural

outgrowth of Rohe et al. (2011a) and Le et al. (2016) in that the former considers

concentration of the Laplacian eigenmaps embeddings under the Frobenius norm, and

the latter considers concentration of the regularized graph Laplacian under the spec-
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tral norm. We follow the former of these two works and consider concentration under

the Frobenius norm, rather than spectral norm. This differs from the bounds estab-

lished in Oliviera (2010); Tropp (2012); Le et al. (2016), which show concentration of

the adjacency matrix and graph Laplacian under the spectral norm. We prefer the

Frobenius norm formulation of Theorem 1, as the Frobenius norm between the (suit-

ably rotated) eigenspaces has a natural interpretation as the Procrustes alignment

error of the two different embeddings.

3.3 Main Results

Our goal is to theoretically and empirically understand the impact of observa-

tion error on the embedding obtained via Laplacian eigenmaps. That is, how much

does the embedding obtained using matrix Y degrade with respect to that obtained

using matrix K ? We prove that Laplacian eigenmaps is indeed robust to certain

amounts of both occlusion and noise by first proving that (a suitably regularized

version of) L 2(Y ) concentrates about (a regularized version of) L 2(pK ), where Y

and p are defined as in Equation (3.2). Combining this result with the Davis-Kahan

theorem (Davis and Kahan 1970), we obtain in Theorem 1 a guarantee that the em-

bedding learned from the occluded noisy kernel matrix is similar (up to rotation) to

that learned from the regularized clean kernel matrix. We provide relevant details

below and in Section 3.6.
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Let G = (V,E) be an undirected, loop-free, weighted graph on n vertices with

edge weights wij ≥ 0. We represent G by its adjacency matrix A ∈ Rn×n, with entries

Aij = Aji =


wij if {i, j} ∈ E

0 if {i, j} /∈ E.

Given A, we define its normalized graph Laplacian by

L (A) = D(A)−1/2AD(A)−1/2,

where D(A) ∈ Rn×n, the degree matrix, is diagonal with D(A)ii =
∑n

j=1 Aij and

inverse square root defined as

(
D(A)−1/2

)
ii

=


1/
√

D(A)ii if D(A)ii 6= 0

0 otherwise.

We note that the graph Laplacian as we have defined it differs from the more com-

monly used I −D(A)−1/2AD(A)−1/2 (e.g., in Chung 1997). We will be interested in

the eigenspace of L (A), and one can easily check that both our L (A) and the more

commonly used definition have the same eigenspaces.

In general, neither the adjacency matrix nor the graph Laplacian of sparse ran-

dom graphs concentrate about their means owing to high variance in degree distri-
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butions (Chung et al. 2003; Feige and Ofek 2005; Le et al. 2016). This suggests that

we should not expect that L (Y ) will concentrate for arbitrary kernel matrices, and

hence we turn to regularization. Let J ∈ Rn×n denote the matrix of all ones. Our

main result will require us to bound ‖L 2(Y + rJ) −L 2(pK + rJ)‖F , where Y is

the sparse, noisy version of K as specified in (3.2), and r ≥ 0 is a regularization

parameter. We deal with the squared Laplacians for reasons discussed in Rohe et al.

(2011a, Section 2). Namely, we require that L (Y + rJ) converge to L (pK + rJ)

in Frobenius norm. To ensure convergence for a suitably broad class of matrices,

we must instead consider the squared Laplacians in combination with the following

Lemma, proved in Rohe et al. (2011a), which ensures that if certain eigenvectors of

L 2(Y + rJ) converge, then so do the relevant eigenvectors of L (Y + rJ).

Lemma 1 (Rohe et al. 2011a, Lemma 2.1). Let B ∈ Rn×n be symmetric.

1. λ2 is an eigenvalue of B2 if and only if either λ or −λ is an eigenvalue of B.

2. If Bx = λx, then B2x = λ2x.

3. If B2x = λ2x, then x can be written as a linear combination of eigenvectors of

B with corresponding eigenvalues λ or −λ.

Our main theorem, Theorem 1, shows that the span of the eigenvectors corre-

sponding to the largest eigenvalues of the Laplacian of K and the Laplacian of

the sparse noisy kernel matrix Y are close. As a consequence, subsequent inference
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performed on the Laplacian eigenmaps embeddings will be robust to the errors in-

troduced in Y , since the embeddings will be (nearly) isometric to one another. In

the statement of the theorem, we include subscript or superscript n on all quantities

that depend on n, though we will drop these subscripts in the sequel for notational

convenience. Recall that for B ∈ Rn×n, λ(B) denotes the multi-set of eigenvalues of

B and for S ⊂ R, we define λS(B) = λ(B) ∩ S.

Theorem 1. Under the model described in (3.2), for an open interval Sn ⊂ R, define

δn = inf{|`− s| : ` ∈ λScn(L 2(pK + rnJ)), s ∈ Sn}, (3.4)

δ′n = inf{|`− s| : ` ∈ λSn(L 2(pK + rnJ)), s ∈ Scn}, and

S ′n = {` : `2 ∈ Sn}.

Let kn = |λS′n(L (Y (n) + rnJ))| be the cardinality of λS′n(L (Y (n) + rnJ)) (counting

multiplicities), and let Xn ∈ Rn×kn be the matrix whose columns form an orthonormal

basis for the subspace spanned by the eigenvectors of L (Y (n)+rnJ) with corresponding

eigenvalues in λS′n(L (Y (n) + rnJ)). Let k̄n = |λS′n(L (pK (n) + rnJ))| and let Xn be

the analogue of Xn for L (pK (n) + rnJ).

Let rn depend on n in such a way that rn min{δn, δ′n} ≥ n−1/2 log n for suitably

large n. There exist constants C, c > 0 and a positive integer N such that n ≥ N

implies that kn = k̄n, and there exists orthonormal rotation matrix On such that with
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probability at least 1− n−c,

‖Xn −XnOn‖F ≤ C

(
log1/2 n

δnrnn1/2

)
.

Proof. By reasoning analogous to that in Rohe et al. (2011a) Theorem 2.3, the as-

sumption on the growth rates of rn, δn, and δ′n, in combination with Theorem 3, is

sufficient to ensure that kn = k̄n for suitably large n. For all such n, combining

Theorems 2 and 3 yields the result.

Figure 3.1: Points sampled from a 3-dimensional swiss roll.

Remark 3. A key difference between the main theorem in Rohe et al. (2011a)

and our result is that we do not require a restriction on the degrees of pK directly.

Rather, we use regularization to ensure that no row sum is too small. We note that

letting p = 1 and making minor adjustments to the arguments in our concentration

inequalities (namely, lower bounds on the entries of the degree matrix D), we recover
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the main result of Rohe et al. (2011a), with a slightly better convergence rate. Namely,

if we define τ = n−1 mini∈[n] Dii, our result has τ−1 controlling to rate of convergence

of the eigenspaces rather than τ−2 as in Rohe et al. (2011a) (with dependence on n

and δ unchanged)

Remark 4. We note the somewhat surprising fact that the bound in 1 does not

depend explicitly on p. This is a result of the presence of regularization parameter

r, which prevents pK + r from becoming too sparse. We note that if one imposes

stronger assumptions on the growth of p (namely, restricting the speed with which p

can approach 0), our proofs can be adapted to dispense with r altogether, in which

case p appears in the bounds instead.

Our main tool for proving Theorem 1 is the Davis-Kahan theorem (Davis and

Kahan 1970), which we use in the form presented in Rohe et al. (2011a). We here

index all quantities by n to reiterate that all quantities are allowed to depend on n,

but remind the reader that we will drop this indexing in much of the sequel for ease

of notation.

Theorem 2. Let Sn ⊂ R be an interval and let Xn be a matrix with orthonor-

mal columns that span the same subspace as that spanned by the eigenvectors of

L 2(pnK (n)) with corresponding eigenvalues in

λSn(L 2(pnK
(n) + rnJ)) = Sn ∩ λ(L 2(pnK

(n) + rnJ)).
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Define Xn analogously for L 2(Y (n) + rnJ). Let δn be defined for L 2(pnK (n) + rnJ)

as in (3.4).

If Xn and Xn are of the same dimension, then there exists orthonormal matrix

On, which depends on Xn and Xn, such that

1

2
‖Xn −XnOn‖2

F

≤ ‖L
2(Y (n) + rnJ)−L 2(pnK (n) + rnJ)‖2

F

δ2
n

.

To apply Theorem 2 toward Theorem 1, we need a concentration bound for

L 2(Y + rJ) about L 2(pK + rJ). We note that Y, K , J and r all implicitly

depend on n, a fact that we do not generally make explicit in the sequel for ease of

notation, but which we highlight here for clarity. For each n = 1, 2, . . . , let K (n) be a

weighted adjacency matrix for a graph on n points in X as defined in (3.1). Similarly,

let Y (n) be the corresponding sparse noisy kernel matrix as defined in (3.2).

Theorem 3. Assume that regularization parameter r grows with n in such a way that

r = ω(n−1 log n). There exist constants C, c > 0 such that for suitably large n,

‖L 2(Y + rJ)−L 2(pK + rJ)‖F ≤ C
log1/2 n

rn1/2

with probability at least 1− n−c.

Proof. This theorem is proven in Section 3.6.

Remark 5. A number of results exist concerning concentration of the adjacency
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Figure 3.2: Relative error (RelErr) in recovering the clean embedding of the high-
dimensional swiss roll as a function of noise and occlusion. Each tile reflects the mean
of 50 independent trials. We see that recovery is possible with low relative error except
in the extreme case of simultaneous high-noise and heavy occlusion, suggesting that
the embeddings are robust to both noise and occlusion of the kernel matrix.

matrix and the graph Laplacian of random graphs (see, for example, Feige and Ofek

2005; Oliviera 2010; Rohe et al. 2011a; Tropp 2012; Le et al. 2016). In general, these

results show that the graph Laplacian concentrates in spectral norm about its mean

when the quantity d = nmax1≤i<j≤n pij is of size Ω(log n) (here pij is the probability

of an edge appearing between nodes i and j in the random graph). Our result differs

from most of these, in that we are concerned with concentration under the Frobenius

norm, rather than the spectral norm. We obtain results in a similar regime, as

captured by our lower bound requirements on the regularization term r.

A key quantity in Theorem 2 is the spectral gap δn as defined in (3.4). δn measures

how well the eigenvalues in λS(L 2(pK (n))) are isolated from the rest of the spectrum.
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δn must grow in such a way that for suitably large n, the eigenvalues falling in Sn

correspond to the eigenvectors of interest, and the rate of this growth is one of the

factors controlling the convergence in Theorem 1. The existence of this eigengap is

crucial for the application of the Davis-Kahan Theorem (Davis and Kahan 1970; Rohe

et al. 2011a). The eigengap depends on the matrix pK (n) (i.e., on the topology of

the graph this matrix encodes). As discussed in von Luxburg (2007), the existence

of such a gap is a reasonable assumption when, for example, the data set (viewed

through similarity function κ) has a cluster structure.
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Figure 3.3: Relative error in recovering the Laplacian eigenmaps embedding of
the high-dimensional swiss roll as a function of occlusion and variance ν2 in the
multiplicative error model described in Equation (3.5). Each tile is the mean of 50
independent trials. We see that Laplacian eigenmaps is robust to moderate amounts of
multiplicative noise, with reasonably good recovery at all values of p provided ν2 ≤ 1
(which we recall is five times the kernel bandwidth σ = 0.2), but performance degrades
sharply when uncertainty on the distance measure becomes too large (ν2 ≥ 10).
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Figure 3.4: Relative error (RelErr) in recovering the clean embedding of the high-
dimensional swiss roll as a function of occlusion and noise level for different levels
of bias b. Each tile is the mean of 50 independent trials. We see that Laplacian
eigenmaps embedding is quite robust to negative bias, but that even a small amount
of positive bias in the errors causes a marked decrease in performance at all noise and
occlusion levels.

Typically, computing the Laplacian eigenmaps embedding of a data set is not an

end in itself, but rather a processing step performed prior to subsequent inference,

classification, or data exploration. Such tasks depend entirely upon the geometry

of the embedded data points produced by Laplacian eigenmaps. If the geometry of

the points produced from the inexpensive embedding based on Y is approximately

equal (up to rotation) to that of the embedding based on K , then we can expect

comparable performance on downstream tasks that are invariant under rotations of
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the data (e.g., clustering). Thus, our results show that we can obtain performance

comparable to that obtained when using the dense, computationally intensive K

while avoiding the expense of working with K directly.

3.4 Experiments

In this section, we present simulation and real-world data to complement our

theoretical results in Section 3.3.

3.4.1 Data Sets

We consider three data sets, one synthetic, one from connectomics, and one from

the speech processing literature.

Synthetic Data (Fig. 3.1, 3.2, 3.6, 3.3, 3.4).

We consider a high-dimensional analogue of the 3-dimensional swiss roll manifold

(see Fig. 3.1). We sample n points uniformly at random from the d∗-dimensional unit

cube and embed those points into (d∗ + 1)-dimensional space by applying the swiss

roll transform

(x, y) 7→ (cx cos(cx), y, cx sin(cx)), x ∈ R, y ∈ Rd∗−1

where c controls the curvature of the manifold. In all experiments we use n = 5000,
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d∗ = 6 and c = 5. We chose this higher-dimensional version of the well-understood,

simple swiss roll manifold to examine the effect of both under- and over-estimating the

dimension d∗. We obtain a kernel matrix K from these points by applying a Gaussian

kernel with bandwidth σ. Results are fairly stable for a wide range of values of σ. We

use σ = 0.2 in all experiments, while stressing that the task of selecting parameters

in dimensionality reduction techniques warrants much additional study.

C. elegans Connectome (Fig. 3.8).

We consider the task of clustering the 253 non-isolated neurons in the C. elegans,

a nematode commonly used as a simple biological model (see Chen et al. 2016, and

citations therein). These neurons are categorized according to their function: sensory

neurons, interneurons and motor neurons, which make up 27.96%, 29.75% and 42.29%

of the connectome, respectively. Our data consists of the symmetric binary adjacency

matrix corresponding to the C. elegans brain graph, in which each node corresponds

to an individual neuron, with an edge between two neurons if they share a synapse.

As discussed in Chen et al. (2016), this brain graph can be constructed in multiple

ways. Here we consider the subgraph of the chemical connectome induced by the

non-isolated vertices of the electrical gap junction connectome. Our goal is to embed

the nodes of this graph via Laplacian eigenmaps so that clustering (e.g., by k-means)

recovers the three neuron categories enumerated above. We assess the quality of

these embeddings using adjusted Rand index (ARI; Hubert and Arabie 1985), which

measures how well two partitions agree, adjusted for chance.
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Speech Data (Fig. 3.5, 3.7 and 3.9).

We consider the same word discrimination task as in Chapter 2, using a set of

10, 383 spoken word examples, representing 5, 539 distinct word types. Using DTW

alignment cost, we define a radial basis kernel on the word examples to obtain a

10, 383× 10, 383 kernel matrix that serves as our starting point for constructing em-

beddings. Recall that this evaluation, developed in Carlin et al. (2011), assesses how

well a representation distinguishes word types as measured by average precision (AP),

which runs between 0 and 1, with 1 representing perfect performance. Performance

on this task for this data set varies depends on many factors, e.g., choice of acoustic

features, and better performance than reported here has been obtained, for example

by changing the features in Chapter 2. The aim of this experiment is not to best that

performance, but rather to examine how noise and occlusion influence performance

for a given set of observations.

3.4.2 Noise Conditions

We consider the effects of additive noise and occlusion both in isolation and in

tandem on the quality of Laplacian eigenmaps embeddings.

Additive Noise. Given a kernel matrix K ∈ [0, 1]n×n, we produce a random

symmetric matrix K ∈ [0, 1]n×n where Kii = 0 for all i ∈ [n], and {Kij}1≤i<j≤n are

independent with Kij beta-distributed with EKij = Kij. We constrain the expected

value of beta-distributed Kij in this way by fixing one of the two shape parameters
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Figure 3.5: Performance on the speech task, measured by average precision, as
a function of embedding dimension. We see that performance peaks at an embed-
ding dimension of d = 500, with a severe degradation in the case where embedding
dimension is chosen too small.

of the beta distribution, and varying the other to change the variance of the Kij. In

particular, Kij ∼ Beta(αij, ηij) with αij > 0 and ηij > 0. fixing ηij = αij(1−Kij)/Kij

ensures that EKij = Kij with

VarKij =
K 2
ij (1−Kij)

αij + Kij

,

so that we can vary our level of uncertainty on the Kij variables by varying αij.

We select a single global value α > 0, and take Kij ∼ Beta(α, α(1 −Kij)/Kij). In

the limit α → 0, the Kij are simply Bernoulli random variables with probability of

success pij = Kij. In the limit α → ∞, we have Kij = Kij almost surely. Thus,

we can think of our parameter α as a measure of the accuracy of our measurements

of K . We note also that our parameterization implies that the Kij variables do not
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all have the same variance. Rather, variances are smaller for Kij nearer to 0 and

1. As discussed in Section 3.1, this is a good model for applications in which the

cases Kij ≈ 0 and Kij ≈ 1 are comparatively easy to handle from an estimation or

computation standpoint, and the trouble arises from the cases where Kij ≈ 1/2.
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Figure 3.6: Relative error in recovering the Laplacian eigenmaps embedding of
the high-dimensional swiss roll as a function of dimension at (a) different values of
fidelity parameter α and (b) different expected fractions of observed entries p. The
true underlying dimension of the data is highlighted in red. Each data point is the
mean of 50 independent trials, with error bars indicating one standard error. We
see a pattern typical of model selection problems, in which the expressiveness of the
model (i.e., higher embedding dimension) comes at the cost of increased variance (i.e.,
higher relative error in recovering the clean embedding).

Occlusion. We observe an occluded version of K , where entries above the diag-

onal are observed independently with probability p. We proceed with our embedding

using this sparse kernel matrix, with zeros in the unobserved entries.

Additive Noise with Occlusion. This condition combines the preceding two.

We observe an occluded, noisy version of matrix K . That is, we generate noisy matrix

K from K with entries drawn independently from suitably chosen beta-distributions,

then occlude K by independently observing entries with probability p.
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Multiplicative and Biased Errors with Occlusion. Rather than the unbiased

additive noise considered above, we consider how more complicated multiplicative and

biased errors influence the quality of Laplacian eigenmaps embeddings. As discussed

in Section 3.1, provided these errors are sufficiently well-behaved, we can adapt the

results presented in this paper to make similar statements about this more general

error model.

3.4.3 Effect of Noise and Occlusion on Embed-

dings

Our main theoretical result suggests that Laplacian eigenmaps embeddings should

be robust to noise and occlusion. Fig. 3.2 shows how noise and occlusion influence

the error in recovering the clean Laplacian eigenmaps embedding. Here, the target

dimension is fixed at d = d∗ = 6, while the noise and occlusion vary on the two axes.

Each tile is the relative error averaged over 50 independent trials. We see that the

clean Laplacian eigenmaps embedding is recovered with low error over a wide range of

noise levels and occlusion rates, with performance degrading only when the fraction

of observed entries goes below 0.25 in high-noise conditions.

Fig. 3.7 further illuminates the results seen in the synthetic data. Rather than

looking at the relative error in recovering the clean embedding, we examine how noise

and occlusion in the kernel matrix influence the down-stream speech task of distin-
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guishing word types. The plot shows average precision as a function of both noise

level and occlusion for three different embedding dimensions. We see that perfor-

mance decays similarly in all three embedding dimensions, but that choice of embed-

ding dimension has a large effect on overall performance. For example, comparing

the d = 100 case with the d = 500 case, we see that both exhibit similar deterioration

patterns with respect to noise level and expected fraction of observed entries, but the

500-dimensional embeddings out-perform the 100-dimensional ones when noise and

occlusion are not so severe as to drown out the signal in the kernel matrix.
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Figure 3.7: Average precision (AP) on the speech data set as a function of occlusion
and noise level for different embedding dimensions d. Each tile is the mean of ten
independent trials. We see that performance degrades similarly for all three target
dimensions in the presence of noise and occlusion.

3.4.4 Effect of Multiplicative Error and Bias

Our theoretical results are for the case of unbiased noise, EKij = Kij, and it is

natural to ask whether similar results hold for a broader class of error models. As

mentioned in Section 3.1, our results can be extended to biased errors (EKij 6= Kij),

provided those errors are suitably well-behaved. Fig. 3.3 and 3.4 lend experimental

support to this point.
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Using the same synthetic high-dimensional swiss roll setup as in Fig. 3.2, we con-

sider biased noise, with Kij beta distributed, but with EKij = Kij + b, where b ∈ R

is a bias, clipping Kij + b to lie in [0, 1] in the event that the bias b pushes Kij out

of its allowed range. Note that this corresponds to making Kij either identically 0

or identically 1, according to whether Kij + b is less than 0 or greater than 1, re-

spectively. We again vary the parameter α as described above, but now the errors

are biased away from Kij. Fig. 3.4 shows relative error in recovering the clean em-

beddings, again as a function of the parameters p and α, for four different levels of

bias b = −0.1,−0.01,−0.001, 0.001. The first thing we notice is that performance

is far more sensitive positive bias than it is to negative bias, with negative bias as

large as −0.1 (a full one tenth of the dynamic range of the similarity measure) having

comparatively little effect while a positive bias of just 0.001 results in notably worse

relative error at all levels of noise and occlusion when compared to the unbiased er-

rors in Fig. 3.2. This performance makes sense. Positive bias in our estimation of K

results in us embedding a graph that looks highly connected, and the signal present

in the comparatively sparse K is swamped. On the other hand, negative bias in our

estimates only serves to further accentuate the few high-weighted observed entries,

since only those entries for which Kij is suitably far from 0 survive the bias. We have

observed empirically that a similarly-motivated technique, in which small entries of

the kernel matrix are clipped to 0, yields slight performance improvements in speech

applications.
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We further explore how general errors influence the quality of Laplacian eigenmaps

embeddings by considering an error model in which

Kij = exp{−D2
ij/σ

2}, (3.5)

where Dij = d(xi, xj)+Zij, and Zij is a one-dimensional normal random variable with

mean 0 and variance ν2. Thus, we have a distance measure corrupted by unbiased

noise, corresponding to the common scenario in which the kernel function κ(x, y)

is a function of the distance between objects x and y and uncertainty lies in the

measurement of that distance. The result, in the case of a nonlinear kernel function, is

(typically) non-additive, biased, error, so that EKij 6= Kij = κ(xi, xj). We again use

the same high-dimensional swiss roll as described above. We generate noisy versions

of the kernel matrix K , using the same Gaussian kernel with bandwidth σ = 0.2, but

now noise takes the form described in Equation 3.5. Fig. 3.3 shows relative error in our

recovery of the clean embeddings, as a function of the fraction of observed entries p and

the variance ν2 of the noise term Zij. We see that Laplacian eigenmaps embeddings

are robust to fairly large amounts of uncertainty in the distance measurement. Indeed,

we see that relative error is near zero for variance ν2 ≤ 1, with the exception of

particularly small values of p, when nearly all of the kernel matrix is occluded. This

performance is impressive in light of the fact that ν2 = 1 corresponds to a standard

deviation a full five times larger than the kernel bandwidth in these experiments.
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3.4.5 Model Misspecification

Selecting the target dimension is of the utmost importance for good embeddings.

Fig. 3.6 shows how embedding dimension interacts with noise and occlusion on the

synthetic data. The two plots show that relative error in recovering the clean embed-

ding is smaller at lower target dimensionalities, and this pattern holds over a wide

range of noise levels and occlusion rates. In particular, we note that relative error

in the presence of high noise and high occlusion remains comparable to the relative

error in low noise and low occlusion conditions. Of course, this only tells part of

the story. Fig. 3.5 shows average precision on the speech data set under clean con-

ditions, as a function of embedding dimension. While a low-dimensional embedding

performed under noise or occlusion might very closely resemble the corresponding

clean embedding as in Fig. 3.6, Fig. 3.5 suggests that such an embedding would not

yield satisfactory performance on downstream tasks such as classification. Indeed,

we see here a pattern typical of model selection tasks: one must balance estimation

error of model parameters against error in fitting the observed data (Shibata 1986;

Fraley and Raftery 2002; Raftery and Dean 2006). The noisy embedding can only be

as good as the clean embedding we are attempting to recover.
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3.4.6 Effect of regularization

In the setting of the current work, when p is too small, we are in the sparse graph

setting (Chaudhuri et al. 2012; Amini et al. 2013; Joseph and Yu 2014; Qin and

Rohe 2013; Le et al. 2016), and it is natural to consider whether applying regular-

ization might ease the deterioration of embedding quality in this regime. We follow

the regularization procedure described in Le et al. (2016), in which a regularization

parameter r is added to each entry of the observed matrix. That is, letting Y denote

the occluded version of the noisy matrix K, we apply Laplacian eigenmaps to the

matrix [Yij + r] rather than Y itself. Our main theoretical results suggest that under

suitable conditions, such an approach will be beneficial. The C. elegans brain graph

is extremely sparse, and occlusion makes this sparsity still more dramatic. Fig. 3.8

shows how regularization influences downstream performance on the C. elegans data

under different levels of occlusion. We see that when r is chosen too small, regular-

ization is not enough to significantly change the learned embedding. Similarly, when

r is chosen too large, regularization overpowers the signal present in the occluded

matrix. However, with the C. elegans data, we see that there exists a level (r ≈ 0.01)

at which regularization greatly improves ARI, even when only half of the edges of the

graph are known. We note that embeddings produced by the regularization procedure

described in Qin and Rohe (2013) resulted in nearly identical performance.

The performance seen here is especially exciting from the neuroscience standpoint–

these results suggest that we can recover structural and functional information in
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Figure 3.8: Adjusted Rand index (ARI) on the C. elegans data set for different
levels of regularization as a function of dimension at different values of p, the expected
fraction of observed entries. Each data point is the mean of 50 independent trials.
We see that regularization enables us to accurately cluster the neurons even when
much of the structure of the brain graph is occluded, with performance consistently
superior to that obtained without regularization.

connectome data even when accurate assessment of all possible neural connections

is impossible. We note the similarity of this phenomenon to that explored in Priebe

et al. (2014), where the authors considered graph inference in the setting where one

can trade the accuracy of edge assessment against the number of edges assessed. Of

course, the usefulness of this result requires that can determine an appropriate value

for r for a given data set, a problem that we leave for future work.

We close by illustrating conditions under which regularization does not appear to

be a benefit. One would think, initially, and especially given the improvement seen

in the C. elegans data, that regularization would yield similar gains in our speech

task. Fig. 3.9 shows how regularization influences downstream performance on the

speech task. We see that regularization does not appear to confer the benefit seen

in the C. elegans data. Crucially, however, moderate amounts of regularization do

not appear have any adverse effects on average precision. One possible explanation

for this phenomenon comes from the fact that the kernel bandwidth used in Levin

et al. (2013) was chosen so as to give the best possible average precision on precisely
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the task we are using for evaluation. That is, since the kernel bandwidth has already

been tuned so as to yield high-quality embeddings, regularization can do little to

improve the embeddings. But this explanation does not account for the fact that

regularization does not appear to confer any protection against occlusion and noise

in the kernel matrix. It is possible that the speech data set is such that the kernel

matrix is sparse enough that regularization does nothing to pull us toward a better

embedding. We leave further exploration of this phenomenon to future work.
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Figure 3.9: Average precision on the speech data set as a function of embedding
dimension for different levels of regularization under varying amounts of noise and
occlusion: (a) α = 10, p = 0.7, (b) α = 10, p = 1.0, (c) α = 100, p = 0.7, (d)
α = 100, p = 1.0. Each data point is the mean of 10 independent trials. We see that
while regularization does not provide the stunning improvement that it does on the
C. elegans graph, moderate regularization at least does not noticeably harm average
precision.
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3.5 Discussion

We have presented an analysis of the concentration of the graph Laplacian of

certain kernel matrices under occlusion and noise. Crucial to our bound was the

presence of a certain structure in the kernel matrix that ensures concentration of the

row-sums. Experiments on both synthetic and real data show that a concentration

phenomenon similar to that predicted by the theory is present, and has effects both

on performance in downstream tasks and on the model selection problem. We close

by briefly mentioning some directions for future work.

3.5.1 Adaptive Techniques

The regularization used here was applied uniformly to every vertex of the graph,

but regularization is only required to control the high variance associated with small-

degree nodes. In light of this, one might consider regularization techniques that apply

only to nodes that require it. It is unclear a priori whether such an approach would be

advantageous, since regularization does little to change the behavior of high-degree

nodes. However, it stands to reason that a well-designed adaptive technique might

enable convergence of the regularized estimate to the true expected graph, rather than

to its regularized counterpart as in the current work. For example, if only a small

fraction of the nodes in a given graph require regularization, then the Frobenius error

between the regularized and non-regularized Laplacians can still go to zero even if r
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goes to zero slowly.

In a similar vein, it stands to reason that a technique that evaluates entries of the

kernel matrix adaptively rather than the edge-independent occlusion model considered

here might achieve more accurate recovery of the clean embeddings.

3.5.2 Other Error Models

The noise model we have considered is additive, unbiased and entry-wise inde-

pendent. As discussed in Section 3.1, our results can be (approximately) extended

to multiplicative, biased noise models, at least for certain kernels. However, the con-

centration bounds we have used require a certain independence structure. As such,

it seems likely that novel techniques will be required to handle entry-wise dependent

noise and occlusion in the kernel matrix. For example, the techniques in O’Rourke

et al. (2016b) might be brought to bear, except that they require structural assump-

tions on K that seem unlikely to hold for a non-linear kernel function.

3.5.3 Graph Construction

We have largely ignored the problem of constructing the k-NN or ε-graph, the

first step in Laplacian eigenmaps and spectral clustering. Rather than using either

of these constructions, we have relied on the fact that the kernel matrix can be made

to resemble these graphs by using, for example, a Gaussian kernel. We believe that
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the our analysis can be extended to many of these constructions simply by taking

advantage of this resemblance. We leave this extension for future work.

3.5.4 Other Dimensionality Reduction Techniques

To what extent are different embedding techniques robust to uncertainty in simi-

larity measures (as opposed to errors on the observations themselves)? To the best of

our knowledge, MDS and Laplacian eigenmaps remain the only techniques for which

such questions have been explored. We believe that analyses similar to that pursued

in the current work should apply to other dimensionality reduction techniques. In-

deed, given the results in Yan et al. (2007), it would be a surprise to learn that no

such general result is possible.

As alluded to in Section 3.2, a natural approach to the problem considered in this

paper would be to apply Chatterjee’s universal singular value thresholding (USVT;

Chatterjee 2015) to the occluded, noisy kernel matrix Y (or, in the case where κ(x, y)

is a function of d(x, y), to transform Y into an occluded matrix of distances D, impute

the missing entries of D using USVT, and reapply the kernel function to obtain an

estimate of K ). Applying USVT in this manner to the speech task considered in

Section 3.4 yields results essentially identical to those reported using Y alone at

all noise and occlusion rates. Indeed, USVT performed remarkably similarly to our

method on all three data sets, a fact that warrants further exploration.

Some well-known dimensionality reduction techniques can be adapted fairly easily
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to the model in Equation (3.2) by using Chatterjee’s USVT to impute the missing

entries of Y and proceeding apace. In an experimental setup identical to the synthetic

high-dimensional swiss roll experiments presented in Section 3.4, we explored the

effect of noise and occlusion on both MDS and kernel PCA (KPCA). We found

that neither of these methods compared favorably to the results seen for Laplacian

eigenmaps. While direct comparison of the relative errors for these three different

methods is not possible (e.g., embeddings produced by MDS are not constrained in the

same way that Laplacian eigenmaps embeddings are), from a qualitative standpoint,

MDS and KPCA both degraded much more severely in the presence of noise and

occlusion when compared with Fig. 3.2. While a direct comparison (experimental or

otherwise) of Laplacian eigenmaps with other dimensionality reduction techniques is

not the focus of this paper, a more thorough exploration of how different methods

fare in the presence of noise and occlusion (and how those methods might be adapted

to lessen the impact of uncertainty) warrants additional work in the future.

3.6 Proof details

In what follows, we suppress dependence on n for ease of notation. We remind

the reader that all quantities involved, including the parameters r and p all implicitly

depend on n. We let Ŷ = Y + rJ denote the regularized version of matrix Y , and

define D̂ to be the corresponding degree matrix, so that D̂ii = nr+
∑n

j=1 Yij. Denote
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the regularized version of pK by K̂ = pK + rJ , with D̂ the corresponding degree

matrix, D̂ii = nr +
∑n

j=1 pKij.

Throughout, C > 0 denotes a constant (independent of n), which may change

from line to line or from one lemma to another. β and γ denote quantities (both

depending on n) that will control convergence of the node degrees and the Frobenius

norm in Theorem 3, respectively. We will see that the constraints on β and γ required

for our concentration bounds are such that when we plug in γ = C ′n−1/2r−1 log1/2 n

and β = C ′′n−1/2r−1/2 log1/2 n for suitably chosen constants C ′, C ′′ > 0, we obtain

the bound claimed in Theorem 3. We will require that β → 0 as n → ∞, i.e., that

r = ω(n−1 log n).

We first establish that with high probability, the row sums of Ŷ concentrate about

their expected value.

Lemma 2. Suppose that there exists constant c1 > 0 such that for all suitably large

n we have

β2r

1 + β
≥ c1

log n

n
. (3.6)

Then for all suitably large n, with probability at least n1−c1, it holds for all i ∈ [n]

that |D̂ii − D̂ii| ≤ βD̂ii.

Proof. Fix i ∈ [n]. By definition,

D̂ii − D̂ii =
n∑
j=1

(Yij + r)− (pKij + r) =
n∑
j=1

Yij − pKij,
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and EYij = pKij. By a standard Chernoff-style bound (Chung and Lu 2006),

Pr
[
|D̂ii − D̂ii| ≥ βD̂ii

]
≤ 2 exp

{
−3β2D̂2

ii

6V + 2βD̂ii

}
,

where V =
∑n

j=1 EY 2
ij . Since

V =
n∑
j=1

pEK2
ij ≤ p

n∑
j=1

Kij ≤ D̂ii,

we have

Pr
[
|D̂ii − D̂ii| ≥ βD̂ii

]
≤ 2 exp

{
−Cβ2

1 + β
D̂ii

}
,

where C > 0 is a constant. Since D̂ii ≥ nr by virtue of regularization, our assumption

in (3.6) ensures that

Pr
[
|D̂ii − D̂ii| ≥ βD̂ii

]
≤ n−c1 .

Applying the union bound over all i ∈ [n] yields the result.

Lemma 3. Suppose that γ depends on n in such a way that there exist constants

C ′, C ′′ > 0 so that for suitably large n,

C ′γ2 ≥ 16

n2r3
+

16

n2
(3.7)

and

γ ≥ C ′′
log1/2 n

n3/2r2
. (3.8)
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Then there exists a constant c2 > 0 such that with probability at least 1 − n−c2, we

have
n∑
i=1

n∑
k=1

(Ŷ 2
ik − K̂ 2

ik)2

D̂2
iiD̂

2
kk

≤ Cγ2,

where C > 0 is a constant.

Proof. For ease of notation, define

Xik =

(
Ŷ 2
ik − K̂ 2

ik

)2

D̂2
iiD̂

2
kk

.

We will bound Pr
[∑

i,kXik − E
∑

i,kXik ≥ γ2
]

and show E
∑

i,kXik ≤ C ′γ2, imply-

ing that Pr
[∑

i,kXik ≥ Cγ2
]
.

A standard Chernoff-style bound lets us write

Pr

[∑
i,k

Xik ≥ γ2 + E
∑
i,k

Xik

]
≤ exp

{
−3γ4

6V + 2γ2M

}
,

where

V =
∑
i,k

EX2
ik =

∑
i,k

E
(
Ŷ 2
ik − K̂ 2

ik

)4

D̂4
iiD̂

4
kk

,

and M = max
{

1/(D̂2
iiD̂

2
kk) : i, k ∈ [n]

}
.

Bounding V ≤ n−6r−8 and M ≤ (nr)−4,

Pr

[∑
i,k

Xik ≥ γ2 + E
∑
i,k

Xik

]
≤ exp

{
−3(γnr)4

6n−2r−4 + 2γ2

}
,

95



CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and using our assumption in (3.8) to lower bound the denominator inside the exponent

by Ω(nγ2), we can guarantee the existence of a constant c2 > 0 such that

Pr

[∑
i,k

Xik ≥ γ2 + E
∑
i,k

Xik

]
≤ n−c2 .

It remains for us to show that E
∑

i,kXik ≤ C ′γ2. We have

E
n∑
i=1

n∑
k=1

Xik ≤
n∑
i=1

n∑
k=1

E
(
Ŷ 4
ik + K̂ 4

ik

)
D̂2
iiD̂

2
kk

≤
n∑
i=1

n∑
k=1

8 (pEK4
ik + r4) + K̂ 4

ik

D̂2
iiD̂

2
kk

,

(3.9)

where we have used the fact that (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R. Since D̂ii ≥ nr

for all i ∈ [n], we have

n∑
i=1

1

D̂ii

≤ 1

r
and

n∑
i=1

n∑
k=1

r4

D̂2
iiD̂

2
kk

≤ 1

n2
. (3.10)

Noting that EK4
ik ≤ EKik = Kik and applying (3.10), we have

n∑
i=1

n∑
k=1

pEK4
ik

D̂2
iiD̂

2
kk

≤
n∑
i=1

1

D̂iin2r2
≤ 1

n2r3
. (3.11)

Recalling that K̂ik = pKik+r by definition and applying the definition of D̂ii, (3.10)
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implies
n∑
i=1

n∑
k=1

K̂ 4
ik

D̂2
iiD̂

2
kk

≤ 8
n∑
i=1

n∑
k=1

p4K 4
ik + r4

D̂2
iiD̂

2
kk

≤ 8p3

n2r2

n∑
i=1

1

D̂ii

+ 8
n∑
i=1

n∑
k=1

r4

D̂2
iiD̂

2
kk

≤ 8p3

n2r3
+

8

n2
.

Combining this with (3.9) and (3.11) and applying (3.7) completes the proof.

Lemma 4. Under the same conditions as Lemma 2, and assuming there exists a

constant C > 0 such that

Cγ2 ≥ β2

nr2
, (3.12)

with probability at least n1−c1, we have

n∑
i=1

n∑
k=1

n∑
`=1

(Ŷ 2
ik − K̂ 2

ik)(Ŷ 2
i` − K̂ 2

i` )

D̂2
iiD̂kkD̂``

≤ Cγ2.

Proof. Observing that Ŷik + K̂ik ≤ 1 + p+ 2r,

n∑
i=1

n∑
k=1

n∑
`=1

(Ŷ 2
ik − K̂ 2

ik)(Ŷ 2
i` − K̂ 2

i` )

D̂2
iiD̂kkD̂``

≤ (1 + p+ 2r)2

n2r2

n∑
i=1

n∑
k=1

n∑
`=1

(Ŷik − K̂ik)(Ŷi` − K̂i`)

D̂2
ii

.

By Lemma 2, with probability at least 1− n1−c1 , it holds for all i ∈ [n] that

∣∣∣∣∣
n∑
k=1

Ŷik − K̂ik

∣∣∣∣∣ ≤ βD̂ii,

97



CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and hence, since p, r ∈ [0, 1] and D̂ii ≥ nr,

n∑
i=1

n∑
k=1

n∑
`=1

(Ŷ 2
ik − K̂ 2

ik)(Ŷ 2
i` − K̂ 2

i` )

D̂2
iiD̂kkD̂``

≤ 16β2

nr2
.

Our assumption in (3.12) yields the desired result.

Lemma 5. ∑
i,j,k,`

p4KikKjkKi`Kj`

D̂iiD̂jjD̂kkD̂``

≤ p

r
.

Proof. Using the following facts:

(i) D̂ii ≥ rn for all i ∈ [n],

(ii) Kik ∈ [0, 1] for all i, j ∈ [n],

(iii)
∑n

k=1 pKik ≤ D̂ii for all i ∈ [n],

we have ∑
i,j,k,`

p4KikKjkKi`Kj`

D̂iiD̂jjD̂kkD̂``

≤ p

nr

∑
i,j,k

p2KikKjk

D̂iiD̂jjD̂kk

n∑
`=1

pKj`

≤ p

nr

∑
i,j,k

p2KikKjk

D̂iiD̂kk

≤ p

r
.

Lemma 6. For ease of notation, let

Xijk` =
(ŶikŶjk − K̂ikK̂jk)(Ŷi`Ŷj` − K̂i`K̂j`)

D̂iiD̂jjD̂kkD̂``

(3.13)
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and define T = {(i, j, k, `) : i, j, k, ` ∈ [n] distinct.}. There exists a constant C > 0

such that ∑
(i,j,k,`)∈T

VarXijk` ≤
C

n4r5
.

Proof. Since i, j, k, ` are distinct for each (i, j, k, `) ∈ T ,

VarXijk` = EX2
ijk`

= d−2
ijk`E

[
ŶikŶjk − K̂ikK̂jk

]2

E
[
Ŷi`Ŷj` − K̂i`K̂j`

]2

,

where dijk` = D̂iiD̂jjD̂kkD̂``. Expanding Ŷik = Yik + r and K̂ik = pKik + r and using

linearity of expectation, we have

E
[
ŶikŶjk − K̂ikK̂jk

]2

= E
[
YikYjk − p2KikKjk

+ r(Yik − pKik) + r(Yjk − pKjk)
]2

= VarYikYjk

+ r(r + 2pKjk) VarYik + r(r + 2pKik) VarYjk.

For ease of notation, define

Qijk = p2KikKjk + r(r + 2p)pKik + r(r + 2p)pKjk.

The Bhatia-Davis inequality (Bhatia and Davis 2000) states that if a random variable
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Z satisfies Pr[m ≤ Z ≤M ] = 1, then VarZ ≤ (EZ−m)(M −EZ). Since Kik ∈ [0, 1]

for all i, k ∈ [n], we have VarYikYjk ≤ p2KikKjk and VarYik ≤ pKik, and hence

E
[
ŶikŶjk − K̂ikK̂jk

]2

≤ Qijk.

Combining this with (3.13), we have

VarXijk` ≤ d−2
ijk`QijkQij`.

Summing, we have

∑
(i,j,k,`)∈T

VarXijk` ≤
∑

(i,j,k,`)∈T

d−2
ijk`QijkQij`

=
∑

(i,j,k,`)∈T

d−2
ijk`p

4KikKjkKi`Kj`

+ 4
∑

(i,j,k,`)∈T

d−2
ijk`r(r + 2p)p3KikKjkKj`

+ 2
∑

(i,j,k,`)∈T

d−2
ijk`r

2(r + 2p)2p2KikKjk

+ 2
∑

(i,j,k,`)∈T

d−2
ijk`r

2(r + 2p)2p2KikKj`

≤ p

n4r5
+ 4

(r + 2p)

n4r4
+ 4

(r + 2p)2

n4r4
,

where we have used D̂ii ≥ nr along with Lemma 5 to bound the first sum after the

equality, and the other sums are bounded using reasoning nearly identical to that in
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the proof of Lemma 5. The result then follows from r, p ∈ [0, 1].

Lemma 7. There exists a constant C > 0 such that

∑
{(i,j,k,`),(i′,j′,k′,`′)}∈(T2)

Cov (Xijk`, Xi′k′j′`′) ≤
C

n3r4
.

Proof. Recall that

Xijk` =
(ŶikŶjk − K̂ikK̂jk)(Ŷi`Ŷj` − K̂i`K̂j`)

D̂iiD̂jjD̂kkD̂``

.

Consider first the situation where (a, b, c, d) is a permutation of (i, j, k, `). Call this

permutation σ ∈ S4. σ is not the identity permutation, but σ may be such that

Xijk` = Xabcd as happens when, for example, i = a, j = b, k = d, ` = c. By symmetry,

it suffices to consider three cases. Case 1: {i, j} = {a, b}. In this case, we can

assume without loss of generality (by symmetry) that i = b, j = a, k = d and ` = c,

so that

EXijk`Xabcd =
E
[
(ŶikŶjk − K̂ikK̂jk)

2(Ŷi`Ŷj` − K̂i`K̂j`)
2
]

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

=
Var ŶikŶjk Var Ŷi`Ŷj`

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

≤ (1 + r)4K̂ikK̂jkK̂i`K̂j`

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

,

where the last inequality follows from the Bhatia-Davis inequality and the fact that

0 ≤ Ŷik ≤ 1 + r.

Case 2: {i, j} = {a, c}. Without loss of generality, assume that i = a, j = c,
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k = b and ` = d. We have

EXijk`Xabcd =
K̂ikK̂ijK̂j`K̂k` Var Ŷjk Var Ŷi`

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

≤ (1 + r)2K̂ikK̂j`K̂jkK̂i`

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

,

where the inequality follows from the Bhatia-Davis inequality and the fact that K̂ik ≤

1 + r.

Case 3: {i, j} = {c, d}. Without loss of generality, assume that i = c, j = d,

k = a and ` = b. Then

EXijk`Xabcd

=
EŶikŶj`(Ŷjk + Ŷi`)

2 − K̂ikK̂j`(K̂jk + K̂i`)
2

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

=
K̂ikK̂j`

(
Var Ŷjk + Var Ŷi`

)
D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

.

Letting (i, j, k, `) ∼ (a, b, c, d) denote the fact that (a, b, c, d) is a permutation of
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(i, j, k, `), we can bound the sum of the covariances under consideration by

∑
(i,j,k,`)∈T

∑
(a,b,c,d)∼(i,j,k,`)

Cov (Xijk`, Xabcd)

≤ 2C(1 + r)4
∑
i,j,k,`

K̂ikK̂jkK̂i`K̂j`

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

+ 2C(1 + r)
∑

(i,j,k,`)∈T

K̂ikK̂j`K̂jk

D̂2
iiD̂

2
jjD̂

2
kkD̂

2
``

≤ C(1 + r)5 + 2C(1 + r)

n4r5
,

(3.14)

Now, consider the situation where (i, j, k, `) is not a permutation of (a, b, c, d).

Clearly, if {i, j, k, `}∩{a, b, c, d} = ∅, then Cov(Xijk`, Xabcd) = 0. Indeed, Cov(Xijk`, Xabcd) 6=

0 requires that each term of the form (ŶikŶjk − K̂ikK̂jk) be dependent on one of the

other three such terms in XijklXabcd, since otherwise a term of the form E(ŶikŶjk −

K̂ikK̂jk) factors out and the covariance is zero. Indeed, only one other choice (up

to permutations of the indices) of (i, j, k, `) and (a, b, c, d) gives rise to a non-zero

covariance, namely EXijk`Xibk`. By symmetry, to handle the terms of this form, it

will suffice for us to bound

∑
(i,j,k,`)∈T

∑
b6∈{i,j,k,`}

Cov(Xijk`, Xibk`).

Using the fact that Var Ŷik ≤ K̂ik by the Bhatia-Davis inequality, and applying
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reasoning similar to that in Lemma 5,

∑
(i,j,k,`)∈T

∑
b 6∈{i,j,k,`}

Cov(Xijk`, Xibk`)

=
∑

(i,j,k,`)∈T

∑
b 6∈{i,j,k,`}

K̂jkK̂bkK̂j`K̂b` Var Ŷik Var Ŷi`

D̂2
iiD̂

2
kkD̂

2
``D̂jjD̂bb

≤
∑

(i,j,k,`)∈T

∑
b6∈{i,j,k,`}

K̂jkK̂bkK̂j`K̂b`K̂ikK̂i`

D̂2
iiD̂

2
kkD̂

2
``D̂jjD̂bb

≤ (1 + r)2

(nr)4

∑
i,j,k∈[n] distinct

K̂jkK̂ik

D̂2
kk

≤ (1 + r)2

n3r4
.

Combining this with (3.14) and noting that r > n−1 implies (n3r4)−1 ≥ (n4r5)−1,

we have our result.

Lemma 8. Let T = {(i, j, k, `) : i, j, k, ` ∈ [n] distinct.}. For each (i, j, k, `) ∈ T ,

define variable

Xijk` =
(ŶikŶjk − K̂ikK̂jk)(Ŷi`Ŷj` − K̂i`K̂j`)

D̂iiD̂jjD̂kkD̂``

.

There exist constants C,Cγ > 0 such that with probability at least 1− Cγ(γ4n3r4)−1,

∑
(i,j,k,`)∈T

(ŶikŶjk − K̂ikK̂jk)(Ŷi`Ŷj` − K̂i`K̂j`)

D̂iiD̂jjD̂kkD̂``

≤ Cγ2. (3.15)

Proof. By Chebyshev’s inequality,

Pr

 ∑
(i,j,k,`)∈T

Xijk` ≥ Cγ2

 ≤ Var
∑

(i,j,k,`)∈T Xijk`

C2γ4
.
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We have

Var
∑

(i,j,k,`)∈T

Xijk`

=
∑

(i,j,k,`)∈T

VarXijk`

+
∑

{(i,j,k,`),(i′,j′,k′,`′)}∈(T2)

Cov (Xijk`, Xi′k′j′`′) .

Lemma 6 bounds the first of these two sums by

∑
(i,j,k,`)∈T

VarXijk` ≤
C ′

n4r5
,

where C ′ > 0 is a constant, and Lemma 7 ensures that

∑
{(i,j,k,`),(i′,j′,k′,`′)}∈(T2)

Cov (Xijk`, Xi′k′j′`′) ≤
C ′′

n3r4

for some constant C ′′ > 0. Since (n4r5)−1 ≤ (n3r4)−1 for r > 1/n, we have

Pr

 ∑
(i,j,k,`)∈T

Xijk` ≥ Cγ2

 ≤ C ′ + C ′′

Cγ4n3r4
.

Choosing Cγ = (C ′ + C ′′)/C yields the result.

Lemma 9. Under the conditions of the above lemmata, there exist constants c, C > 0

such that for all suitably large n, with probability at least 1− 3n−c, we have

‖L̂ L̂ − (D̂−1/2Ŷ D̂−1/2)2‖F ≤ Cγ.
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Proof. Expanding the sum and recalling our earlier definition of T = {(i, j, k, `) :

i, j, k, ` ∈ [n] distinct.}, we have

‖L̂ L̂ − (D̂−1/2Ŷ D̂−1/2)2‖2
F

=
∑
i,j,k,`

(ŶikŶjk − K̂ikK̂jk)(Ŷi`Ŷj` − K̂i`K̂j`)

D̂iiD̂jjD̂kkD̂``

=
n∑
i=1

∑
k 6=i

(Ŷ 2
ik − K̂ 2

ik)2

D̂2
iiD̂

2
kk

+
n∑
i=1

∑
k 6=i

∑
`6=i

(Ŷ 2
ik − K̂ 2

ik)(Ŷ 2
i` − K̂ 2

i` )

D̂2
iiD̂kkD̂``

+
∑

(i,j,k,`)∈T

(ŶikŶjk − K̂ikK̂jk)(Ŷi`Ŷj` − K̂i`K̂j`)

D̂iiD̂jjD̂kkD̂``

.

Each of these three summations is bounded (with high probability) by Cγ2 by Lem-

mata 3, 4 and 8, respectively. Let constants c1, c2 > 0 be as defined in Lemma 2 and

Lemma 3 respectively, and choose c3 > 0 so that Cγ(γ
4n3r4)−1 ≤ n−c3 for suitably

large n, where Cγ is as defined in Lemma 8. By the union bound, with probability

at least 1− (n1−c1 + n−c2 + n−c3), all three sums are bounded at once, and the result

follows by taking c = min{c1 − 1, c2, c3},

Lemma 10. Suppose that β → 0 as n → ∞. Under the conditions of Lemma 2,

there exists a constant C > 0 such that with probability at least 1− n1−c1,

‖L̂L̂− (D̂−1/2Ŷ D̂−1/2)2‖F ≤ C
β

r1/2
.
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Proof. Under the conditions of Lemma 2, with probability at least 1− n1−c1 it holds

for all i ∈ [n] that |D̂ii −
∑n

k=1 Ŷik| ≤ βD̂ii. It follows that for a suitably chosen

constant C ′ > 0, for all i, j, k ∈ [n] we have

∣∣∣∣∣ 1

D̂
1/2
ii D̂

1/2
jj D̂kk

− 1

D̂1/2
ii D̂1/2

jj D̂kk

∣∣∣∣∣ ≤ C ′β

D̂1/2
ii D̂1/2

jj D̂kk

. (3.16)

To see why this is the case (here we are following the argument motivating Equation

A.6 in Rohe et al. (2011a)), note that when |D̂ii −
∑n

k=1 Ŷik| ≤ βD̂ii for all i ∈ [n],

we have

(1 + β)−2

D̂1/2
ii D̂1/2

jj D̂kk

≤ 1

D̂
1/2
ii D̂

1/2
jj D̂kk

≤ (1− β)−2

D̂1/2
ii D̂1/2

jj D̂kk

,

and Equation 3.16 follows, since β → 0 as n→∞, and thus

(1 + β)−2 ≥ β−2 − 1

(β−1 + 1)2
=
β−1 − 1

β−1 + 1
≥ 1− C ′′β,

(1− β)−2 = 1 +
2

β−1 − 1
+

1

(β−1 − 1)2
≤ 1 + C ′′β.

Using (3.16), we have

‖L̂L̂− (D̂−1/2Ŷ D̂−1/2)2‖2
F ≤ C ′β2

∑
i,j,k,`

ŶikŶjkŶi`Ŷj`

D̂iiD̂jjD̂kkD̂``

.

Under the same event, we have
∑n

k=1 Ŷik ≤ (1 + β)D̂ii for all i ∈ [n], and making
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repeated use of this and the facts that Ŷjk ≤ (1 + r), and D̂ii ≥ nr, it follows that

‖L̂L̂− (D̂−1/2Ŷ D̂−1/2)2‖2
F ≤ C ′β2

∑
i,j,k,`

ŶikŶjkŶi`Ŷj`

D̂iiD̂jjD̂kkD̂``

≤ β2(1 + r)(1 + β)3

r
.

The result follows since r and β are bounded above by 1.

To obtain our result in Theorem 3, take γ = C ′n−1/2r−1 log1/2 n and β = C ′′n−1/2r−1/2 log1/2 n

for suitably large constants C ′, C ′′ > 0. Note first that these choices of γ and β satisfy

all of the constraints of the lemmata required for Lemma 9, so long as r = ω(n−1 log n).

Further, note that β/r1/2 = Cγ for some constant C > 0, and hence Lemma 10 im-

plies that ‖L̂L̂−(D̂−1/2Ŷ D̂−1/2)2‖F ≤ Cγ with high probability. Combining Lemma 9

and Lemma 10 and applying the triangle inequality then yields Theorem 3.
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Chapter 4

Vertex Nomination

In this chapter, we consider a different approach to search problems of the type

discussed in Chapter 2. We have seen that the search collection can be represented as

a complete weighted graph G = (V,E) with weights given by similarity scores κ(x, y)

for all x, y ∈ V . In standard approaches to search, given a query q, we simply wish

to find the elements x ∈ V for which the similarity κ(q, x) is largest. However, this

approach fails to take into account all of the information present in graph G. Rather

than looking merely at κ(q, x) for all x ∈ V , we wish to perform a search that takes

into account all similarities {κ(x, y) : x, y ∈ V ∪{q}}. This task of finding the vertices

that are topologically most similar to q is the vertex nomination problem.

Given a graph in which a few vertices are deemed interesting a priori, the vertex

nomination task (Coppersmith 2014) is to order the remaining vertices into a nomi-

nation list such that there is a concentration of interesting vertices at the top of the
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list (see Appendix E for a review of the literature on the vertex nomination prob-

lem and related work). Below, we prove that maximum-likelihood (ML)-based vertex

nomination is consistent in the sense that the performance of the ML-based scheme

asymptotically matches that of the Bayes optimal scheme. We prove theorems of this

form both when model parameters are known and when they are unknown. Addition-

ally, we introduce and prove consistency of a related, more scalable restricted-focus

ML vertex nomination scheme. Finally, we incorporate vertex and edge features into

ML-based vertex nomination and briefly explore the empirical effectiveness of this

approach.

This chapter considers the vertex nomination problem as applied to random simple

graphs. In Chapter 5, we will see how to generalize the results to a problem that arises

in the context of similarity search and reranking problems. The material presented

in this chapter appeared originally in slightly altered form in Lyzinski et al. (2016b).

4.1 Introduction and Background

Graphs are a common data modality, useful for modeling complex relationships

between objects, with applications spanning fields as varied as biology (Jeong et al.

2001; Bullmore and Sporns 2009), sociology (Wasserman and Faust 1994), and com-

puter vision (Foggia et al. 2014; Kandel et al. 2007), to name a few. For example,

in neuroscience, vertices may be neurons and edges adjoin pairs of neurons that
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share a synapse (Bullmore and Sporns 2009); in social networks, vertices may cor-

respond to people and edges to friendships between them (Carrington et al. 2005;

Yang and Leskovec 2015); in computer vision, vertices may represent pixels in an im-

age and edges may represent spatial proximity or multi-resolution mappings (Kandel

et al. 2007). In many useful networks, vertices with similar attributes form densely-

connected communities compared to vertices with highly disparate attributes, and

uncovering these communities is an important step in understanding the structure of

the network. There is an extensive literature devoted to uncovering this community

structure in network data, including methods based on maximum modularity (New-

man and Girvan 2004; Newman 2006b), spectral partitioning algorithms (von Luxburg

2007; Rohe et al. 2011b; Sussman et al. 2012; Lyzinski et al. 2014b), and likelihood-

based methods (Bickel and Chen 2009), among others.

In the setting of vertex nomination, one community in the network is of particular

interest, and the inference task is to order the vertices into a nomination list with

those vertices from the community of interest concentrating at the top of the list. Re-

fer to Appendix E for a more thorough discussion of the vertex nomination problem.

Vertex nomination is a semi-supervised inference task, with example vertices from

the community of interest—and, ideally, also examples not from the community of

interest—being leveraged in order to create a nomination list. In this way, the vertex

nomination problem is similar to the problem faced by personalized recommender

systems (see, for example, Resnick and Varian 1997; Ricci et al. 2011), where, given
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a training list of objects of interest, the goal is to arrange the remaining objects into

a recommendation list with “interesting” objects concentrated at the top of the list.

The main difference between the two inference tasks is that in vertex nomination the

features of the data are encoded into the topology of a network, rather than being

observed directly as features (though see Section 4.5 for the case where vertices are an-

notated with additional information in the form of features). A more thorough review

of the vertex nomination literature and related work can be found in Appendix E.

In this chapter, we prove that the maximum-likelihood vertex nomination scheme

of Fishkind et al. (2015) is consistent (see Definition 2) under mild model assumptions

on the underlying stochastic block model (Theorem 4). In the process, we propose a

new, efficiently exactly solvable likelihood-based nomination scheme, the restricted-

focus maximum-likelihood vertex-nomination scheme, LML
R , and prove the analogous

consistency result (Theorem 5). In addition, under mild model assumptions, we

prove that both schemes maintain their consistency when the stochastic block model

parameters are unknown and are estimated using the seed vertices (Theorems 6 and

7). In both cases, we show that consistency is possible even when the seeds are an

asymptotically vanishing portion of the graph. Lastly, we show how both schemes can

be easily modified to incorporate edge weights and vertex features (Section 4.5), before

demonstrating the practical effect of our theoretical results on real and synthetic data

(Section 4.6) and closing with a brief discussion (Section 4.7).

Before proceeding, we establish notation for this chapter and its sequel, in which
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we will use many of the ideas developed here. We say that a sequence of random

variables (Xn)∞n=1 converges almost surely to random variable X, written Xn → X

a.s., if P[limn→∞Xn = X] = 1. We say a sequence of events (An)∞n=1 occurs almost

always almost surely (abbreviated a.a.a.s.) if with probability 1, Acn occurs for at

most finitely many n. By the Borel-Cantelli lemma,
∑∞

n=1 P[Acn] <∞ implies (An)∞n=1

a.a.a.s. We write Gn to denote the set of all (possibly weighted) graphs on n vertices.

Throughout, without loss of generality, we will assume that the vertex set is given by

V = {1, 2, . . . , n}. For a positive integer K, we will often use [K] to denote the set

{1, 2, . . . , K}. For a set V , we will use
(
V
2

)
to denote the set of all pairs of distinct

elements of V . That is,
(
V
2

)
= {{u, v} : u, v ∈ V, u 6= v}. For a function f with

domain V , we write f|U to denote the restriction of f to the set U ⊂ V .

4.1.1 Background

Stochastic block model (SBM; Holland et al. 1983) random graphs offer a theoret-

ically tractable model for graphs with latent community structure (Rohe et al. 2011b;

Sussman et al. 2012; Bickel and Chen 2009), and have been widely used in the litera-

ture to model community structure in real networks (Airoldi et al. 2008; Karrer and

Newman 2011). While stochastic block models can be too simplistic to capture the

eccentricities of many real graphs, they have proven to be a useful, tractable surrogate

for more complicated networks (Airoldi et al. 2013; Olhede and Wolfe 2014).

Definition 1. Let K and n be positive integers and let ~n = (n1, n2, . . . , nK)> ∈
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RK be a vector of positive integers with
∑

k nk = n. Let b : [n] → [K] and let

Λ ∈ [0, 1]K×K be symmetric. A Gn-valued random graph G is an instantiation of a

(K,~n, b,Λ) conditional Stochastic Block Model, written G ∼ SBM(K,~n, b,Λ), if

i. The vertex set V is partitioned into K blocks, V1, V2, . . . , VK of cardinalities

|Vk| = nk for k = 1, 2, . . . , K;

ii. The block membership function b : V → [K] is such that for each v ∈ V ,

v ∈ Vb(v);

iii. The symmetric block communication matrix Λ ∈ [0, 1]K×K is such that for each

{v, u} ∈
(
V
2

)
, there is an edge between vertices u and v with probability Λb(u),b(v),

independently of all other edges.

Without loss of generality, let V1 be the block of interest for vertex nomination.

For each k ∈ [K], we further decompose Vk into Vk = Sk∪Uk (with |Sk| = mk), where

the vertices in S := ∪kSk have their block membership observed a priori. We call the

vertices in S seed vertices, and let m = |S|. We will denote the set of nonseed vertices

by U = ∪kUk, and for all k ∈ [K], let uk := nk −mk = |Uk| and n −m = u = |U |.

Throughout this chapter, we assume that the seed vertices S are chosen uniformly

at random from all possible subsets of V of size m. The task in vertex nomination

is to leverage the information contained in the seed vertices to produce a nomination

list L : U → [u] (i.e., an ordering of the vertices in U) such that the vertices in U1

concentrate at the top of the list. We note that, strictly speaking, a nomination list
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L is also a function of the observed graph G, a fact that we suppress for ease of

notation. We measure the efficacy of a nomination scheme via average precision

AP(L) =
1

u1

u1∑
i=1

∑i
j=1 I{L−1(j) ∈ U1}

i
. (4.1)

AP ranges from 0 to 1, with a higher value indicating a more effective nomination

scheme: indeed, AP(L) = 1 indicates that the first u1 vertices in the nomination

list are all from the block of interest, and AP(L ) = 0 indicates that none of the u1

top-ranked vertices are from the block of interest. Letting Hk =
∑k

j=1 1/j denote the

k-th harmonic number, with the convention that H0 = 0, we can rearrange (4.1) as

AP(L) =

u1∑
i=1

Hu1 −Hi−1

u1

I{L−1(i) ∈ U1},

from which we see that the average precision is simply a convex combination of the

indicators of correctness in the rank list, in which correctly placing an interesting

vertex higher in the nomination list (i.e., with rank close to 1) is rewarded more than

correctly placing an interesting vertex lower in the nomination list.

In Fishkind et al. (2015), three vertex nomination schemes were presented in the

context of stochastic block model random graphs: the canonical vertex nomination

scheme, LC, which is suitable for small graphs (tens of vertices); the maximum-

likelihood vertex-nomination scheme, LML, which is suitable for small to medium

graphs (up to thousands of vertices); and the spectral partitioning vertex nomination
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scheme, LSP, which is suitable for medium to very large graphs (up to tens of millions

of vertices). In the stochastic block model setting, the canonical vertex nomination

scheme is provably optimal: under mild model assumptions, EAP(LC) ≥ EAP(L)

for any vertex nomination scheme L (Fishkind et al. 2015), where the expectation is

with respect to a Gm+n-valued random graph G and the selection of the seed vertices.

Thus, the canonical method is the vertex nomination analogue of the Bayes classifier,

and this motivates the following definition:

Definition 2. Let G ∼ SBM(K,~n, b,Λ). With notation as above, a vertex nomination

scheme L is consistent if

lim
n→∞

|EAP(LC)− EAP(L)| = 0.

In our proofs below, where we establish the consistency of two nomination schemes,

we prove a stronger fact, namely that AP(L ) = 1 a.a.a.s. We prefer the definition of

consistency given in Definition 2 since it allows us to speak about the best possible

nomination scheme even when the model is such that limn→∞ EAP(LC) < 1.

In Fishkind et al. (2015), it was proven that under mild assumptions on the

stochastic block model underlying G, we have

lim
n→∞

EAP(LSP) = 1,

from which the consistency of LSP follows immediately. The spectral nomination
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scheme LSP proceeds by first K-means clustering the adjacency spectral embedding

(Sussman et al. 2012) of G, and then nominating vertices based on their distance

to the cluster of interest. Consistency of LSP is an immediate consequence of the

fact that, under mild model assumptions on the underlying stochastic block model,

K-means clustering of the adjacency spectral embedding of G perfectly clusters the

vertices of G a.a.a.s. (Lyzinski et al. 2014b).

Bickel and Chen (2009) proved that maximum-likelihood estimation provides con-

sistent estimates of the model parameters in a more common variant of the conditional

stochastic block model of Definition 1, namely, in the stochastic block model with

random block assignments:

Definition 3. Let K,n and Λ be as above. Let ~π = π1, π2, . . . , πK)> ∈ ∆K−1 be a

probability vector over K outcomes and let τ : V → [K] be a random function. A

Gn-valued random graph G is an instantiation of a (K,~π, τ,Λ) Stochastic Block Model

with random block assignments, written G ∼ SBM(K,~π, τ,Λ), if

i. For each vertex v ∈ V and block k ∈ [K], independently of all other vertices,

the block assignment function τ : V → [K] assigns v to block k with probability

πk (i.e., P[τ(v) = k] = πk);

ii. The symmetric block communication matrix Λ ∈ [0, 1]K×K is such that, condi-

tioned on τ , for each {v, u} ∈
(
V
2

)
there is an edge between vertices u and v with

probability Λτ(u),τ(v), independently of all other edges.
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A consequence of the result of Bickel and Chen (2009) is that the ML estimate of

the block assignment function perfectly clusters the vertices a.a.a.s. in the setting

where G ∼ SBM(K,~π, τ,Λ). This bears noting, as our maximum-likelihood vertex-

nomination schemes LML and LML
R (defined below in Section 4.2) proceed by first

constructing a maximum-likelihood estimate of the block membership function b,

then ranking vertices based on a measure of model misspecification. Extending the

results from Bickel and Chen (2009) to our present framework—where we consider Λ

and ~n to be known (or errorfully estimated via seeded vertices) rather than parameters

to be optimized over in the likelihood function as done in Bickel and Chen (2009)—is

not immediate.

We note the recent result by Newman (2016), which shows the equivalence of

maximum-likelihood and maximum-modularity methods in a special case of the stochas-

tic block model when Λ is known. Our results, along with this recent result, immedi-

ately imply a consistent maximum-modularity-based vertex-nomination scheme under

that special-case model.

4.2 Graph Matching and Maximum Like-

lihood Estimation

Consider G ∼ SBM(K,~n, b,Λ) with associated adjacency matrix A, and, as above,

denote the set of seed vertices by S = ∪kSk. Define the set of feasible block assignment
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functions

B = B(~n, b, S)

:= {φ : V → [K] s.t. for all k ∈ [K], |φ−1(k)| = nk, and φ(i) = b(i) for all i ∈ S}.

The ML estimator of b ∈ B is any member of the set of functions

b̂ = arg max
φ∈B

∏
{i,j}∈(V2)

Λ
Ai,j
φ(i),φ(j)(1− Λφ(i),φ(j))

1−Ai,j

= arg max
φ∈B

∑
{i,j}∈(V2)

Ai,j log

(
Λφ(i),φ(j)

1− Λφ(i),φ(j)

)

= arg max
φ∈B

∑
{i,j}∈(U2)

Ai,j log

(
Λφ(i),φ(j)

1− Λφ(i),φ(j)

)
+

∑
(i,j)∈S×U

Ai,j log

(
Λb(i),φ(j)

1− Λb(i),φ(j)

)
,

(4.2)

where the second equality follows from independence of the edges and splitting the

edges in the sum according to whether or not they are incident to a seed vertex. We

can reformulate (4.2) as a graph matching problem by identifying φ with a permuta-

tion matrix P :

Definition 4. Let G1 and G2 be two n-vertex graphs with respective adjacency ma-

trices A and B. The Graph Matching Problem for aligning G1 and G2 is

min
P∈Πn

‖AP − PB‖F ,
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where Πn is defined to be the set of all n× n permutation matrices.

The graph matching problem and its relation to vertex nomination is discussed

in Appendix E, and we refer the reader there for further details. Incorporating seed

vertices (i.e., vertices whose correspondence across G1 and G2 is known a priori) into

the graph matching problem is immediate (Fishkind et al. 2012). Letting the seed

vertices be (without loss of generality) S = {1, 2, . . . ,m} in both graphs, the seeded

graph matching (SGM) problem is

min
P∈Πu

‖A(Im ⊕ P )− (Im ⊕ P )B‖F , (4.3)

where

Im ⊕ P =

Im 0

0 P

 .
Setting B ∈ Rn×n to be the log-odds matrix

Bi,j := log

(
Λb(i),b(j)

1− Λb(i),b(j)

)
, (4.4)

observe that the optimization problem in Equation (4.2) is equivalent to that in (4.3)

if we view B as encoding a weighted graph. Hence, we can apply known graph

matching algorithms to approximately find b̂.
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Decomposing A and B as

A =


m u

m A(1,1) A(1,2)

u A(2,1) A(2,2))

 B =


m u

m B(1,1) B(1,2)

u B(2,1) B(2,2)


and using the fact that P ∈ Πn is unitary, the seeded graph matching problem is

equivalent (i.e., has the same minimizer) to

min
P∈Πu

− tr
(
A(2,2)P (B(2,2))>P>

)
− tr

(
(A(1,2))>B(1,2)P>

)
− tr

(
A(2,1)(B(2,1))>P>

)
.

Thus, we can recast (4.2) as a seeded graph matching problem so that finding

b̂ = arg max
φ∈B

∑
{i,j}∈(U2)

Ai,j log

(
Λφ(i),φ(j)

1− Λφ(i),φ(j)

)
+

∑
(i,j)∈S×U

Ai,j log

(
Λb(i),φ(j)

1− Λb(i),φ(j)

)

is equivalent to finding

P̂ = arg min
P∈Πu

−1

2
tr
(
A(2,2)P (B(2,2))>P>

)
− tr

(
(A(1,2))>B(1,2)P>

)
, (4.5)

as we shall explain below.

With B defined as in (4.4), we define

Q =
{
Q ∈ Πu s.t. (Im ⊕Q)B(Im ⊕Q)> = B

}
.
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Define an equivalence relation ∼ on Πu via P1 ∼ P2 iff there exists a Q ∈ Q such that

P1 = P2Q; i.e.,

(Im ⊕ P1)B(Im ⊕ P1)> = (Im ⊕ P2Q)B(Im ⊕ P2Q)> = (Im ⊕ P2)B(Im ⊕ P2)>.

Let P̂ / ∼ denote the set of equivalence classes of P̂ under equivalence relation ∼.

Solving (4.2) is equivalent to solving (4.5) in that there is a one-to-one correspondence

between b̂ and P̂ / ∼: for each φ ∈ b̂ there is a unique P ∈ P̂ / ∼ (with associated

permutation σ) such that φ|U = b|U ◦σ; and for each P ∈ P̂ / ∼ (with the permutation

associated with Im ⊕ P given by σ), it holds that b ◦ σ ∈ b̂.

4.2.1 The LML Vertex Nomination Scheme

The maximum-likelihood vertex-nomination scheme proceeds as follows. First, the

SGM algorithm (Fishkind et al. 2012; Lyzinski et al. 2014a) is used to approximately

find an element of P̂ , which we shall denote by P . Let the corresponding element of

b̂ be denoted by φ. For any i, j ∈ V such that φ(i) 6= φ(j), define φi↔j ∈ B as

φi↔j(v) =



φ(i) if v = j,

φ(j) if v = i,

φ(v) if v 6= i, j;
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i.e., φi↔j agrees with φ except that i and j have their block memberships from φ

switched in φi↔j. For i ∈ U such that φ(i) = 1, define

η(i) :=

 ∏
j∈U s.t.
φ(j)6=1

`(φi↔j, G)

`(φ,G)


1

u−u1

,

where, for each ψ ∈ B, the likelihood ` is given by

`(ψ,G) =
∏

{i,j}∈(U2)

Λ
Ai,j
ψ(i),ψ(j)(1− Λψ(i),ψ(j))

1−Ai,j
∏

(i,j)∈S×U

Λ
Ai,j
b(i),ψ(j)(1− Λb(i),ψ(j))

1−Ai,j .

A low/high value of η(i) is a measure of our confidence that i is/is not in the block

of interest. For i ∈ U such that φ(i) 6= 1, define

ξ(i) :=

 ∏
j∈U s.t.
φ(j)=1

`(φi↔j, G)

`(φ,G)


1
u1

.

A low/high value of ξ(i) is a measure of our confidence that i is/is not in the block

of interest. We are now ready to define the maximum-likelihood nomination scheme
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LML:

(
LML

)−1
(1) ∈ arg min{η(v) : φ(v) = 1}(

LML
)−1

(2) ∈ arg min
{
η(v) : v ∈ U \

{
(LML)−1(1)

}
, φ(v) = 1

}
...(

LML
)−1

(u1) ∈ arg min
{
η(v) : v ∈ U \

{
(LML)−1(i)

}u1−1

i=1
, φ(v) = 1

}
(
LML

)−1
(u1 + 1) ∈ arg max {ξ(v) : φ(v) 6= 1}(

LML
)−1

(u1 + 2) ∈ arg max
{
ξ(v) : v ∈ U \

{
(LML)−1(u1 + 1)

}
, φ(v) 6= 1

}
...(

LML
)−1

(u) ∈ arg max
{
ξ(v) : v ∈ U \

{
(LML)−1(i)

}u−1

i=u1+1
, φ(v) 6= 1

}

Note that in the event that an argmin (or argmax) above contains more than one ele-

ment, the order in which these elements is nominated should be taken to be uniformly

random.

Remark 6. In the event that Λ is unknown a priori, we can use the block member-

ships of the seeds S (assumed to be chosen uniformly at random from V ) to estimate

the edge probability matrix Λ as

Λ̂k,` =
|{{i, j} ∈ E s.t. i ∈ Sk, j ∈ S`}|

mkm`

for k 6= `,
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and

Λ̂k,k =
|{{i, j} ∈ E s.t. i ∈ Sk, j ∈ Sk}|(

mk
2

) .

The plug-in estimate B̂ of B, given by

B̂i,j := log

(
Λ̂b(i),b(j)

1− Λ̂b(i),b(j)

)
,

can then be used in place of B in Eq. (4.5). If, in addition, ~n is unknown, we can

estimate the block sizes nk as

n̂k =
mkn

m
,

for each k ∈ [K], and these estimates can be used to determine the block sizes in B̂.

4.2.2 The LML
R Vertex Nomination Scheme

Graph matching is a computationally difficult problem, and there are no known

polynomial time algorithms for solving the general graph matching problem for simple

graphs. Furthermore, if the graphs are allowed to be weighted, directed, and loopy,

then graph matching is equivalent to the NP-hard quadratic assignment problem.

While there are numerous efficient, approximate graph matching algorithms (see,

for example, Vogelstein et al. 2015; Fishkind et al. 2012; Zaslavskiy et al. 2009b;

Fiori et al. 2013, and the references therein), these algorithms often lack performance

guarantees.
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Inspired by the restricted-focus seeded graph matching problem considered in

Lyzinski et al. (2014a), we now define the computationally tractable restricted-focus

maximum-likelihood nomination scheme LML
R . Rather than attempting to quickly

approximate a solution to the full graph matching problem as in Vogelstein et al.

(2015); Fishkind et al. (2012); Zaslavskiy et al. (2009b); Fiori et al. (2013), this

approach simplifies the problem by ignoring the edges between unseeded vertices. An

analogous restriction for matching simple graphs was introduced in Lyzinski et al.

(2014a). We begin by considering the graph matching problem in Eq. (4.5). The

objective function

−1

2
tr
(
A(2,2)P (B(2,2))>P>

)
− tr

(
(A(1,2))>B(1,2)P>

)

consists of two terms: −1
2

tr
(
A(2,2)P (B(2,2))>P>

)
, which seeks to align the induced

subgraphs of the nonseed vertices; and − tr
(
(A(1,2))>B(1,2)P>

)
, which seeks to align

the induced bipartite subgraphs between the seed and nonseed vertices. While the

graph matching objective function, Eq. (4.5), is quadratic in P , restricting our focus

to the second term in Eq. (4.5) yields the following linear assignment problem

P̃ = arg min
P∈Πu

− tr
(
(A(1,2))>B(1,2)P>

)
, (4.6)

which can be efficiently and exactly solved in O(u3) time with the Hungarian algo-

rithm (Kuhn 1955; Jonker and Volgenant 1987). We note that, exactly as was the
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case of P̂ and b̂, finding P̃ is equivalent to finding

b̃ = arg max
φ∈B

∑
(i,j)∈S×U

Ai,j log

(
Λb(i),φ(j)

1− Λb(i),φ(j)

)
,

in that there is a one-to-one correspondence between b̃ and P̃ / ∼.

The LML
R scheme proceeds as follows. First, the linear assignment problem,

Eq. (4.6), is exactly solved using, for example, the Hungarian algorithm (Kuhn 1955)

or the path augmenting algorithm of Jonker and Volgenant (1987), yielding P ∈ P̃ .

Let the corresponding element of b̃ be denoted by φ. For i ∈ U such that φ(i) = 1,

define

η̃(i) :=

 ∏
j∈U s.t.
φ(j)6=1

`R(φi↔j, G)

`R(φ,G)


1

u−u1

,

where, for each ψ ∈ B, the restricted likelihood `R is defined via

`R(ψ,G) =
∏

(i,j)∈S×U

Λ
Ai,j
b(i),ψ(j)(1− Λb(i),ψ(j))

1−Ai,j .

As with LML, a low/high value of η̃(i) is a measure of our confidence that i is/is not

in the block of interest. For i ∈ U such that φ(i) 6= 1, define

ξ̃(i) :=

 ∏
j∈U s.t.
φ(j)=1

`R(φi↔j, G)

`R(φ,G)


1
u1

.
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As before, a low/high value of ξ̃(i) is a measure of our confidence that i is/is not in

the block of interest. We are now ready to define LML
R :

(
LML
R

)−1
(1) ∈ arg min{η̃(v) : φ(v) = 1}(

LML
R

)−1
(2) ∈ arg min

{
η̃(v) : v ∈ U \

{
(LML

R )−1(1)
}
, φ(v) = 1

}
...(

LML
R

)−1
(u1) ∈ arg min

{
η̃(v) : v ∈ U \

{
(LML

R )−1(i)
}u1−1

i=1
, φ(v) = 1

}
(
LML
R

)−1
(u1 + 1) ∈ arg max

{
ξ̃(v) : φ(v) 6= 1

}
(
LML
R

)−1
(u1 + 2) ∈ arg max

{
ξ̃(v) : v ∈ U \

{
(LML

R )−1(u1 + 1)
}
, φ(v) 6= 1

}
...(

LML
R

)−1
(u) ∈ arg max

{
ξ̃(v) : v ∈ U \

{
(LML

R )−1(i)
}u−1

i=u1+1
, φ(v) 6= 1

}

Note that, as before, in the event that the argmin (or argmax) in the definition of

LML
R contains more than one element above, the order in which these elements are

nominated should be taken to be uniformly random.

Unlike LML, the restricted focus scheme LML
R is feasible even for comparatively

large graphs (up to thousands of nodes, in our experience). However, we will see

in Section 4.6 that the extra information available to LML—the adjacency structure

among the nonseed vertices—leads to superior precision in the LML nomination lists

as compared to LML
R . We next turn our attention to proving the consistency of the

LML and LML
R schemes.
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4.3 Consistency of LML and LML
R

In this section, we state theorems ensuring the consistency of the vertex nomi-

nation schemes LML (Theorem 4) and LML
R (Theorem 5). For the sake of expository

continuity, proofs are given in Section 4.8. We note here that in these Theorems,

the parameters of the underlying block model are assumed to be known a priori. In

Section 4.4, we prove the consistency of LML and LML
R in the setting where the model

parameters are unknown and must be estimated, as in Remark 6.

Let G ∼ SBM(K,~n, b,Λ) with associated adjacency matrix A, and let B be defined

as in (4.4). For each P ∈ Πu (with associated permutation σ) and k, ` ∈ [K], define

εk,` = εk,`(P ) = |{v ∈ Uk s.t. σ(v) ∈ U`}|

to be the number of vertices in Uk mapped to U` by Im ⊕ P , and for each k ∈ [K]

define

εk,•(P ) := εk,• =
∑
`6=k

εk,`.

Before stating and proving the consistency of LML, we first establish some necessary

notation. Note that in the definitions and theorems presented next, all values im-

plicitly depend on n, as Λ = Λn is allowed to vary in n. Let L be the set of distinct
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entries of Λ, and define

α = min
{k,`} s.t. k 6=`

|Λk,k − Λk,`| β = min
{k,`} s.t. k 6=`

|Bk,k −Bk,`| c = max
i,j,k,`
|Bi,j −Bk,`|,

(4.7)

γ = min
x,y∈L

|x− y|, κ = min
x,y∈L

∣∣∣∣log

(
x

1− x

)
− log

(
y

1− y

)∣∣∣∣ . (4.8)

Theorem 4. Let G ∼ SBM(K,~n, b,Λ) and assume that

i. K = o(
√
n);

ii. Λ ∈ [0, 1]K×K is such that for all k, ` ∈ [K] with k 6= `, Λk,k 6= Λk,`;

iii. For each k ∈ [K], uk = ω(
√
n), and mk = ω(log uk);

iv. c2

αβκγ
= Θ(1).

Then it holds that limn→∞ EAP(LML) = 1, and LML is a consistent nomination

scheme.

A proof of Theorem 4 is given in Section 4.8.

Remark 7. There are numerous assumptions akin to those in Theorem 4 under

which we can show that LML is consistent. Essentially, we need to ensure that if we

define P ′ = {P ∈ Πu : ε1,•(P ) = Θ(u1)}, then P (∃ P ∈ P ′ s.t. XP ≤ 0) is summably

small, from which it follows that ε1,• = o(u1) with high probability, which is enough

to ensure the desired consistency of LML.
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Consistency of LML
R holds under similar assumptions.

Theorem 5. Let G ∼ SBM(K,~n, b,Λ). Under the following assumptions

i. K = Θ(1);

ii. Λ ∈ [0, 1]K×K is such that for all k, ` ∈ [K] with k 6= `, Λk,k 6= Λk,`;

iii. For each k ∈ [K], uk = ω(
√
n), and mk = ω(log uk);

iv. c2

αβκγ
= Θ(1);

it holds that limn→∞ EAP(LML) = 1, and LML is a consistent nomination scheme.

A proof of this Theorem can be found in Section 4.8.

4.4 Consistency of LML and LML
R When the

Model Parameters are Unknown

If Λ is unknown a priori, then the seeds can be used to estimate Λ as Λ̂, and

ni as n̂ for each i ∈ [K]. In this section, we will prove analogues of the consistency

Theorems 4 and 5 in the case where Λ and ~n are estimated using seeds. In Theorems 6

and 7 below, we prove that under mild model assumptions, both LML and LML
R are

consistent vertex nomination schemes, even when the seed vertices form a vanishing

fraction of the graph.
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We now state the consistency result analogous to Theorem 4, this time for the

case where we estimate Λ and ~n. The proof can be found in Section 4.8.

Theorem 6. Let Λ ∈ RK×K be a fixed, symmetric, block probability matrix satisfying

i. K is fixed in n;

ii. Λ ∈ [0, 1]K×K is such that for all k, ` ∈ [K] with k 6= `, Λk,k 6= Λk,`;

iii. For each k ∈ [K], nk = Θ(n) and mk = ω(n2/3 log(n));

iv. α and γ defined as in (4.7) and (4.8) are fixed in n.

Suppose that the model parameters of G ∼ (K,~n, b,Λ) are estimated as in Remark 6

yielding log-odds matrix estimate B̂ and estimated block sizes n̂ = (n̂1, n̂2, . . . , n̂K)T .

If LML is run on A and B̂ using the block sizes given by n̂, then under the above

assumptions it holds that limn→∞ EAP(LML) = 1, and LML is a consistent nomination

scheme.

We now state the analogous consistency result to Theorem 5 when we estimate Λ

and ~n. The proof is given in Section 4.8.

Theorem 7. Let Λ ∈ RK×K be a fixed, symmetric, block probability matrix satisfying

i. K is fixed in n;

ii. Λ ∈ [0, 1]K×K is such that for all k, ` ∈ [K] with k 6= `, Λk,k 6= Λk,`;

iii. For each k ∈ [K] s.t. k 6= 1, nk = Θ(n) and mk = ω(n2/3 log(n));
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iv. n1 = Θ(n) and m1 = ω(n4/5);

v. α and γ defined at (4.7) and (4.8) are fixed in n.

Suppose that the model parameters of G ∼ (K,~n, b,Λ) are estimated as in Remark

6 yielding B̂ and estimated block sizes n̂ = (n̂1, n̂2, . . . , n̂K)T . If LML is run on A

and B̂ using block sizes given by n̂, then under the above assumptions it holds that

limn→∞ EAP(LML) = 1 and LML is a consistent nomination scheme.

The two preceding theorems imply that vertex nomination is possible even when

the number of seeds is a vanishing fraction of the vertices in the graph. Indeed, we

find that in practice, accurate nomination is possible even with just a handful of seed

vertices. See the experiments presented in Section 4.6.

4.5 Model Generalizations

Network data rarely appears in isolation. In the vast majority of use cases, the

observed graph is richly annotated with information about the vertices and edges

of the network. For example, in a social network, in addition to information about

which users are friends, we may have vertex-level information in the form of age,

education level, hobbies, etc. Similarly, in many networks, not all edges are created

equal. Edge weights may encode the strength of a relation, such as the volume of

trade between two countries. In this section, we sketch how the LML and LML
R vertex

nomination schemes can be extended to such annotated networks by incorporating
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edge weights and vertex features. To wit, all of the theorems proven above translate

mutatis mutandis to the setting in which G is a drawn from a bounded canonical

exponential family stochastic block model. Consider a single parameter exponential

family of distributions whose density can be expressed in canonical form as

f(x|θ) = h(x)eT (x)θ−A(θ).

We will further assume that h(x) has bounded support. We define

Definition 5. A Gn-valued random graph G is an instantiation of a (K,~n, b,Θ)

bounded, canonical exponential family stochastic block model, written G ∼ ExpSBM(K,~n, b,Θ),

if

i. The vertex set V is partitioned into K blocks, V1, V2, . . . , VK with sizes |Vk| = nk

for k = 1, 2, . . . , K;

ii. The block membership function b : V → [K] is such that for each v ∈ V ,

v ∈ Vb(v);

iii. The symmetric block parameter matrix Θ = [θk,`] ∈ RK×K is such that the

{i, j} ∈
(
V
2

)
, Ai,j (= Aj,i) are independent, distributed according to the density

fAi,j(x|θb(i),b(j)) = h(x)eT (x)θb(i),b(j)−A(θb(i),b(j)).

Note that the exponential family density is usually written as h(x)e−xθ−A(θ), where
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A(·) is the log-normalization function. We have made the notational substitution to

avoid confusion with the adjacency matrix A. If G ∼ ExpSBM(K,~n, b,Θ), analogues

to Theorems 4, 5, 6 and 7 follow mutatis mutandis if we use seeded graph matching

to match Ã = [Ãi,j] := [T (Ai,j)] to B = [Bi,j] := [θb(i),b(j)]; i.e., under analogous

model assumptions, LML and LML
R are both consistent vertex nomination schemes

when the model parameters are known or estimated via seeds. The key property

being exploited here is that E(T (X)) is a nondecreasing function of θ. We expect

that results analogous to Theorems 4, 5, 6 and 7 can be shown to hold for more

general weight distributions as well, but we do not pursue this further here.

Incorporating vertex features into LML and LML
R is immediate. Suppose that each

vertex v ∈ V is accompanied by a d-dimensional feature vector Xv ∈ Rd. The

features could encode additional information about the community structure of the

underlying network; for example, if b(v) = k then perhaps Xv ∼ Norm(µk,Σk) where

the parameters of the normal distribution vary across blocks and are constant within

blocks. This setup, in which vertices are “annotated” or “attributed” with additional

information, is quite common. Indeed, in almost all use cases, some auxiliary infor-

mation about the graph is available, and methods that can leverage this auxiliary

information are crucial. See, for example, Yang et al. (2013); Zhang et al. (2015);

Newman and Clauset (2016); Franke and Wolfe (2016) and citations therein. We

model vertex features as follows. Conditioning on b(v) = k, the feature associated to

v is drawn, independently of A and of all other features Xu, from a distribution with
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density fb(v). Define the feature matrix X via

X =


d

m X(m)

u X(u)

,

where X(m) represents the features of the seed vertices in S, and X(u) the features

of the nonseed vertices in U . For each block k ∈ [K], let f̂k be an estimate of the

density fi, and create matrix F ∈ Rm+u given by

F =



u1 f̂1(X1) f̂1(X2) · · · f̂1(Xu)

u2 f̂2(X1) f̂2(X2) · · · f̂2(Xu)

...
...

...

uK f̂K(X1) f̂K(X2) · · · f̂K(Xu)


.

Then we can incorporate the feature density into the seeded graph matching problem

in (4.5) by adding a linear factor to the quadratic assignment problem:

P̂ = arg min
P∈Πu

−1

2
tr
(
A(2,2)P (B(2,2))>P>

)
− tr

(
(A(1,2))>B(1,2)P>

)
− λ trFP>. (4.9)

The factor λ ∈ R+ allows us to weight the features encapsulated in X versus the

information encoded into the network topology of G.
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Vertex nomination proceeds as follows. First, the SGM algorithm of Fishkind

et al. (2012); Lyzinski et al. (2014a) is used to approximately find an element of

P̂ in Eq. (4.9), which we shall denote by P . Let the block membership function

corresponding to P be denoted φ. For i ∈ U such that φ(i) = 1, define

ηF (i) :=

 ∏
j∈U s.t.
φ(j) 6=1

`F (φi↔j, G)

`F (φ,G)


1

u−u1

,

where, for each ψ ∈ B, the likelihood `F is given by

`F (ψ,G) =
∏

{i,j}∈(U2)

Λ
Ai,j
ψ(i),ψ(j)(1− Λψ(i),ψ(j))

1−Ai,j

·
∏

(i,j)∈S×U

Λ
Ai,j
b(i),ψ(j)(1− Λb(i),ψ(j))

1−Ai,j
∏
i∈U

f̂b(i)(Xi),

where, for k ∈ [K], f̂k(·) is the estimated density of the k-th block features. Note that

here we assume that the feature densities must be estimated, even when the matrix

Λ is known. A low/high value of ηF (i) is a measure of our confidence that i is/is not

in the block of interest. For i ∈ U such that φ(i) 6= 1, define

ξF (i) :=

 ∏
j∈U s.t.
φ(j)=1

`F (φi↔j, G)

`F (φ,G)


1
u1

.

A low/high value of ξF (i) is a measure of our confidence that i is/is not in the block
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of interest. The nomination list produced by LML
F is then realized via:

(
LML
F

)−1
(1) ∈ arg min{ηF (v) : φ(v) = 1}(

LML
F

)−1
(2) ∈ arg min

{
ηF (v) : v ∈ U \

{
(LML

F )−1(1)
}
, φ(v) = 1

}
...(

LML
F

)−1
(u1) ∈ arg min

{
ηF (v) : v ∈ U \

{
(LML

F )−1(i)
}u1−1

i=1
, φ(v) = 1

}
(
LML
F

)−1
(u1 + 1) ∈ arg max {ξF (v) : φ(v) 6= 1}(

LML
F

)−1
(u1 + 2) ∈ arg max

{
ξF (v) : v ∈ U \

{
(LML

F )−1(u1 + 1)
}
, φ(v) 6= 1

}
...(

LML
F

)−1
(u) ∈ arg max

{
ξF (v) : v ∈ U \

{
(LML

F )−1(i)
}u−1

i=u1+1
, φ(v) 6= 1

}

Note that, once again, in the event that the argmin (or argmax) contains more than

one element above, the order in which these elements is nominated should be taken

to be uniformly random.

We leave for future work a more thorough investigation of how best to choose

the parameter λ. We found that choosing λ approximately equal to the number of

nonseed vertices yielded reliably good results, but in general the best choice of λ is

likely to be dependent on both the structure of the graph and the available features

(e.g., how well the features actually predict block membership). We note also that in

the case where the feature densities are not easily estimated or where we would like

to relax our distributional assumptions, we might consider other terms to use in lieu
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of trFP>. For example, let µ̂k = 1
mk

∑
v∈Sk Xv be the empirical estimate of µk, the

average feature vector for the seeds in block k, and create let Y be defined via

Y =



d

u1 µ̂1 ⊗~1

u2 µ̂2 ⊗~1

...
...

uK µ̂k ⊗~1


.

Incorporating these features into the seeded graph matching problem similarly to (4.9),

we have

P̂ = arg min
P∈Πu

−1

2
tr
(
A(2,2)P (B(2,2))>P>

)
− tr

(
(A(1,2))>B(1,2)P>

)
− λ tr(X(u)Y >P>).

(4.10)

We leave further exploration of this and related approaches, as well as how to deal

with categorical data (e.g., as in Newman and Clauset (2016)), for future work.

4.6 Experiments

To compare the performance of maximum-likelihood vertex nomination against

other methods, we performed experiments on five data sets, one synthetic, the others

from linguistics, sociology, political science and ecology.
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In all our data sets, we consider vertex nomination both when the edge probability

matrix Λ is known and when it must be estimated. When model parameters are

unknown, m < n seed vertices are selected at random and the edge probability matrix

is estimated based on the subgraph induced by the seeds, with entries of the edge

probability matrix estimated via add-one smoothing. In the case of synthetic data,

the known-parameter case simply corresponds to the algorithm having access to the

parameters used to generate the data. We consider a 3-block stochastic block model

(see below), so the known-parameter case corresponds to the true edge probability

matrix being given. In the case of our real-world data sets, the notion of a “true” Λ

is more hazy. Here, knowing the model parameters corresponds to using the entire

graph, along with the true block memberships, to estimate Λ, again using add-one

smoothing. This is, in some sense, the best access we can hope to have to the model

parameters, to the extent that such parameters even exist in the first place.

4.6.1 Simulations

We consider graphs generated from stochastic block models at two different scales.

Following the experiments in Fishkind et al. (2015), we consider 3-block models, where

block sizes are given by ~n = q · (4, 3, 3)> for q = 1, 50, which we term the small and

medium cases, respectively. In Fishkind et al. (2015), a third case, with q = 1000, was

also considered, but since ML vertex nomination is not practical at this scale, we do

not include such experiments here, though we note that LML
R can be run successfully
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on such a graph. We use an edge probability matrix given by

Λ(t) = t


0.5 0.3 0.4

0.3 0.8 0.6

0.4 0.6 0.3

+ (1− t)


0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

 (4.11)

for t = 1, 0.3 respectively in the small and medium cases, so that the amount of

signal present in the graph is smaller as the number of vertices increases. We consider

m = 4, 20 seeds in the small and medium scales, respectively. For a given choice of

~n,m, t, we generate a single draw of an SBM with edge probability matrix Λ(t) and

block sizes given by ~n. A set of m vertices is chosen uniformly at random from the

first block to be seeds. Note that this means that the only model parameter that can

be estimated is the intra-block probability for the first block. For all model parameter

estimation in the ML methods (i.e., for the unknown case of LML and LML
R ), we use

add-1 smoothing to prevent inaccurate estimates. We note that in all conditions, the

block of interest (the first block) is not the densest block of the graph.

Recall that all of the methods under consideration return a list of the nonseed

vertices, which we call a nomination list, with the vertices sorted according to how

likely they are to be in the block of interest. Thus, vertices appearing early in the

nomination list are the best candidates to be vertices of interest. Figure 4.1 compares

the performance of canonical, spectral, maximum-likelihood and restricted-focus ML

vertex nomination by looking at (estimates of) their average nomination lists. The
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plot shows, for each of the methods under consideration, an estimate (each based on

200 Monte Carlo replicates) of the average nomination list. Each curve describes the

empirical probability that the kth-ranked vertex was indeed a vertex of interest. A

perfect method, which on every input correctly places the n1 vertices of interest in the

first n1 entries of the nomination list, would produce a curve in Figure 4.1 resembling

a step function, with a step from 1 to 0 at the (n1 + 1)th rank. Conversely, a method

operating purely at random would yield an average nomination list that is constant

n1/n. Canonical vertex nomination is shown in gold, ML in blue, restricted-focus ML

in red, and spectral vertex nomination is shown in purple and green. These two colors

correspond, respectively, to spectral VN in which vertex embeddings are projected

to the unit sphere prior to nomination and in which the embeddings are used as-is.

In sparse networks, the adjacency spectral embedding places all vertices near to the

origin. In such settings, projection to the sphere often makes cluster structure in the

embeddings more easily recoverable. Dark colors correspond to the known-parameter

case, and light colors correspond to unknown parameters. Note that spectral VN

does not make such a distinction.

Examining the plots, we see that in the small case, maximum-likelihood nomina-

tion is quite competitive with the canonical method, and restricted-focus ML nomi-

nation is not much worse. Somewhat surprising is that these methods perform well

seemingly irrespective of whether or not the model parameters are known, though

this phenomenon is accounted for by the fact that the smoothed estimates are au-
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tomatically close to the truth, since Λ is approximately equal to the matrix with all

entries 1/2. Meanwhile, the small number of nodes is such that there is little signal

available to spectral vertex nomination. We see that spectral vertex nomination per-

forms approximately at-chance regardless of whether or not we project the spectral

embeddings to the sphere. 10 nodes are not enough to reveal eigenvalue structure

that spectral methods attempt to recover. In the medium case, where there are 500

vertices, enough signal is present that reasonable performance is obtained by spectral

vertex nomination, with performance with (purple) and without (green) projection

to the sphere again indistinguishable. The comparative density of the SBM in ques-

tion ensures that projection to the sphere is not necessary, and that doing so does

no appreciable harm to nomination. However, in the medium case, ML-based ver-

tex nomination still appears to best spectral methods, with the known and unknown

cases being nearly indistinguishable. We note that in both the small and medium

cases all of the methods appear to intersect at an empirical probability of 0.4. These

intersection points correspond to the transition from the block of interest to the non-

interesting vertices: these vertices, about which we are least confident, tend to be

nominated correctly at or near chance, which is 40% in both the small and large

cases.

A more quantitative assessment of the vertex nomination methods is contained in

Tables 4.1 and 4.2, which compare the performance of the methods as assessed by,

respectively, average precision (AP) and adjusted Rand index (ARI). As defined in
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(a) Small scale simulation results
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(b) Medium scale simulation results

Figure 4.1: The mean nomination lists for the (a) small and (b) medium stochastic
block model experiments for the different vertex nomination techniques in both the
known (dark colors) and unknown (light colors). Plot (a) shows performance for the
canonical (gold), maximum likelihood (blue), restricted-focus maximum likelihood
(red) and spectral (green and purple) methods. Spectral VN both with and without
projection to the sphere is shown in purple and green, respectively. Plot (b) does not
include canonical vertex nomination due to runtime constraints.

Equation (4.1), AP is a value between 0 and 1, where a value of 1 indicates perfect

performance. ARI Hubert and Arabie (1985) measures how well a given partition

of a set recovers some ground truth partition. Here a value of 1 indicates perfect

recovery, while randomly partitioning a data set yields ARI approximately 0 (note

that negative ARI is possible). We include ARI as an evaluation to highlight the fact

that spectral and maximum-likelihood nomination do not merely classify vertices

as interesting or not. Rather, they return a partition of the vertices into clusters.

Canonical vertex nomination, on the other hand, makes no attempt to recover the full

cluster structure of the graph, instead only attempting to classify vertices according

to whether or not they are of interest. As such, we do not include ARI numbers

for canonical vertex nomination. Turning first to performance in the small graph

condition in Table 4.1, we see that LC is the best method, so long as the graph in
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question is small enough that the canonical method is tractable, but LML, regardless

of whether or not model parameters are known, nearly matches canonical VN, and,

unlike its canonical counterpart, scales to graphs with more than a few nodes. The

numbers for LSP bear out our observation above, that the small graphs contain too

little information for spectral VN to act upon, and LSP performs approximately at

chance, as a result. It is worth noting that while LML
R does not match the performance

of LML, presumably owing to the fact that the restricted-focus algorithm does not use

all of the information present in the graph, it still outperforms spectral nomination,

and lags LML by less than 0.1 AP.

Turning our attention to the medium case, we see again that LML and LML
R remain

largely impervious to whether model parameters are known or not, presumably a

consequence of the use of smoothing—we’ll see in the sequel that estimation can be

the difference between near-perfect performance and near-chance. With more vertices,

we see that spectral improves above chance, leaving restricted ML slightly worse, but

spectral still fails to match the performance of ML VN, even when model parameters

are unknown.

In sum, these results suggest that different size graphs (and different modeling

assumptions) call for different vertex nomination methods. In small graphs, regard-

less of whether or not model parameters are known, canonical vertex nomination is

both tractable and quite effective. In medium graphs, maximum-likelihood vertex

nomination remains tractable and achieves impressively good nomination. Of course,
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Known Unknown
ML RES SP CAN ML RES SP CAN

small 0.670 0.588 0.388 0.700 0.680 0.606 0.415 0.710
medium 0.954 0.545 0.738 – 0.954 0.537 0.735 –

Table 4.1: Empirical estimates of mean average precision on the two stochastic block
model data sets for the four methods under consideration. Each data point is the
mean of 200 independent trials.

Known Unknown
ML RES SP CAN ML RES SP CAN

small 0.338 0.259 0.011 – 0.338 0.259 0.011 –
medium 0.572 0.039 0.268 – 0.572 0.037 0.271 –

Table 4.2: ARI on the different sized data sets for the ML, restricted ML, and
spectral methods. Each data point is the mean of 200 independent trials. Performance
of canonical vertex nomination is knot included, since canonical vertex nomination
makes no attempt to recover all three blocks, and thus ARI is not a sensible measure.

for graphs with thousands of vertices, LML becomes computationally expensive, leav-

ing only LSP and LML
R as options. We have observed that LML

R tends to lag LSP in

such large graphs, though increasing the number of seeds (and hence the amount of

information available to LML
R ) closes this gap considerably. We leave for future work

a more thorough exploration of under what circumstances we might expect LML
R to

be competitive with LSP in graphs on thousands of vertices.

4.6.2 Word Co-occurrences

We consider a linguistic data set consisting of co-occurrences of 54 nouns and

58 adjectives in Charles Dickens’ novel David Copperfield Newman (2006a). We

construct a graph in which each node corresponds to a word, and an edge connects
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Figure 4.2: Adjacency matrix of the linguistic data set, arranged to highlight the
graph’s structure. The grey shading indicates the two blocks, with adjectives in the
upper left and nouns in the lower right. Note the disassortative block structure.

two nodes if the two corresponding words occurred adjacent to one another in the

text. The adjacency matrix of this graph is shown in Figure 4.2. Visual inspection

reveals a clear block structure, and that this block structure is clearly not assortative

(i.e., inter-block edges are more frequent than intra-block edges). This runs contrary

to many commonly-studied data sets and model assumptions. Figure 4.3 shows the

performance of spectral and maximum-likelihood vertex nomination, measured by (a)

average precision and adjusted Rand index (ARI) at various numbers of seeds. Each

data point is the average over 1000 trials. In each trial, a set of m seeds was chosen

uniformly at random from the 112 nodes, with the restriction that at least one noun

and one adjective be included in the seed set. Performance was then measured as the

mean average precision in identifying the adjective block.

Figure 4.3 shows the performance of the VN schemes under consideration, as a
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function of the number of seed vertices, using both known (dark colors) and estimated

(light colors) model parameters. Looking first at AP in Figure 4.3 (a), we see that

ML in the known-parameter case (dark blue) does consistently well, even with only

a handful of seeds, and attains near-perfect performance for m ≥ 20. When model

parameters must be estimated (light blue), ML is less dominant, thought it still per-

forms nearly perfectly for m ≥ 20. We note the dip in unknown-parameters ML as

m increases from 2 to 5 to 10, a phenomenon we attribute to the bias-variance trade-

off. Namely, with more seeds available, variance in the estimated model parameters

increases, but for m < 20, this increase in variance is not offset by an appreciable

improvement in estimation, possibly attributable to our use of add-one smoothing.

Somewhat surprisingly, restricted-focus ML performs quite well, consistently improv-

ing on spectral VN in the known parameter case for m > 2, and in the unknown

parameter case once m > 10. Finally, we turn our attention to spectral VN, shown

in green for the variant in which we project embeddings to the sphere and in purple

for the variant in which we do not. In contrast to our simulations, the sparsity of

this network makes projection to the sphere a critical requirement for successful re-

trieval of the first block. Without projection to the sphere, spectral VN fails to rise

appreciably above chance performance.
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Figure 4.3: Performance on the linguistic data set as measured by (a) AP and
(b) ARI as a function of the number of seeds for the ML vertex nomination (blue),
restricted-focus ML (red), and spectral vertex nomination with (green) and without
projection to the sphere (violet), when model parameters are known (light colors)
and unknown (dark colors). Each data point is the mean of 1000 Monte Carlo trials,
and shaded regions indicate two standard deviations of the mean.

4.6.3 Zachary’s Karate Club

We consider the classic sociological data set, Zachary’s karate club network Zachary

(1977). The graph, visualized in Figure 4.4, consists of 34 nodes, each corresponding

to a member of a college karate club, with edges joining pairs of club members accord-

ing to whether or not those members were observed to interact consistently outside

of the club. Over the course of Zachary’s observation of the group, a conflict emerged

that led to the formation of two factions, led by the individuals numbered 1 and 34

in Figure 4.4, and these two factions constitute the two blocks in this experiment.

Zachary’s karate data set is particularly well-suited for spectral methods. Indeed, the

flow-based model originally proposed by Zachary recovers factions nearly perfectly,

and visual inspection of the graph (Figure 4.4) suggests a natural cut separating the

two factions. As such, we expect ML-based vertex nomination to lose out against
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Zachary's Karate Club Network
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Figure 4.4: Visualization of the graph corresponding to Zachary’s karate club data
set. The vertices are colored according to which of the two clubs each member chose
to join after the schism. Our block of interest is in red.

the spectral-based method. Figure 4.5 shows performance of the two algorithms as

measured by ARI and average precision. We see, as expected, that spectral perfor-

mance performs nearly perfectly, irrespective of the number of seeds. Surprisingly,

maximum-likelihood nomination is largely competitive with spectral VN, but only

provided that the model parameters are already known. Interesting to note that here

again we see the phenomenon discussed previously in which ML performance with

an unknown edge probability matrix degrades when going from s = 2 seeds to s = 5

before improving again, with AP comparable to the known case for s ≥ 20.

4.6.4 Political Blogs

We consider a network of American political blogs in the lead-up to the 2004

election Adamic and Glance (2005), where an edge joins two blogs if one links to

the other, with blogs classified according to political leaning (liberal vs conservative).
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Figure 4.5: Performance on the karate data set as a function of the number of
seeds for the ML vertex nomination (blue), restricted-focus ML nomination (red),
and spectral vertex nomination with (green) and without projection to the sphere
(violet), when model parameters are known (light colors) and unknown (dark colors),
as measured by (a) AP and (b) ARI. The black dashed line indicates chance perfor-
mance. Each observation is the mean of 1000 independent trials, with the shaded
bars indicating two standard errors of the mean in either direction.

From an initial 1490 vertices, we removed all isolated vertices to obtain a network

of 1224 vertices and 16718 edges. Figure 4.6 shows the performance of the spectral-

and ML-based methods in recovering the liberal block. We observe first and foremost

that the sparsity of this network results in exceptionally poor performance in both AP

and ARI for spectral VN unless the embeddings are projected to the sphere, but that

spectral vertex nomination is otherwise quite effective at recovering the liberal block,

with performance nearly perfect for m > 10. Unsurprisingly, ML and its restricted

counterpart both perform approximately at-chance when m < 10. We see that in

both the known and unknown cases, ML VN is competitive with spectral VN for

suitably large m (m ≥ 50 for known, m ≥ 500 for unknown). As expected in such

a sparse network, restricted-focus ML lags ML VN in the known-parameter case,

but surprisingly, in the unknown-parameter case, restricted ML achieves remarkably
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Figure 4.6: Performance on the political blogs data set as a function of the number
of seeds for the ML vertex nomination (blue), restricted-focus ML (red), and spectral
vertex nomination with (green) and without projection to the sphere (violet), when
model parameters are known (light colors) and unknown (dark colors), as measured
by (a) AP and (b) ARI.

better AP than does ML, a fact we are unable to account for, though it is worth

noting that looking at ARI in Figure 4.6 (b), no such gap appears between ML and

its restricted-focus counterpart in the unknown-parameter case.

4.6.5 Ecological Network

We consider a trophic network, consisting of 125 nodes and 1907 edges, in which

nodes correspond to (groups of) organisms in the Florida Bay ecosystem Ulanowicz

et al. (1997); Nooy et al. (2011), and an edge joins a pair of organisms if one feeds on

the other. Our features are the (log) mass of organisms. We take our community of

interest to be the 16 different types of birds in the ecosystem. This choice makes for

an interesting task for several reasons. Firstly, unlike the other data sets we consider,

our community of interest is a comparatively small fraction of the network—it consists
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of a mere 16 nodes of 125 in total. Further, our block of interest is comparatively

heterogeneous in the sense that the roles of the different types of birds in the Florida

Bay ecosystem is quite diverse. For example, the block of interest includes both

raptors and shorebirds, which feed on quite different collections of organisms. Finally,

it stands to reason that the mass of the organisms in question might be a crucial piece

of information for disambiguating, say, a raptor from a shark. Thus, we expect that

using node features will be crucial for retrieving the block of interest.

The topology of the Florida Bay network is shown in Figure 4.7 (a). Note that the

block of interest, indicated in red, has a strongly disassortative structure. Indeed, all

intra-block edges in the red block are incident to the node corresponding to raptors.

Figure 4.7 (b) summarizes vertex nomination performance for several methods. The

plot shows performance, as measured by mean average precision (AP), as a function of

the number of seeds for several different nomination schemes. As in earlier plots, dark

colors correspond to model parameters being known, while light colors correspond to

model parameters being estimated using the seed vertices. We see immediately that

spectral nomination (green and purple) and ML VN (blue) fail to improve appreciably

upon chance performance except when the vast majority of the vertices’ labels are

observed. Like in the linguistic data set presented above, the disassortative structure

of the data appears to cause problems for spectral nomination. The failure of ML

suggests that no useful information is encoded in the graph itself, but turning our

attention to the curves corresponding to LML
F (red) and using only features (gold), we
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Figure 4.7: (a) The adjacency matrix of the Florida Bay trophic network. Nodes
correspond to classes of plants and animals (e.g., sharks, rays, shorebirds, zooplank-
ton, phytoplankton). An edge joins two nodes if the corresponding organisms are in
a predator-prey relation. The sixteen types of birds in the network are highlighted in
the red block. Note the disassortative structure of the bird block (the edges within the
red block are all incident to the node that corresponds to raptors). (b) Average pre-
cision in identifying the bird nodes as a function of the number of seed vertices for ML
vertex nomination (blue), restricted-focus ML (red), and spectral vertex nomination
with (green) and without projection to the sphere (violet), when model parameters
are known (light colors) and unknown (dark colors). The black dashed line indicates
chance performance.

see that this is not the case. Indeed, we see that while using features alone achieves

a marked improvement over both spectral and ML-based nomination, using both

features and graph matching in the form of LML
F yields an additional improvement of

some 0.1 AP in the range of m = 8, 16, 32. This result suggests that there may be

cases where the only reliable way to retrieve vertices of interest is to leverage both

features and graph topology jointly.
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4.7 Discussion and Future Work

Network data has become ubiquitous in the sciences, giving rise to a vast array of

computational and statistical problems that are only beginning to be explored. In this

chapter, we have explored one such problem that arises when working with network

data, namely the task of performing vertex nomination. This task, in some sense the

graph analogue of the classic information retrieval problem, is fundamental to ex-

ploratory data analysis on graphs as well as to machine learning applications. Above,

we established the consistency of two methods of vertex nomination: a maximum-

likelihood scheme LML and its restricted-focus variant LML
R , in which we obtain a

feasibly exactly-solvable optimization problem at the expense of using less than the

full information available in the graph. Additionally, we have introduced a maximum-

likelihood nomination scheme for the case where vertices are endowed with features

and when (possibly weighted) edges are drawn from a canonical exponential family.

The key to all of these methods is the ability to quickly approximate a solution to

the seeded graph matching problem.

We have presented experimental comparisons of these methods against each other

and against several other benchmark methods, where we see that the best choice of

method depends highly on graph size and structure. The major tradeoff appears to

be that large graphs (tens of thousands of vertices) are not tractable for LML, but in

smaller and medium-sized graphs, LML can detect signal where spectral methods fail

to do so. It is worth noting that LML, and, to a lesser extent, LML
R , is quite competitive
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with LSP, and even manages to best LSP when the structure of the graph is ill-suited

to the typical assumptions of spectral methods, as in the case of our linguistic data

set. All told, our experimental results mirror those in Fishkind et al. (2015) and point

toward a theory of which methods are best-suited to which graphs, a direction that

warrants further exploration.

In the next chapter, we will see that the vertex nomination technique developed

here can be brought to bear on the reranking problem in similarity search.

4.8 Proof details

Before proving Theorem 4, we first state a useful lemma.

Lemma 11. Let ~x = (x1, x2, . . . , xk) be a vector with distinct entries in Rk. Let f(·)

be a strictly increasing real valued function (with the abuse of notation, f(~x), denoting

f(·) applied entry-wise to ~x). Let the order statistics of ~x be denoted

x(1) < x(2) < · · · < x(k),

and define α = mini∈{2,3,...,k} |x(i) − x(i−1)|, and β = mini∈{2,3,...,k} |f(x(i))− f(x(i−1))|.

If σ is the cyclic permutation

σ =

1 2 3 · · · k

2 3 4 · · · 1

 ,
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then

〈~x, f(~x)〉 − 〈~x, f(σ(~x))〉 ≥ (k − 1)αβ.

Proof. We will induct on k. To establish the base case, k = 2, let x1 = x(1) without

loss of generality and observe that

〈~x, f(~x)〉 − 〈~x, f(σ(~x))〉 = (x2 − x1)(f(x2)− f(x1))

= (x(2) − x(1))(f(x(2))− f(x(1))) ≥ αβ.

For general k, again, without loss of generality let x1 = x(1), and define the permuta-

tion

τ =

2 3 · · · k

3 4 · · · 2

 .

Then

〈~x, f(~x)〉 − 〈~x, f(σ(~x))〉 = 〈~x, f(~x)〉 − 〈~x, f(τ(~x))〉+ 〈~x, f(τ(~x))〉 − 〈~x, f(σ(~x))〉

= 〈~x, f(~x)〉 − 〈~x, f(τ(~x))〉+ (xk − x1)(f(x2)− f(x1))

≥ 〈~x, f(~x)〉 − 〈~x, f(τ(~x))〉+ αβ,

and the result follows from the inductive hypothesis.

Remark 8. It follows immediately that in Lemma 11, if there exists an index i ∈ [k]

such that αi = minj 6=i |x(i) − x(j)| > 0, and βi = minj 6=i |f(x(i)) − f(x(j))| > 0, then
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〈~x, f(~x)〉 − 〈~x, f(σ(~x))〉 ≥ αiβi.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Define

XP := tr(AB>)− tr(A(Im ⊕ P )B(Im ⊕ P )>)

and define P = {P ∈ Πu : ε1,•(P ) > 0}. We will show that

P (∃ P ∈ P s.t. XP ≤ 0) = O(1/n2),

from which the desired consistency of LML follows by the Borel-Cantelli Lemma, since

this probability is summable in n. Fix P ∈ P , and let σP ∈ Sn be the permutation

associated with Im⊕P . The action of shuffling B via Im⊕P is equivalent to permuting

the [n2] elements of vec(B) via a permutation τP , in that

tr(A(Im ⊕ P )B(Im ⊕ P )>) = 〈vec(A), τP (vec(B))〉.

Moreover, τP can be chosen so that, in the cyclic decomposition of τP = τ
(1)
P τ

(2)
P · · · τ

(`)
P ,

each (disjoint) cycle is acting on a set of distinct real numbers. Note that Lemma

11 implies that the contribution of each cycle τ
(i)
P to E(XP ) is nonnegative, and

the assumptions of Theorem 4 imply that for each i, j ∈ [K] such that i 6= j, the

contribution of each (nontrivial) cycle permuting a Λi,i entry to a Λi,j entry contributes
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at least αβ to E(XP ). It follows immediately that

E(XP ) = E
(
tr(AB)− tr(APBP>)

)
= E (〈vec(A), vec(B)〉 − 〈vec(A), τP (vec(B)〉)

≥ 2αβ
∑
i

(
1

2

∑
j

∑
k 6=j

εi,jεi,k +miεi,•

)

≥ 2αβ
∑
i

(
(ui − εi,•)εi,•

2
+miεi,•

)
.

Let n(P ) be the total number of distinct entries of vec(B) permuted by τP , and note

that an application of Lemma 11 yields

E(XP ) = E
(
tr(AB)− tr(APBP>)

)
= E (〈vec(A), vec(B)〉 − 〈vec(A), τP (vec(B)〉)

≥ 1

2
n(P )γκ.

The assumptions in the Theorem also immediately yield that

n(P ) ≥
∑
k

(
(uk − εk,•)εk,•

2
+mkεk,•

)
.

We next note that XP is a sum of n(P ) independent random variables, each bounded
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in [−c, c]. An application of Hoeffding’s inequality then yields

P(XP ≤ 0) ≤ P (|XP − EXP | ≥ EXP ) ≤ 2 exp

{
− 2E2XP

4c2n(P )

}
≤ 2 exp

{
−|EXP |κγ

2c2

}
≤ 2 exp

{
−αβκγ

4c2

∑
k

(
(uk − εk,•)εk,•

2
+mkεk,•

)}
.

Next, note that

|{P ∈ P s.t. XP ≤ 0}| = 0 iff |{P ∈ P/ ∼ s.t. XP ≤ 0}| = 0.

Given {εk,`}Kk,`=1 satisfying uk =
∑

` εk,` =
∑

` ε`,k for all k ∈ [K], the number of

elements P ∈ P/ ∼ with εk,`(P ) = εk,` for all k, ` ∈ [K] is at most

u
∑
` 6=1 ε1,`

1 u
∑
6̀=2 ε2,`

2 · · · u
∑
6̀=K εK,`

K = u
u1−ε1,1
1 u

u2−ε2,2
2 · · · uuK−εK,KK

= e
∑
k(uk−εk,k) log(uk). (4.12)

The number of ways to choose such a set (i.e. the {εk,`}Kk,`) is bounded above by

∏
k s.t. εk,• 6=0

(uk +K)K = e
∑
k s.t. εk,• 6=0K log(uk+K)

. (4.13)
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Applying the union bound over all P ∈ P/ ∼, we then have

P
(
∃P ∈ P s.t. XP ≤ 0

)
= P

(
∃P ∈ P/ ∼ s.t. XP ≤ 0

)
≤ exp

{
− αβκγ

2c2

∑
k

(
(uk − εk,•)εk,•

2
+mkεk,•

)
(4.14)

+
∑
k

(uk − εk,k) log uk +
∑

k s.t. εk,• 6=0

K log(uk +K)

}
. (4.15)

It remains for us to establish that the expression inside the exponent goes to −∞ fast

enough to ensure our desired bound. For each k, the contribution to the exponent in

(4.14) is

− αβκγ

2c2

(
(uk − εk,•)εk,•

2
+mkεk,•

)
+ (uk − εk,k) log uk + I{εk,• 6= 0}K log(uk +K)

= −αβκγ
2c2

(εk,kεk,•
2

+mkεk,•

)
+ εk,• log uk + I{εk,• 6= 0}K log(uk +K) (4.16)

If uk/2 ≤ εk,k < uk, then

εk,kεk,• ≥
ukεk,•

2
= ω(εk,• log uk), and εk,kεk,• ≥

ukεk,•
2

= ω(K log(uk +K)),

and the contribution to the exponent in (4.14) from k, Eq. (4.16), is clearly bounded

above by −2 log(n) for sufficiently large n. If εk,k ≤ uk/2 then εk,• > uk/2, and

mkεk,• = ω(εk,• log uk), and mkεk,• ≥
mkuk

2
= ω(K log(uk +K)),
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and the contribution to the exponent in (4.14) from k, Eq. (4.16), is clearly bounded

above by −2 log(n) for sufficiently large n. If εk,k = uk, then all terms in the exponent

(4.16) are equal to 0. For sufficiently large n, Eq. (4.14) is then bounded above by

exp

− ∑
k s.t. εk,• 6=0

2 log(n)

 ≤ exp {−2 log(n)} ,

and the result follows.

Consistency of LML
R as claimed in Theorem 5 follows similarly to that of LML, and

we next briefly sketch the details of the proof.

Proof of Theorem 5 (Sketch). Analogously to the proof of Theorem 4, define

XP := tr
(
(A(1,2))>B(1,2)

)
− tr

(
(A(1,2))>B(1,2)P>

)
.

The proof follows mutatis mutandis to the proof of Theorem 4, with the key difference

being that in this case,

E(XP ) = E
(
tr
(
(A(1,2))>B(1,2)

)
− tr

(
(A(1,2))>B(1,2)P>

))
≥ 2αβ

∑
k

mkεk,•.

Details are omitted for brevity.

Before proving Theorem 6 we establish some preliminary concentration results for

162



CHAPTER 4. VERTEX NOMINATION

our estimates Λ̂, and n̂k, k ∈ [K]. An application of Hoeffding’s inequality yields that

for k, ` ∈ [K] such that k 6= `,

P
(∣∣∣Λ̂k,` − Λk,`

∣∣∣ ≥ √n log n

mkm`

)
≤ 2exp {−2n log n} , (4.17)

and for k ∈ [K],

P

(∣∣∣Λ̂k,k − Λk,k

∣∣∣ ≥ √n log n(
mk
2

) )
≤ 2exp {−2n log n} , (4.18)

and

P (|n̂k − nk| ≥ t) ≤ 2exp

{
−2mt2

n2

}
, (4.19)

With γ defined as in (4.8), define the events E (1)
n and E (2)

n via

E (1)
n =

{
∀ {k, `} ∈

(
[K]

2

)
, s.t |Λk,k − Λk,`| > γ, it holds that

∣∣∣Λ̂k,k − Λ̂k,`

∣∣∣ > γ

2

}
;

E (2)
n =

{
∀ k ∈ [K], |n̂k − nk| ≤ n

2/3
k

}
.

Combining (4.17)—(4.19), we see that if for each k ∈ [K], nk = Θ(n), minkmk =

ω(
√
nk log(nk)), then for sufficiently large n,

P
(
(E (1)
n ∪ E (2)

n )c
)
≤ e−2 logn. (4.20)
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We are now ready to prove Theorem 6, proving the consistency of LML when the

model parameters are unknown.

Proof of Theorem 6. Let B̂ be our estimate of B using the seed vertices; i.e., there

are n̂k vertices from block k for each k ∈ [K], and for each k, ` ∈ [K], the entry of B̂

between a block k vertex and a block ` vertex is

log

(
Λ̂k,`

1− Λ̂k,`

)
.

Let L̂ be the set of distinct entries of Λ̂, and define

α̂ = min
{k,`} s.t. k 6=`

|Λ̂k,k − Λ̂k,`| β̂ = min
{k,`} s.t. k 6=`

|B̂k,k −Bk,`| ĉ = max
i,j,k,`
|B̂i,j − B̂k,`|,

(4.21)

γ̂ = min
x,y∈L̂

|x− y|, κ̂ = min
x,y∈L̂

∣∣∣∣log

(
x

1− x

)
− log

(
y

1− y

)∣∣∣∣ . (4.22)

Note that conditioning on E (1)
n ∪ E (2)

n and assumption iv. ensures that each of α̂, β̂,

ĉ, γ̂, and κ̂ is bounded away from 0 by an absolute constant for sufficiently large n.

For each k ∈ [K], define

ek := |n̂k − nk| = |ûk − uk|, e =
∑
k

ek, ηk := min(nk, n̂k), η =
∑
k

ηk, (4.23)

and note that conditioning on E (1)
n ∪ E (2)

n ensures that ek = O(n
2/3
k ) for all k ∈ [K].

An immediate result of this is that, conditioning on E (1)
n ∪ E (2)

n , we have that ηk =
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Θ(nk) = Θ(n) for all k ∈ [K].

Define P := {P ∈ Πu : ε1,•(P ) > n2/3 log n}, and for P ∈ Πu, define

XP := tr(AB̃>)− tr(A(Im ⊕ P )B̃(Im ⊕ P )>).

We will show that

P (∃ P ∈ P s.t. XP ≤ 0) = O(1/n2),

and the desired consistency of LML follows immediately. To this end, decompose A

and B as

A =


η e

η A(c,c) A(c,e)

e A(e,c) A(e,e)

 B =


η e

η B(c,c) B(c,e)

e B(e,c) B(e,e)

,
where A(c,c) (resp., B(c,c)) is an η × η submatrix of A (resp., B)—which contains

the seed vertices in A—with exactly ηk vertices (resp., labels) from block k for each

k ∈ [K]. We view A(c,c) as the “core” matrix of A (with A(e,e) and A(c,e) being the

“errorful” part of A), as A(c,c) is a submatrix of A that we could potentially cluster

perfectly along block assignments. Note that similarly decomposing P as

P =


η e

η P (c,c) P (c,e)

e P (e,c) P (e,e)

,
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we see that there exists a principal permutation submatrix of P (c,c) of size (η− 2e)×

(η−2e), which we denote P̃ (with associated permutation σ̃). This matrix represents

a subgraph of the core vertices of A mapped to a subgraph of the core vertices in B.

We can then write P = P̃ ⊕Q, where Q ∈ Π3e. For each k, ` ∈ [K], let

ε̃k,` = ε̃k,`(P̃ ) = |{v ∈ Uk s.t. σ̃(v) ∈ Uk}|

Consider now

XP = tr(A(Iη−3e ⊕Q)B(Iη−3e ⊕Q)>)− tr(A(P̃ ⊕Q)B(P̃ ⊕Q)>). (4.24)

Letting ũk denote the number of vertices from the k-th block acted on by P̃ , our

assumptions yield

E(XP ) ≥ 2α̂β̂
∑
k

(
(ũk − ε̃k,•)ε̃k,•

2
+mk ε̃k,•

)
−Θ(ηe)−Θ(e2).

Let ñ(P ) be the total number of distinct entries of vec(B(c,c)) permuted by P̃ , and

note that another application of Lemma 11 yields

E(XP ) ≥ 1

2
ñ(P )γ̂κ̂−Θ(ηe)−Θ(e2).
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The assumptions in the Theorem also immediately yield that

ñ(P ) ≥
∑
k

(
(ũk − ε̃k,•)ε̃k,•

2
+mk ε̃k,•

)
.

We then have that there exists a constants c1 > 0 and c2 > 0 such that

P
(
∃P ∈ P s.t. XP ≤ 0

∣∣ E (1)
n ∪ E (2)

n

)
= P

(
∃P ∈ P/ ∼ s.t. XP ≤ 0

∣∣ E (1)
n ∪ E (2)

n

)
≤ exp

{
− α̂β̂κ̂γ̂

2ĉ2

∑
k

(
(ũk − ε̃k,•)ε̃k,•

2
+mk ε̃k,•

)
+ Θ(ηe) + Θ(e2)

+
∑
k

(ũk − ε̃k,k) log ũk +
∑

k s.t. ε̃k,• 6=0

K log(ũk +K) +O(e log e)

}

= exp

{
− c1

∑
k

(
(ũk − ε̃k,•)ε̃k,•

2
+mk ε̃k,•

)
(4.25)

+
∑
k

ε̃k,• log ũk +
∑

k s.t. ε̃k,• 6=0

K log(ũk +K) + Θ(ne)

}

≤ exp{−c2n
7/4 log n}. (4.26)

Unconditioning Equation (4.25) combined with Equation (4.20) yields the desired

result.

Proof of Theorem 7 (Sketch). The proof of Theorem 7 is a straightforward combina-

tion of the proofs of Theorems 5 and 6 once we have defined

P := {P ∈ Πu : ε1,•(P ) > n8/9 log n}.
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Details are omitted for the sake of brevity.
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Chapter 5

Query Reranking Using Vertex

Nomination

In the previous chapter, we established the statistical soundness of a maximum-

likelihood approach to vertex nomination. We turn now to applying this technique to

the problem of rescoring query results under the search framework discussed in earlier

chapters. We recall our basic framework: we have a search collection S, a multiset

of objects from some set of possible observations X . X is endowed with a similarity

measure σ : X ×X → [0, 1] that captures our ideal notion of similarity for the task at

hand, but this oracle similarity is intractable due to computational constraints. We

use in place of σ, then, a more tractable ersatz similarity function κ : X ×X → [0, 1],

and embed S in Rd according to some mapping f : S → Rd given by, for example,

Laplacian eigenmaps (see Appendix B). In Chapter 3, we showed that in the case of
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Laplacian eigenmaps embeddings, only small error is incurred in the embeddings by

replacing σ by a noisy, possibly biased estimate κ.

A second source of error in our search pipeline, not addressed by the results in

Chapter 3, arises at query time as a result of using an out-of-sample extension and

near-neighbor retrieval. Recall that having constructed embeddings ES = {f(x) :

x ∈ S} ⊆ Rd, we build a near-neighbor index I (see Appendix C for an overview of

near-neighbor retrieval) that allows us to quickly find points in ES near a given query

vector z ∈ Rd. Having built index I, let q ∈ X be a new query observation. In order

to retrieve candidate matches to q, we must first embed it in Rd according to the same

embedding that was applied to S. The query is embedded as f̃(q) ∈ Rd, where f̃ is an

out-of-sample extension of embedding f . In most cases, this out-of-sample extension

is based on the Nyström method (see Appendix B for further discussion). As such, f̃

is only an approximation to an ideal embedding f ∗ : X × X → Rd, which we would

work with if it were feasible to apply our embedding technique to all of X . Indeed,

in the audio search system presented in Chapter 2, it was infeasible to even embed

the search collection directly, and we settled for an out-of-sample extension based on

a reference set of 10,383 observations. Thus, we incur error when we retrieve near-

neighbors of f̃(q) rather than near-neighbors of f ∗(q), arising from the discrepancy

between the two embedding functions.

In addition to this out-of-sample extension error, the near neighbor retrieval index

is a source of error, in that retrieval is approximate. When we query I for the near
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neighbors of f̃(q), we obtain a set of candidate matches Rq ⊂ S whose embeddings

corresponding to the near-neighbor points to f̃(q). The points {f(x) : x ∈ Rq} are

the near neighbors of f̃(q) retrieved from I. As such, they are not necessarily the

true nearest points to f̃(q) in ES . That is to say, error is introduced in the fact that

we must perform approximate, rather than exact, near neighbor retrieval.

To recapitulate, we have discussed at various points in this thesis four related

sources of error:

1. Error in approximating the oracle similarity σ with an ersatz similarity κ, arising

from model misspecification or computational constraints.

2. Error arising from further approximation of κ and occlusion of the pairwise

similarities {κ(x, y) : x, y ∈ S}.

3. Approximation error due to using the out-of-sample extension f̃ of embedding

f rather than an embedding computed for all of X .

4. Error in retrieval due to the inherently approximate nature of fast near neighbor

algorithms.

In Chapter 3, we proved that the first two of these sources of error could be controlled,

in the sense that under suitable conditions on the set S and the similarity functions

σ and κ the error introduced by the embedding process becomes arbitrarily small as

the number of observations in S increases. In this chapter, we will apply the vertex
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nomination tools presented in the previous chapter to mitigate the latter two sources

of error.

5.1 Reranking: The basic problem

Given a set of query results for a query q ∈ X , it is typical that we wish to order

them by relevance. That is, order them so that the results appearing early in the list

are those that we believe to be the best matches to the query q. The sources of error

discussed above suggest that this ordering may not be the best one if our ultimate

goal is to rank the query results according to their similarity to q as measured by

κ (let alone σ), since (a) the embedding f̃(q) is an out-of-sample approximation to

some more faithful embedding f ∗(q), (b) by the nature of near neighbor retrieval, the

ranking of the results in Rq is with respect to an approximation of the appropriate

notion of nearness to f̃(q) in Rd, and (c) nearness in Rd only approximately reflects

the similarity measure κ. In light of these sources of error, how can we reorder the

query results Rq to better reflect κ, the similarity with respect to which they were

initially embedded? This is an example of a rescoring or reranking problem.

Rescoring is a core component of the typical pipeline in speech processing (Rastrow

et al. 2011; Peng et al. 2013; Soto et al. 2014; Pham et al. 2016), machine translation

(Paul et al. 2004; Duh 2009; Blackwood 2010), and image processing (Russakovsky

et al. 2015; Malik et al. 2016), to name just a few domains. In typical applications,
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we have a slow, expensive, but comparatively trustworthy measure of similarity or

quality, but evaluating this measure on many pairs of objects is expensive. Instead, an

inexpensive but less accurate method is used to quickly search over a large collection

of objects. This yields a more manageable set of candidate matches, which is then

reassessed using the expensive, more accurate measure. In some applications, most

prominently in document retrieval, rescoring may take into account an assessment

of result quality, provided either by a user or by a classifier, typically referred to as

relevance feedback (Ruthaven and Lalmas 2003; Manning et al. 2008; Carpineto and

Romano 2012).

In the case of our search framework, the fast, inaccurate method corresponds to

retrieving near neighbors Nq ⊆ f(S) of the query embedding f̃(q) from index I. This

first, inexpensive step, yields query results

Rq = {x : f(x) ∈ Nq} ⊆ S.

The rescoring problem becomes a question of how best to order the elements of Rq.

In particular, the goal is to order the elements of Rq so that “correct” query results

tend to appear higher in the list.

As an illustrative example, consider the S-RAILS system presented in Chapter 2.

There, the index I operated by assigning each segment embedding to a bit signature

according to its position relative to a set of hyperplanes. Retrieval then consisted
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of comparing a query signature against those in the index and retrieving those that

shared prefixes (and repeating this comparison under several permutations of the bit

signatures). These bit signatures allowed an approximation of the cosine similarity

between pairs of vectors, and the results were ordered according to this approximate

similarity to the query.

Much of the work related to reranking in machine learning has focused on learning

to rank, in which the goal is to learn a (partial) ordering on observations that reflects

some notion of goodness (e.g., quality of transcriptions in the case of speech processing

or of parses in the case of natural language processing). Often, this ranking must be

learned from a collection of labeled examples, and it is typical that we find ourselves

in the semi-supervised setting, in which there are many available observations, but

supervisory information is available for only a few pairs of these observations or for

only a few lists of query results (Duh 2009). Many approaches to the semi-supervised

learning to rank problem apply ideas from representation learning (see Appendix B)

to learn an embedding or kernel function that reflects a suitable notion of goodness

(Duh and Kirchhoff 2008; McFee and Lanckriet 2010). Others have cast the problem

as one of ordinal regression (Herbrich et al. 2000; Shashua and Levin 2003) or one of

data imputation to recover unobserved pairwise similarities (Zhou et al. 2004; Wang

et al. 2005).

The low-resource search task addressed by the S-RAILS system in Chapter 2

belongs to this semi-supervised setting. We have a collection of millions of audio
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segments, but pairwise information in the form of word type labels is available for

only a few thousand segments. Our word similarity experiments in Chapter 2 suggest

that a learning to rank algorithm such as MLR (McFee and Lanckriet 2010) might

be effective in reranking our query results, provided that MLR can correct the errors

introduced by the embedding process. Rather than applying a reranking procedure,

we consider here an altogether different approach based on vertex nomination, as

presented in Chapter 4.

A natural approach to rescoring in the context of Chapter 2 would have been

to rerank the results according to their similarity to the query, i.e., ascending in

DTW distance to the query. In the notation of our framework, this corresponds to

reranking Rq according to κ(q, x) for all x ∈ Rq. This rescores Rq according to the

intended measure of similarity, and thus we expect that it should result in a better

ranking of the results. However, this approach does not make use all of the available

information. Given our query q and results Rq, we in fact have a graph of similarities

{κ(x, y) : x, y ∈ {q} ∪ Rq}. Ideally, we should use all of the information available in

these pairwise similarity measurements to perform our reranking. Indeed, if we believe

that each κ(x, y) is an estimate of the oracle similarity σ(x, y), then we might hope

that jointly using all the available pairwise similarities would improve our ranking.

Vertex nomination, as discussed in the previous chapter, provides one possible way

to exploit this structure.
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5.2 Reranking using Vertex Nomination

We let Gq = (Vq, Eq) be a weighted undirected graph on rq = |Rq| + 1 vertices.

These vertices correspond to the results in Rq and the query q itself, with weights

given by wx,y = κ(x, y) ∈ [0, 1]. We would like to devise a reranking scheme that

uses all of the available information in this weighted graph. If we think of the result

set Rq as containing “correct” and “incorrect” results, then it is natural to expect

that a corresponding block structure will manifest in matrix Gq, with one block

corresponding to the correct results and others corresponding to the incorrect results.

We will suppose that in Rq there are n1 < rq correct matches, and these n1 segments

will comprise the block of interest that we wish to recover. Of course, it is possible

that the remaining elements of Rq have block structure of their own. Thus, we will

model Gq as an exponential family SBM, which we introduced in Definition 5 in

Chapter 4. In particular, we will assume that Gq ∼ ExpSBM(K,~n, b,Θ), in which

the first block corresponds to the correct matches to the query, and we will perform

vertex nomination with precisely one seed vertex, namely the query itself. Three

concerns arise immediately from this formulation, and we will briefly address them

in turn.

Vertex nomination as considered in most of Chapter 4 matches an unweighted

graph to a weighted graph in such a way that the resulting optimization problem is

equivalent to a maximum likelihood alignment of the vertices of Gq with the vertices

of the matrix encoded by B. In the present setting, Gq is weighted, and it isn’t
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necessarily the case that matching Gq with B corresponds to a maximum likelihood

solution. As sketched in Section 4.5, the exponential family SBM allows us to extend

the vertex nomination to the case where Gq ∼ ExpSBM(K,~n, b,Θ), in which the

edge weights wx,y are distributed independently according to a model parameterized

by Θb(x),b(y). This leaves open the question of what distribution to choose for the edge

weights and how to parameterize it, a choice that depends on the problem domain.

In Chapter 4, we performed vertex nomination by aligning a matrix to a block-

structured matrix B, the entries of which were a function of a block communication

matrix Λ ∈ [0, 1]K×K (or, in the case of the exponential family SBM, a parameter

matrix Θ ∈ RK×K). The entries of Λ were estimated based on the seed vertices. In

the present case, we have only one seed vertex, and hence have no way, a priori, to

estimate the entries of the parameter matrix Θ ∈ RK×K . As such, we need some

other way to estimate the model parameters.

A third concern pertains to estimating the block sizes. In Chapter 4, our model

assumed that we knew the correct block sizes nk for k = 1, 2, . . . , K, or that we

had seed vertices from each block with which to estimate the block sizes. In the

present setting, it is not clear how we should choose ~n, since we have only one seed

vertex with which to perform estimation. While we might attempt to estimate block

structure by examining the weight matrix of Gq or decide on block sizes based on

domain knowledge, it is not clear a priori how to proceed.

How we deal with the above concerns will, in general, depend on domain-specific
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factors. In the remainder of this chapter, we will consider query reranking in the

context of the S-RAILS audio search system presented in Chapter 2. Our goal is to

explore whether or not VN-based reranking of the query results returned by S-RAILS

improves upon the evaluation scores presented in that chapter. In the next section,

we will describe a basic system for reranking in the S-RAILS system based on vertex

nomination. In the sequel, we will explore the effects of modifying these approaches

in various ways.

5.3 VN-based reranking for audio search

Recall that in the setting of Chapter 2, the set X of possible observations cor-

responded to the set of all possible utterances of length between 500 and 1,000 ms,

represented by their feature vector time series, so that any x ∈ X could be written as

x = x1, x2, . . . , xm for some number m, where xi ∈ Rp for all 1 ≤ i ≤ m. Our ersatz

similarity took the form of a Gaussian kernel

κ(x, y) = exp

{
− [max(0,DTW(x, y)− η)]2

2σ2

}
,

where η > 0, σ > 0 are parameters and DTW(x, y) denotes the cost of dynamic

time warping (DTW; see Appendix A for a discussion) alignment between x and y.

Thus, the vertices of our results graph Gq = (Vq, Eq) correspond to audio segments.

Under the assumption that the query results contain audio segments corresponding
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to only a few different words or phrases, we expect Gq to exhibit an approximate

block structure in which the blocks correspond to these word types. Thus, we will

model Gq as being distributed as Gq ∼ ExpSBM(K,~n, b,Θ).

5.3.1 Modeling edge weights

Following a similar approach to that taken to the error model in the synthetic

experiments in Chapter 3, we will model the weights wx,y ∈ [0, 1] as being distributed

according to a one-dimensional subfamily of the beta distribution. In particular, we

will take the approach in which the beta distribution Beta(α, β) is reparameterized

in terms of its mean µ = α/(α + β) and “sample size” ν = α + β. To obtain a one-

parameter subfamily, we will assume that the sample size parameter ν is the same

across all blocks. That is, we will make the assumption that the distribution of wx,y

has the same ν value regardless of the block memberships b(x), b(y), so that only the

expected value of wx,y varies by block. This decision is consistent with an assumption

that the edge weights differ in expectation based on the block memberships of the

audio segments (e.g., based on whether or not the audio segments correspond to the

same word), but that the variance of wx,y about its mean does not depend on the

block memberships.

Fixing for now some global value for ν = α + β that we will specify later, and
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letting C > 0 denote a normalization constant, wx,y has density

f(w | α, β) = Cwα−1(1− w)β−1,

and has log-likelihood

log f(w | αx,y, βx,y) = (αb(x,y − 1) logwx,y + (βx,y − 1) log(1− wx,y) + logC

= (αx,y − 1) log
wx,y

1− wx,y
+ (βx,y + αx,y − 2) log(1− wx,y) + logC

= (µx,yν − 1) log
wx,y

1− wx,y
+ (ν − 2) log(1− wx,y) + logC,

where we have used the fact that under this reparameterization we have ν = α + β

and µ = α/ν. Following the framework outlined in Section 4.5, we find that we will

want to align the matrix

A = [Ax,y] =

[
log

wx,y
1− wx,y

]

to the matrix

B = [Bx,y] =
[
µb(x),b(y)ν − 1

]
,

where the block assignment function b : V → [K] is chosen to reflect our choice of

block sizes (see Section 5.3.3).
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5.3.2 Parameter Estimation

In the search task considered in Chapter 2, we had access to a set of approximately

ten thousand isolated, labeled word examples. We will use those word examples to

estimate the entries of the block parameter matrix Θ. In Chapter 4, we estimated a

new block communication matrix Λ for each graph we considered. Such an approach

is less feasible here. Instead, we will estimate one matrix of parameters Θ, and use

it for all queries. In particular, we are interested in two parameters, µ1 and µ2, the

mean similarity between same-word and different-word segments, respectively. Our

parameter matrix Θ will then have

Θi,j =


µ1 if i = j

µ0 otherwise,

reflecting the fact that we assume that each block of our SBM corresponds to a

different word type.

Denoting our collection of labeled word examples by M , let c : M×M → {0, 1} be

such that c(x, y) = 1 if x and y have the same word label and c(x, y) = 0 otherwise.

Define the sets

M1 = {{x, y} : c(x, y) = 1}, M0 = {{x, y} : c(x, y) = 0}.
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Using these labeled examples, we can estimate the block probability parameters by

µ̂1 =
1

|M1|
∑

{x,y}∈M1

κ(x, y)

µ̂0 = Λ̂2,1 = Λ̂2,2 =
1

|M0|
∑

{x,y}∈M0

κ(x, y).

Of course, more complicated approaches to estimating these parameters are possible,

for example by trying to separately estimate Λ̂1,2 and Λ̂2,2 to better capture block

structure that may be present in the non-matching results, but in the present setting,

only the sets M0 and M1 are sensible ones to ask about.

Applying this estimation to the reference set of 10,383 word examples used in

Chapter 2, we obtain estimates µ̂1 = 0.6332, µ̂0 = 0.2671. Alternate estimates can be

obtained based on a plug-in estimate, using the fact that µ = α/(α+β), where α and

β are the shape parameters of the Beta distribution. Maximum likelihood estimation

of the shape parameters applied separately to the sets {x, y} ∈ M1 and {x, y} ∈ M0

yields estimates

α̂1 = 4.5227, β̂1 = 2.6344

α̂0 = 4.0492, β̂0 = 11.0714,

from which we obtain plug-in estimates for the corresponding µ and ν parameters

µ̂1 = 0.6319, ν̂1 = 7.1570

µ̂0 = 0.2678, ν̂0 = 15.1206,
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which we will use below. We choose as our global, fixed value of ν the inter-match

parameter estimate ν̂ = ν̂0 = 15.126. Empirically, we found little to no difference in

performance between using ν̂ = ν̂0 and ν̂ = ν̂1.

5.3.3 Choosing block sizes

It remains to address how we will choose the sizes of the blocks when performing

VN reranking. There are a number of possible block structures to attempt to capture.

For the time being, we will sketch one, which we will call the flat structure. We assume

only two blocks, one corresponding to the segments that are correct matches and one

corresponding to the segments that are not correct matches (“non-matches”). Rather

than attempting to estimate the sizes of these two blocks in Gq, we will take advantage

of the LML ranking function, defined in 4.2.1. Roughly speaking, LML ranks the non-

seed vertices according to how much the likelihood improves when each given vertex

is added to the interesting block. Thus, we take the interesting block to have size

u1 = 1, and take the other block to be of size u2 = rq − 1.

5.4 Experiments

We turn now to assessing whether or not VN reranking can improve the query

results in the S-RAILS system presented in Chapter 2. For each of the 2756 unique

queries in the development set, we will rerank the results returned by the S-RAILS
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system presented in Chapter 2. In Chapter 2, we considered the effect of beamwidth

B on system performance. In the present setting, the computational costs of the

maximum likelihood VN procedure make it infeasible to rerank more than the top

1,000 results. In light of this, we limit ourselves to the case of beamwidth B = 1, 000.

Baseline results are summarized in Table 5.1 for various settings of the signature

length and number of of permutations. All experiments use the signature threshold

τthresh = 0.06, as in Chapter 2. We refer the reader to Chapter 2 for a discussion of

the three evaluation metrics FOM, OTWV and P@10.

Table 5.1: Baseline S-RAILS performance on the development search collection,
averaged over all query types as a function of signature length S and number of
permutations P for beamwidth B = 1, 000 and using signature threshold τthresh =
0.06. All scores are percentages.

Median Example Best Example
S P FOM OTWV P@10 FOM OTWV P@10

64 4 19.6 13.6 16.0 43.2 31.0 52.3
64 8 24.1 16.4 17.3 48.3 33.2 54.1

128 4 21.6 14.4 19.0 44.5 31.8 57.4
128 8 27.3 16.9 19.9 52.4 37.1 62.1
256 4 25.0 17.4 27.0 46.4 35.1 60.2
256 8 31.7 20.2 28.0 52.7 38.6 63.0
512 4 21.7 15.5 22.8 45.9 34.0 59.3
512 8 28.2 19.0 24.3 52.7 38.4 64.1

1024 4 22.0 16.6 24.4 45.9 34.3 58.7
1024 8 29.5 19.3 25.3 52.7 38.9 62.9

We recall that using beamwidth B = 1, 000 as in Table 5.1 corresponds to retriev-

ing the nearest 2000 segments. For a given query segment q, merging the overlapping

result segments yields rq ≤ 2, 000 results. Ideally, we would reorder all rq results,

but the computational complexity of ML-based VN makes it infeasible to reorder
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more than about 1,000 segments. Thus, we will settle for reordering only the top

min{ntop, rq} results most similar to q under κ(q, ·), where ntop ≤ 1, 000 is a num-

ber that we must choose. As described in the previous section, our first attempt at

reranking consists of aligning the query results to a two-block model, in which the

interesting block has size n1 = 1. The results of this reranking are summarized for

ntop = 500 in Table 5.2, and for ntop = 1, 000 in Table 5.3. In both tables, we list

the relative improvement with respect to the results listed in Table 5.1, given as a

percentage, so that large positive numbers correspond to marked improvements over

the baseline performance in Table 5.1, while negative numbers correspond to perfor-

mance inferior to that seen in the baseline system. We found that performance was

fairly stable over choices of the size of the interesting block n1 up to n1 = 25, at which

point results tended to degrade slightly with respect to those in Tables 5.2 and 5.3.

Table 5.2: VN-reranking S-RAILS performance on the development search collec-
tion, averaged over all query types as a function of signature length S and number
of permutations P for interesting block size n1 = 1, reranking set size ntop = 500,
beamwidth B = 1, 000 and using signature threshold τthresh = 0.06. All scores are
relative improvement (i.e., percentage) with respect to the scores in Table 5.1.

Median Example Best Example
S P FOM OTWV P@10 FOM OTWV P@10

64 4 6.6 5.5 36.4 3.8 7.1 8.7
64 8 7.9 0.8 34.9 3.5 11.1 11.3

128 4 3.5 1.2 10.5 1.9 4.2 6.0
128 8 4.4 -5.0 17.7 2.2 0.4 2.6
256 4 0.4 -5.7 -0.8 0.3 1.9 -1.2
256 8 -0.3 -12.4 -5.8 0.5 -1.5 0.6
512 4 0.2 -3.3 -1.7 0.3 2.9 1.1
512 8 -0.4 -11.5 -3.1 0.4 -2.5 -1.8

1024 4 0.4 -7.6 0.4 0.5 0.7 0.5
1024 8 0.0 -11.4 -1.6 0.9 -1.8 0.2
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At a high level, we see that VN reranking tends to improve performance for the

case of signature length S = 64, but tends to have a smaller effect and sometimes

even hurts performance for longer signatures. It also appears to be the case that

VN reranking improves performance more (or hurts it less) in the case of P = 4

compared to P = 8 permutations. The effects of both signature length S and number

of permutations P may be explained by the fact that smaller values of S and P

correspond to coarser results sets. When S and P are large, the approximation of the

cosine distance by the S-RAILS index is better, and thus the segments it retrieves are

more likely to be the correct ones (and are more likely to be correctly ranked), leading

to less benefit in reranking of the results. Comparing the ntop = 500 reranking in

Table 5.2 against the ntop = 1, 000 reranking in Table 5.3, we see that ntop = 500 tends

to yield marginally better improvements over the baseline scores. This is surprising

at first, since we saw in Chapter 4 that working under the stochastic block model,

more vertices tended to yield better nomination. In the present setting, the number

of vertices of interest does not grow linearly with the total number of vertices– recall

from Chapter 2 that the queries in the development set have between 2 and 188 times

in the development search collection. Thus, it is likely that reranking ntop = 1, 000

results rather than ntop = 500 serves primarily to introduce noise in the form of

additional edges rather than to add more correct matches to Gq, which would reduce

the variance in our block assignments.
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Table 5.3: VN-reranking S-RAILS performance on the development search collec-
tion, averaged over all query types as a function of signature length S and number
of permutations P for interesting block size n1 = 1, reranking set size ntop = 1, 000,
beamwidth B = 1, 000 and using signature threshold τthresh = 0.06. All scores are
relative improvement with respect to the scores in Table 5.1.

Median Example Best Example
S P FOM OTWV P@10 FOM OTWV P@10

64 4 5.5 2.1 33.7 4.1 4.0 10.8
64 8 8.2 -2.7 26.2 5.4 8.2 11.0

128 4 3.3 -0.3 5.0 0.9 2.4 4.4
128 8 2.1 -7.5 11.1 1.6 -1.5 1.9
256 4 -0.1 -7.4 -1.9 0.0 1.6 -2.2
256 8 -1.5 -14.2 -6.1 0.3 -2.0 0.3
512 4 -0.4 -5.1 -3.3 0.2 2.4 -0.6
512 8 -1.4 -12.8 -1.8 0.3 -3.2 -3.5

1024 4 -0.1 -8.4 0.9 0.4 0.4 0.5
1024 8 -1.5 -12.2 -0.9 0.9 -2.3 1.0

It is possible that by the nature of the LML ranking function used in our VN

reranking procedure and the fact that we have used an interesting block of size 1,

much of the ranking that we obtain is driven simply by the similarity of individual

segments to the query segment. To isolate this effect, we introduce the kernel rerank-

ing procedure. The S-RAILS system performs approximate near neighbor retrieval on

the embeddings f(S) = {f(x) : x ∈ S} ⊆ Rd by replacing computation of the cosine

distance between f(q) and f(x) with an approximation based on Hamming distance

between signatures. Thus, the results in Table 5.1 correspond to a ranking of Rq

according to descending value of sI(x, q). The similarities {sI(x, q) : x ∈ Rq} are ap-

proximations of cosine similarities s(f(x), f̃(q)), which are in turn meant to reflect the

structure of κ, and it is natural to rerank Rq by evaluating the ersatz function κ(q, x)
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on each of the query results x ∈ Rq and rerank the results Rq = {x1, x2, . . . , xrq}

according to permutation ρ ∈ Srq so that κ(xρ(1), q) ≥ κ(xρ(2), q) ≥ · · · ≥ κ(xρ(rq), q).

We will refer to this as kernel reranking. Note that since the query is the only seed,

this approach is equivalent to performing restricted-focus VN on the graph Gq.

Effectiveness of the kernel reranking in improving the baseline S-RAILS result is

summarized in Table 5.4. As in Tables 5.2 and 5.3, all scores are reported in relative

improvement compared to the baseline. We see that kernel reranking is broadly

comparable to VN-based reranking, with kernel reranking sometimes outperforming

VN-based (e.g., in P@10 for S = 128) and sometimes falling short of it (e.g., in P@10

for S = 64). On the whole, VN-based reranking does not appear to improve the

S-RAILS baseline performance any more than the simpler, computationally cheaper

kernel reranking.

Table 5.4: Kernel-reranking S-RAILS performance on the development search col-
lection, averaged over all query types as a function of signature length S and num-
ber of permutations P for beamwidth B = 1, 000 and using signature threshold
τthresh = 0.06. All scores are percentage relative improvement over the baseline per-
formance in Table 5.1.

Median Example Best Example
S P FOM OTWV P@10 FOM OTWV P@10

64 4 7.4 3.3 38.3 5.0 5.7 12.8
64 8 9.8 -3.5 24.5 8.2 10.7 11.4

128 4 3.5 0.6 5.0 1.9 4.1 4.8
128 8 2.9 -6.0 8.0 2.3 -0.6 3.0
256 4 0.4 -6.1 -4.1 0.2 2.1 -0.1
256 8 -0.7 -12.3 -6.5 0.5 -1.5 0.8
512 4 0.2 -3.6 -1.7 0.3 2.9 0.7
512 8 -0.4 -11.1 -6.0 0.4 -3.0 -2.4

1024 4 0.4 -7.0 -1.0 0.5 0.9 2.5
1024 8 -0.3 -11.2 -2.0 0.9 -2.6 -0.1
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How should we account for the failure of the VN-based reranking to improve

appreciably on the kernel-based reranking? We have already mentioned that choice

of interesting block size parameter n1 has fairly little effect on performance. One

possible explanation is that the VN-based reranking fails to adequately capture the

block structure more broadly. Suppose, for example, that among the non-matching

segments there are segments corresponding to 3 other distinct word types. This would

manifest as a 4-block structure, which the flat structure used above in Tables 5.2 and

5.3 is unable to capture. In experiments, we have tried varying the number of blocks

K and the selection of the parameter matrix Θ. Our results largely suggest that

modeling every set of query results as comprising exactly K blocks for some fixed

choice of K tends only to degrade as K increases past 2.

Ultimately, it seems that either our assumption of block structure is incorrect

or the noise associated with the DTW distance is too large for VN to overcome. As

discussed in Chapter 2 and Appendix A, DTW is a notoriously poor measure of audio

similarity. In particular, the sensitivity of DTW to speaker and channel variability

is such that it likely that some segments that should be labeled as query matches

will often not have this fact accurately reflected in the similarity graph Gq. An

examination of a selection of known correct matching segments suggests that this is

indeed the case, though a more thorough examination of this fact is beyond the scope

of this chapter. Experiments similar to the synthetic experiments in Chapter 4, this

time using the Beta SBM described above with the estimated values for Θ and ν̂, show
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that accurate nomination is possible when the data are actually generated according

to the posited model. These results suggest that the lackluster performance of the

reranking techniques explored above is likely due to model misspecification, most

likely owing to the noise associated with DTW distance.

One possible explanation for the poor performance of VN-based reranking is that

there is only one query example, i.e., only one vertex in the interesting block. The

result is that our ranking is based upon similarities to only a single seed vertex, and

this signal is liable to be swamped by the hundreds of similarities between the non-

seed vertices. One possible solution to this is to artificially increase the number of

seed vertices by artificially inflating the set of interesting seeds with multiple copies

of the query vertex. Experiments with this approach have shown mixed results, and

largely match those seen in Tables 5.2, 5.3 and 5.4.

5.4.1 Augmenting Query Examples

We saw in Chapter 4 that the accuracy of vertex nomination improves with the

availability of additional seed vertices. It stands to reason that additional seed vertices

should improve the performance of VN reranking of S-RAILS output. Given a query

of a certain word type, we can augment the query segment with additional examples of

the same word type. It is expected that these augmenting seeds will provide additional

block structure for the ML-based VN reranking to take advantage of. Adding these

seeds also provides an opportunity to investigate whether the comparatively small
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improvement yielded by VN reranking is due to noise and model misspecification or

merely to a dearth of seed vertices. In this section we briefly explore how the presence

of additional seeds influences reranking.

As above, we assume that all seeds come from the interesting block. That is, we

have mi = 0 for i 6= 1. Thus, specifying the number of seed vertices amounts to

choosing the number of augmenting seeds m1 − 1. For each query q in the S-RAILS

development set described in Chapter 2 and revisited above, we choose m1− 1 query

examples at random from the other query examples of that type. In the event that

there exist fewer than m1 unique examples of the query word type, we choose seeds

with replacement. Having chosen m1 − 1 additional query examples, we can add

these to the results graph Gq to obtain a new graph G̃q. These augmenting seeds

provide additional graph structure, and we can proceed with vertex nomination as

above and in Chapter 4. This augmenting procedure can also be naturally extended

to the kernel-based reranking described above. Instead of ordering the query results

xi ∈ Rq according to κ(q, xi), we rank the query results according to the augmented

kernel function

κ̃(x) =

m1∑
j=1

κ(q̃j, x),

where q̃j denotes the j-th query example (i.e., j indexes the query and its augmenting

seeds).

Varying m1 (note that m1 = 1 recovers the reranking procedures described earlier

in this chapter), we can see how the number of seed vertices influences reranking,
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summarized in Figure 5.1, which shows the effect of the number of seeds m1 on

reranking quality. Owing to the fact that OTWV and FOM are primarily functions

of recall and false alarm rate, rescoring does little to improve them, as we see in Tables

5.2, 5.3 and 5.4. As such, we restrict our attention here to precision at 10 (P@10).

Turning our attention to Figure 5.1, we see that more augmenting seeds improves

the performance of both the VN-based reranking and its kernel-based counterpart,

and that both techniques are largely identical in their performance. This is evidence

that augmenting the query segment with additional examples does indeed improve

system accuracy. We note that VN-based reranking appears to have a slight edge

on kernel reranking in the S = 64, P = 4 setting, which is particularly promising

for the case of rescoring, since this corresponds to the setting in which we expect

precision (prior to rescoring) to be especially low. All told, however, the performance

seen in Figure 5.1 is largely in agreement with that seen in Tables 5.2, 5.3 and 5.4,

in that VN does not appear to improve substantially over kernel-based reranking,

even with additional seed vertices. This lends evidence to our speculation above that

model misspecification, both in the model of edge weights and the graph structure

(i.e., number of blocks) is overwhelming whatever additional information would be

otherwise gained by VN’s use of the full similarity graph.

Other settings of the S-RAILS parameters S and P showed performance broadly

similar to that seen in Figure 5.1, with larger signature lengths S and larger numbers

of permutations P yielding generally better performance, but with the gain over the
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Figure 5.1: Performance of augmented reranking on the development set, measured
by precision at ten (P@10), as a function of the number of seeds, for different S-
RAILS parameter settings (signature length S and number of permutations P ). The
plots show the median P@10 score as a function of the number of seeds for the VN-
based (orange) and kernel-based (blue) augmented reranking for (a) signature length
S = 64 bits, and P = 4 permutations, (b) signature length S = 128 bits and P = 4
permutations, and (c) signature length S = 128 bits and P = 8 permutations. The
black dashed line denotes the performance of the baseline S-RAILS system for the
given signature length and number of permutations.

baseline decreasing somewhat at those higher levels, similar to the patterns seen in

Tables 5.2, 5.3 and 5.4. Performance was also largely independent of graph structure

choices such as the size of the first block and the number of blocks, similar to that

described in our experiments in the previous section.

5.5 Discussion

We have introduced a method for reranking query results based on the maximum-

likelihood vertex nomination scheme described in Chapter 4, and examined its ability

to improve the S-RAILS system presented in Chapter 2. Our experiments suggest

limited improvement, especially for short signature lengths and smaller number of
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permutations, but much of this improvement is also exhibited by a less complex

reranking scheme based solely on the DTW distance between results and the query

itself.

The failures of the VN-based reranking system to more markedly improve S-RAILS

performance are plausibly explained either by model misspecification or by a lack of

seed vertices. Additional experiments, in which the query segment is supplemented

with additional seed vertices in the similarity graph, suggest that this failure is due

primarily to the former. These model misspecifications are due primarily to two

factors. First, the pairwise similarities are subject to large amounts of noise due to

their being based on DTW alignment. Secondly, the block structure assumed by the

exponential family SBM does not appear to accurately capture the structure of the

data in most cases. In the specific case of the S-RAILS system, there is little we can

do about the former point, short of developing a better method for assessing audio

similarity, but one might consider applying denoising methods (see Appendix B) to

the matrix of similarities in hopes of alleviating the effect of high variance in the

DTW similarities.

On the other hand, a wide range of more sophisticated approaches to modeling the

block structure in Gq are possible, and are good targets for future work. For example,

one might attempt to model the structure inGq separately for each query q rather than

estimating a single parameter matrix Θ to be used across all queries. Similarly, we

might altogether abandon any attempt at explicitly modeling block structure and back
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off to permuting the weight matrix of Gq to maximize a modularity-based objective

or use some other VN scheme (Fishkind et al. 2015). A key challenge in future work

on VN-based reranking will be to separate the effects of model misspecification in the

SBM itself from the failure to accurately model the edge distributions.
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Chapter 6

Discussion and Future Work

In this thesis, we have explored sources of error in a commonly-used framework

for similarity search over large data sets. Applying tools from graph inference, we

have proved theoretical results in Chapters 3 and 4 showing that these errors can

be controlled, and we have explored the efficacy of these theoretical approaches in

a speech processing search task in Chapters 2 and 5. In closing, we will briefly

recapitulate these results and discuss directions for future work.

6.1 The S-RAILS System

In Chapter 2, we introduced the S-RAILS system for large-scale audio search.

The S-RAILS system performs audio search by embedding audio segments according

to Laplacian eigenmaps and retrieving query results using fast approximate near-
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neighbor retrieval techniques. We presented this system to serve as a baseline with

which investigate the accuracy of our theoretical results and to serve as an illustration

of the search pipeline first introduced in Chapter 1.

We saw, firstly, that embedding speech audio via Laplacian eigenmaps (Belkin and

Niyogi 2003; Belkin et al. 2006) yielded performance on a word discrimination task

superior to several other embedding methods. Improving this embedding procedure

is a promising avenue for future work. We have seen in empirical experiments that a

simple change of speech features, such as from PLP to FDLP as in Chapter 2. As such,

further exploration of how choice of features influences system performance is quite

warranted. It is unlikely, however, that any choice of feature will entirely correct for

the underlying inadequacy of assessing segment similarity via DTW alignment cost.

As such, one might consider learning transformations of speech features or sequences

thereof with the explicit objective of making the transformed feature segments more

conducive to comparison via DTW. For example, a transformation that identifies

likely phones or syllables and renormalizes their lengths would lessen the outsize

influence of vowel segments on DTW alignment cost. In a different direction, one

might consider how our choice of reference segments influences the quality of the

resulting embeddings in the case of the embeddings that made use of the reference

set. For example, what is the effect of using a reference set taken from another

language, or using a reference set that consists of more haphazardly-chosen segments,

rather than whole words?
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Laplacian eigenmaps embeddings using the normalized graph Laplacian have the

advantage of being comparatively robust to noise in pairwise similarity measurements,

as we proved in Chapter 3. Nonetheless, a more thorough exploration of which types

of embeddings are most effective is certainly warranted, but beyond the scope of

this work. For example, in Chapter 2, we compared Laplacian eigenmaps against

many other embeddings and found it to be largely superior, but we did not attempt

a comparison against other manifold-based techniques such as those discussed in

Appendix B. Similarly, as discussed in Appendix C, there are many existing methods

for near neighbor retrieval, and it is entirely possible that the one used in the S-RAILS

system as presented in Chapter 2 is not optimal for the task at hand. As such, a

comparison of near neighbor retrieval techniques and the associated tradeoffs in terms

of speed, signature length and accuracy would likely lead to marked improvements in

the S-RAILS system.

In the S-RAILS system, we would ideally like to embed the entire search collection

according to a single Laplacian eigenmaps embedding, rather than using the out-

of-sample extension based on a reference set. To do this precisely would require

computing all the entries of a kernel matrix with one row for each segment, an utterly

infeasible number of DTW alignments. Our results in Chapter 3 suggest that we

might instead back off to an embedding that only sparsely populates this massive

matrix. Initial attempts to apply such an approach met with failure, owing to the

fact that most pairs of speech segments have high DTW alignment cost. This made it
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necessary to evaluate the majority of the pairwise DTW alignments before non-trivial

structure in the embeddings would emerge. Nonetheless, it seems quite possible that

additional engineering effort might overcome this hurdle, for example, by following

the centroid-based approach taken in Chapter 2.

6.2 Convergence of Sparse, Noisy Lapla-

cian Eigenmaps

In Chapter 3, we turned to the question of how the Laplacian eigenmaps em-

beddings used in the S-RAILS system behave in the presence of noisy in the sim-

ilarity measurements κ(x, y) and in the presence of occlusion of the kernel matrix

K = [κ(x, y)]. We showed that Laplacian eigenmaps embeddings are robust to such

noise and occlusion, and that in particular, the Laplacian eigenmaps embeddings used

in Chapter 2 maintained their performance on the word discrimination task even in

the face of this noise and occlusion.

A natural question in light of our theoretical results is the extent to which these

results can be extended to other manifold-based embedding methods. It seems clear

that a similar analysis can be applied to, for example, diffusion maps (Coifman and

Lafon 2006), owing to the normalization structure of the embedding, but it is less clear

whether such results can be obtained for other embeddings discussed in Appendix B,

such as MDS.
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The motivation for the analysis in Chapter 3 came from the S-RAILS system, in

particular from the facts that (a) DTW is at best an approximation to our intended

notion of segment similarity, (b) DTW is expensive to compute precisely. However,

our error model in Chapter 3 fails to fully capture some of our larger concerns about

DTW, namely that an unbiased error model is likely insufficient. In Chapter 3,

we briefly discussed the matter of biased or nonlinear error models, and sketched

how our analysis could be extended to those cases. A more thorough exploration,

perhaps relating the size of the bias or the structure of the errors to downstream task

performance, would further our understanding of how these embeddings will tend

to behave when applied to real data, which, as we saw in Chapter 5, often has far

more complicated noise structure. A still more ambitious tack would be to relax the

independence assumptions in Chapter 3.

We note the recent result of Tang and Priebe (2016), which gives a central limit

theorem for entries of the top eigenvectors of the graph Laplacian of a random dot

product graph (Young and Scheinerman 2007). We suspect that the techniques pre-

sented therein might be extended to the model considered in Chapter 3.

6.3 Vertex Nomination

In Chapter 4, we presented the vertex nomination problem, along with a maximum-

likelihood based solution. We proved the consistency of this approach, i.e., its ability
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to correctly recover the vertices of interest, under the stochastic block model, and

sketched its extension to attributed graphs and to the broader class of exponential

family SBMs, in which edges of the graph are distributed according to a one-parameter

exponential family. We demonstrated the utility of ML-based VN both on synthetic

data and on real-world data sets.

A natural direction for future work related to vertex nomination is to extend the

results to a broader class of random graph models. In the former case, a natural first

step would be to work in the random dot product graph (Young and Scheinerman

2007), but here already a few technical challenges arise, primarily due to the loss

of block structure– the in absence of block structure, it is not clear how best to

incorporate information from seed vertices. Indeed, it is not even clear a priori how

to define the notion of interesting vertices, in the absence of an interesting block.

More broadly, one might consider extending the results of Chapter 4 to the degree-

corrected SBM or other commonly-used, more realistic models of networks. Indeed,

such extensions are of the utmost importance for practitioners working with larger

networks, which do not always exhibit the block structure assumed by the SBM

and exhibited (to a degree) by the comparatively small real data sets considered in

Chapter 4.

The main drawback of the ML-based vertex nomination scheme is that it is only

feasible for graphs of a few thousand vertices at the very most (we found that graphs

of 1000 vertices could typically be processed in MATLAB in between 20 and 40
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minutes). One possible solution is to adopt a coarse-to-fine approach, somewhat

similar to the rescoring framework adopted in Chapter 5, in which we use the fast

spectral nomination scheme to retrieve a large set (say, 1000) of candidate vertices,

then use ML-based VN to perform a more nuanced reranking. It is likely that this

approach will encounter similar problems to those seen in Chapter 5, where modeling

the block structure of the coarse-grained results proved challenging.

6.4 Reranking using VN

In Chapter 5, we used the ML-based VN approach presented in Chapter 4 to

devise a rescoring scheme for similarity search in the framework presented in Chapter

1. We outlined the major the design choices required to apply this rescoring to actual

data, and illustrated one possible set of design choices in the context of rescoring the

results of the S-RAILS system first presented in Chapter 2. We demonstrated that

VN-based rescoring of S-RAILS query results tends to improve the evaluation metrics,

especially for system settings that correspond to coarser-grained retrieval. However,

we also demonstrated that a simpler reranking scheme, based only on computation of

similarity scores between the query results and the query, rather than on all pairwise

similarities between the query results, as in the case of VN. We concluded that the

failure of the VN reranking to improve significantly over the simpler approach was

likely due to a combination of noise in the pairwise DTW scores and inability to
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correctly capture the structure of the similarity graph Gq.

As demonstrated in the synthetic experiments in Chapter 4 and the similar ex-

periments mentioned in Chapter 5, data generated from the correct model (i.e., in

the case of Chapter 5, a submodel of the Beta distribution) is handled, by and large,

correctly. Thus, first steps toward improving the performance of VN-based reranking

is to determine a more suitable model either for the DTW similarities themselves or

for the structure of the similarity graph. One possible approach would be to replace

the ML-based vertex nomination with an approach that depends less heavily on es-

timating model parameters. For example, we might devise a VN scheme based on

maximizing modularity (Newman 2006b), though the equivalence of maximum mod-

ularity clustering and maximum likelihood clustering in the special case considered

by Newman (2016) suggests that this may not be the best way forward. A more

thorough understanding of how modeling choices (e.g., number of blocks and their

sizes) influence rescoring performance would be ideal. While a theoretical approach

to this problem seems challenging, further empirical exploration of these questions

might lead to VN query reranking that outperforms its simpler counterpart.
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Large-Scale Audio Search

In this section, we give an overview of large-scale speech audio search as it pertains

to the work presented in this thesis. As we cannot hope to give a complete overview

of speech processing in such a small space, and we refer the reader to Quatieri (2002)

for more thorough discussion of processing and representing the speech signal. For a

discussion of the statistical models typical of speech recognition, we refer the reader

to Jelinek (1997), and Rabiner (1989); Gales and Young (2008) for a discussion of

hidden Markov models in particular.

A.1 Speech Processing: an Overview

The standard approach to speech recognition begins by representing the speech

signal by a series of vectors called frames. Each frame reflects the speech signal over
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a small span of time, typically about 25 ms, typically capturing relevant spectral

information in the signal, as well as change in the signal Quatieri (2002); Athineos

and Ellis (2003); Thomas et al. (2009). To model this sequence of frames, it is typical

to break the generative process into two pieces. The first, called the acoustic model

seeks to capture the probability of generating a sequence of speech frames based on

a sequence of words (e.g., a sentence). A second model, called the language model,

attempts to model the sequences of words themselves. Thus, the task of speech

recognition is, in short, to solve the maximization (see, for example, Jelinek 1997)

Ŵ = arg max
W

PLM(W )PAM(A | W ),

where A is a sequence of frames and the maximization is over all possible word

sequences W .

We are concerned here, primarily, with the acoustic model PAM. Typically, model-

ing of the speech signal takes place under an assumption of frame-level independence,

such as in the case of hidden Markov modeling (Gales and Young 2008). The typ-

ical approach consists of choosing, for a given word sequence W , a corresponding

sequence of hidden states, one for each frame in the acoustic signal A. These hidden

states are typically assumed to correspond, roughly, to basic units of speech, e.g.,

phones or sequences thereof. explain sequences of these hidden states as generated

based on a given word sequence. The acoustic model must account for both the

205



APPENDIX A. LARGE-SCALE AUDIO SEARCH

hidden state trajectories and the state-conditional probabilities of observing the cor-

responding frames. This is done, classically by modeling the state transitions as a

stationary Markov chain and the state-conditional distributions as Gaussian mixture

models (GMMs). This HMM-GMM approach is quite common (Jelinek 1997; Gales

and Young 2008), though in recent years the Gaussian mixture models have been in-

creasingly replaced with feed-forward deep neural nets (DNNs; Mohamed et al. 2012),

with some approaches doing away with the HMM-GMM framework entirely in favor

of more complicated neural sequence models (Sak et al. 2014, 2015). Indeed, recent

approaches along these lines have, for the first time, obtained error rates comparable

to humans on a transcription task (Xiong et al. 2016). We note that these models,

while they improve upon the expressive power of the classical models, tend to suffer

from the same drawbacks outlined in Chapter 2. Most importantly, these models

require massive collections of supervised training data.

A.2 Keyword Search

The goal of keyword search is to locate occurrences of a given utterance, called the

query, in a large collection of speech audio. The standard approaches to this problem

have made use of lattice indexing techniques (Miller et al. 2007). These approaches

operate by first building a lattice, a directed graph that captures which words were

likely to have been spoken over different intervals of time. A path of directed edges
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through this lattice corresponds to a sequence of words, and numbers associated

with the edges allow us to assign probabilities or scores to these paths (Jelinek 1997;

Allauzen et al. 2004; Chelba and Acero 2005) Lattice indexing proceedings by building

a structure for finding in the lattice all words from a given vocabulary V . Typically

(see, for example, Miller et al. 2007), this structure locates, for each word w ∈ V , a

set of arcs in the lattice likely to correspond to instances of word w. Given a query

word q, the standard speech recognition pipeline is applied to q to obtain a ranking

of V (or sequences of words from V ), and occurrences of the words or word sequences

appearing high in this ranking are retrieved from the index. These lattice-based

techniques can be extended to query-by-example search, in the query q is presented

as an audio segment, with some additional work. For example, in Parada et al.

(2009), an acoustic model is used to map the query audio to a sequence of states

before applying standard lattice indexing.

A.3 Dynamic Time Warping

These lattice-based techniques have made it possible to search thousands of hours

of speech audio quickly, but they require large collections of training data, both

in the form of annotated audio and large collections of text. As such, the standard

approaches to speech audio search are infeasible in the zero- and low-resource settings,

where little to no audio is available annotated at the requisite level of detail. These
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constraints have motivated the use of dynamic time warping (DTW; Sakoe and Chiba

1978) to avoid the need for large collections of annotated training data (Park and

Glass 2008; Jansen et al. 2010; Glass 2012; Anguera and Ferrarons 2013).

DTW seeks to align two time series so as to minimize the total cost of that

alignment. Formally, let X denote the set of all vector times series such that for

all Xi ∈ X , we have X = x
(i)
1 , x

(i)
2 , . . . , x

(i)
mi , where each xj ∈ Rp. Suppose that we

also have a distance function ρ : Rp × Rp 7→ R≥0. An alignment π of sequence Xi

with sequence Xj can be represented by a pair of functions π1 : [pij] → [mi] and

π2 : [pij]→ [mj], obeying

1 = π1(1) ≤ π1(2) ≤ · · · ≤ π1(pij) = mi

1 = π2(1) ≤ π2(2) ≤ · · · ≤ π2(pij) = mj,

for some pij ≤ mi +mj − 1, and

(π1(k + 1)− π1(k), π2(k + 1)− π1(k)) ∈ {(0, 1), (1, 0), (1, 1)}

for all 1 ≤ k < pij. Given an alignment π specified by functions π1, π2, we can define

the cost of alignment π as

D(Xi, Xj, π) =

pij∑
k=1

ρ(x
(i)
π1(k), x

(j)
π2(k)).
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With this definition in hand, the DTW distance between time series Xi and time

series Xj is given by

DTW(Xi, Xj) = min
π∈A(Xi,Xj)

D(Xi, Xj, π),

where A(Xi, Xj) denotes the set of all alignments of Xi with Xj.

The DTW alignment of two sequences can be computed using standard dynamic

programming techniques (Bertsekas 2000). The näıve approach to DTW-based search

simply aligns the query audio with the search collection, as done in Park and Glass

(2008). Unfortunately, these approaches require time that scales as mimj, which is

infeasible if the sequences to be aligned are long. This has motivated a large body of

work dedicated to speeding up or approximating DTW alignment (see, for example,

Fu et al. 2005; Rakthanmanon et al. 2012, and citations therein). We discuss here

three approaches specific to speech recognition.

Zhang and Glass (2011) attempt to speed DTW computations by finding a lower

bound on DTW alignment that allows one to terminate computations early once it

is known that the alignment is too large. Their lower bound is designed to work

for alignment of phone posteriorgrams, in which each frame is a probability vector.

These frames, say u, v ∈ Rp, have a natural distance given by d(u, v) = − log u>v,

and since the entries of these vectors are non-negative, a simple lower bound on DTW

can be found by replacing one of the sequences to be aligned with an upper-bound
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envelope, defined by an entrywise sliding-window maximum. This lower bound can

be computed more quickly, at the cost of a weaker lower bound, by replacing the two

sequences to be aligned with piece-wise constant approximations.

The RAILS system (Jansen and Van Durme 2012), discussed in Chapter 2, avoids

computing an exhaustive alignment of the query audio with the search collection by

using fast approximate near-neighbor retrieval techniques (see Appendix C for dis-

cussion) to retrieve frame-level near-neighbors of the query frames from the search

collection. These near neighbor frames, along with their scores, yield a sparse ap-

proximation to the frame-level similarity matrix, the entries of which correspond to

similarities between frames in the query and frames in the search collection. Segments

of the search audio that are similar to the query give rise to approximately diagonal

lines in the similarity matrix. These diagonal lines appear as peaks in the Hough

transform (Duda and Hart 1972) of the matrix, and thus can be located quickly.

Mantena and Anguera (2013) present a similarly-motivated query-by-example

speedup that avoids computing a complete alignment of the query audio with the

search collection and instead performs a frame-level search, similar to that in the

RAILS system. This frame-level search finds frames from the search audio similar to

each of the frames in the query using a tree-like index structure in which nodes cor-

respond to k-means clusters. At query time, frame-level matches of the query frames

are retrieved from this index, and these are then expanded to segmental matches,

similarly to Jansen and Van Durme (2012).
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Representation Learning

In this section, we give an overview of work related to dimension reduction and

manifold learning. We cannot hope to comprehensively discuss this field, but we col-

lect here some of the landmark results and commonly-used algorithms as well as some

of the standard theoretical tools. Throughout this section, we will use x1, x2, . . . , xn

to denote a set of n observed data points, which are assumed to lie either in Euclidean

space Rp or in a more general space X . Which of these two spaces we are working in

at a given time will be clear from context.

B.1 Dimension Reduction

In many applications, we are given data points x1, x2, . . . , xn ∈ Rp, where the

dimension p is quite large. Indeed, we may have p� n, often termed large p small n
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problems (Johnstone and Titterington 2009). For p even moderately large, working

with p-dimensional data may be intractable, and this motivates the dimensionality-

reduction problem: broadly speaking, given points x1, x2, . . . , xn ∈ Rp, and given d�

p, we wish to find a mapping f : Rp → Rd such that the points f(x1), f(x2), . . . , f(xn) ∈

Rd approximate some property of the points {x1, x2, . . . , xn}. For example, we may

want to (approximately) preserve the distances between the data:

‖xi − xj‖ ≈ ‖f(xi)− f(xj)‖ for all i, j ∈ [n].

We note that the norms on either side of the preceding (approximate) equation need

not, in general, be the same norm.

Similar problems have been studied extensively in the theoretical computer science

literature, but these metric embedding results are largely outside the scope of this

thesis. We refer the reader to the excellent surveys Indyk (2001) and Linial (2002).

B.1.1 Random Projections

A classic approach of dimensionality reduction is given by the celebrated Johnson-

Lindenstrauss Lemma (Johnson and Lindenstrauss 1984). We state here the version

proved in Dasgupta and Gupta (2003), though we note that many variants of this

theorem have been published improving the bounds in various ways and extending

the kinds of random functions for which such theorems hold. See, for example, Kane
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and Nelson (2014); Larsen and Nelson (2016) and citations therein.

Theorem 8. For any 0 < ε < 1, if d ≥ 4(ε2/2 − ε3/3)−1 log n, then for any set of

n points x1, x2, . . . , xn ∈ Rp, there exists a function f : Rp → Rd such that for all

i, j ∈ [n]

(1− ε)‖xi − xj‖2
2 ≤ ‖f(xi)− f(xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2. (B.1)

The function f can be found in randomized polynomial time (i.e., O(nc) runtime for

some constant c ≥ 0 and succeeds with constant probability).

In Dasgupta and Gupta (2003), the function f is taken to be a projection onto

a randomly-chosen d-dimensional subspace of Rp, but as mentioned above, other

versions of the lemma are possible. For example, one can prove a similar result

for the case where the map f is given by a matrix of 0-mean Gaussians, (Baraniuk

et al. 2008). Theorems of this sort are examples of the concentration of measure

phenomenon (Milman and Schechtman 1986; Boucheron et al. 2013), in which a sum

of random variables lies, with high probability, close to its expected value.

B.1.2 PCA and Related Methods

A now-classic dimensionality-reduction technique in machine learning is principle

component analysis (PCA; Jolliffe 2002), in which the data are projected onto the top

d eigenvectors of the sample covariance matrix. That is, if C ∈ Rp×p is the sample

covariance matrix of an i.i.d.sample X1, X2, . . . , Xn ∈ Rp, we take f(Xi) to be the pro-
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jection of Xi onto the d eigenvectors of C with largest-magnitude eigenvalues (equiva-

lently, onto the top d right singular vectors of the matrix X = [X ′1X
′
2 · · ·X ′n]T ∈ Rn×p,

where X ′i = Xi −
∑n

j=1Xj/n). Intuitively, PCA attempts to reduce the dimension-

ality of the data by projecting it onto a d-dimensional subspace that best-preserves

the covariance structure of the data.

Candès et al. (2011) considered performing PCA under the condition that a few

entries of the vectors X1, X2, . . . , Xn ∈ Rp are measured incorrectly. That is, for

each i = 1, 2, . . . , n and each j = 1, 2, . . . , p, there is a small probability that the

j-th entry of Xi is corrupted by arbitrary noise. Using techniques from compressed

sensing and sparse recovery (see Appendix D for a discussion of these techniques),

Candès et al. (2011) showed that low-dimensional structure present in the data can

still be (approximately) recovered via linear programming. We note that this work

was hardly the first to consider the problem of performing PCA in the presence of

non-Gaussian noise. For example, de la Torre and Black (2003) used an approach

inspired by M-estimators (Huber 2009; van der Vaart 2000) to develop a version of

PCA that is robust to outlier observations. Shahid et al. (2015) adapted the robust

PCA devised by Candès et al. (2011) by including additional structure in the form

of a similarity graph. We discuss graph-based approaches of this sort at more length

below in Section B.2.2.

We note that there exist a number of supervised variants of PCA, in which the

learned embedding takes into account known supervisory information in the form of
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labeled data {(xi, yi)}ni=1, where xi ∈ Rp and yi ∈ [k]. The classic example is linear

discriminant analysis (LDA; Rao 1948), in which the data are assumed to be generated

according to a mixture of k Gaussians with means {µj}kj=1 with shared covariance

matrix Σ. The goal of LDA is to find a d-dimensional projection of the data that

captures a maximal amount of the between-class variance and a minimal amount

of the within-class variance. LDA projects the data onto the top d eigenvectors of

the matrix S = C−1CB, where C is an estimate of Σ and CB is an estimate of the

between-class covariance, given by

CB =
1

k

k∑
j=1

(µ̂j − µ̂)(µ̂j − µ̂)T ,

where µ̂ is an estimate of the global mean and {µ̂j}kj=1 are estimates of the means of

the k Gaussians. Our goal is to find an orthonormal set of d vectors {uj}dj=1 ⊆ Rp

maximizing
k∑
j=1

uTj CBuj

uTj Cuj
.

A standard use of Lagrange multipliers (Boyd and Vandenberghe 2004) yields that

the solutions are the top d solutions to the eigenproblem CBu = λCu. We note that

it is common to apply shrinkage to the covariance matrix estimates as done in the

LDA embeddings presented in Chapter 2.

Metric learning to rank (MLR; McFee and Lanckriet 2010) is a supervised learning

technique that constructs a metric on {x1, x2, . . . , xn} that is well-suited for query-by-
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example and near-neighbor problems. Training data comes in the form of a ranking,

for each q ∈ {xi}ni=1, of the elements of {xi}ni=1 according to their quality as query

results for query q. McFee and Lanckriet (2010) use techniques from structural SVM

training (Tsochantaridis et al. 2005) to learn from these rankings a positive semidef-

inite matrix W ∈ Rp×p that specifies a distance

dW (x, y) =
√

(x− y)TW (x− y).

We observe that it is possible to embed the data {xi}ni=1 according to f(xi) = W 1/2xi,

and one can perform dimensionality reduction by choosing W to have rankW � p

and representing W 1/2xi in a suitable basis.

B.1.3 Kernel Methods

The assumption of linear structure inherent in PCA reduces our problem to one of

finding eigenvalues, but if the data have a more complicated nonlinear structure, PCA

may fail to capture it. One approach to this issue is to make use of the kernel trick

(Hofmann et al. 2008), in which we assume that the data have a linear structure in

some inner product space H. The kernel trick amounts to choosing a kernel function

k : Rp × Rp → R that is equivalent to the inner product in H. That is, so that

k(x, y) = 〈φ(x), φ(y)〉H
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for some function φ : Rp → H called the feature map. The kernel trick and related

techniques are widely used in machine learning and statistics owing to the simple and

elegant properties of positive definite kernels and reproducing kernel Hilbert spaces

(RKHS; Hofmann et al. 2008; Berlinet and Thomas-Agnan 2004). Applying the kernel

trick to PCA, we obtain kernel PCA (Schölkopf et al. 1998), in which we perform

PCA implicitly on the points {φ(xi)}ni=1 ⊂ H rather than on {xi}ni=1 ⊂ Rp. Ham

et al. (2004) observe that several of the commonly-used manifold learning algorithms,

which we discuss below, can be viewed as applying kernel PCA to suitably chosen

Gram matrices.

There exists a large body of work dedicated to speeding up the construction of the

kernel matrix K = [k(xi, xj)] and its eigendecomposition for techniques such as kernel

PCA. Indeed, similar concerns are among the motivations for the problem considered

in Chapter 3. The two most prominent approaches to approximating the eigenvectors

and eigenvalues of K have been the Nyström method (Delves and Mohamed 1985;

Williams and Seeger 2001; Drineas and Mahoney 2005) and random features (Rahimi

and Recht 2008, 2009; Le et al. 2013).

Achlioptas et al. (2002) explored three approaches to quickly approximating the

relevant information in kernel K for performing kernel PCA. The first is a sparsifica-

tion and quantization of K, with a bound that follows similar reasoning to our use

of the Davis-Kahan Theorem (Davis and Kahan 1970) in proving the main result in
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Chapter 3. The second pertains to the computation of the expansion

f(x) =
n∑
i=1

αik(x, xi).

By retaining only the large-magnitude components of the vector (αi)
n
i=1 and applying

randomized rounding to the remaining values, Achlioptas et al. (2002) obtain f̂(x),

an unbiased estimate of f(x). Standard concentration arguments show that this

estimate is close to f(x), and furthermore that many entries of the rounded vector

(α̂i)
n
i=1 are zero, i.e., the rounded vector is sparse. A third approach to approximating

K applies a random projection to x and y. By the Johnson-Lindenstrauss Lemma

discussed above, this approximately preserves the geometry of the input space and

hence allows a fast approximation of k(x, y) in the case where k(·, ·) is a function only

of the distance or inner product between x and y.

The algorithm presented in Smola and Schölkopf (2000) seeks to approximate K

by a matrix K̃ expressible as a linear combination of q � n columns of n. The authors

presented a randomized algorithm for choosing these columns’ indices I ⊂ [n] that

operates by repeatedly

1. choosing greedily from among a randomly chosen subset of the columns of K

based on an estimate of the improvement in residuals

2. updating the columns of K to reflect the signal not yet accounted for.

Fine and Scheinberg (2001) developed a similarly-motivated interior point method
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for computing a low-rank approximation of the kernel matrix and presented an ac-

companying bound on the approximation error. Their method approximates K by

approximating its Cholesky factorization (Golub and Loan 2013) via repeated rank-1

updates.

Drineas and Mahoney (2005) applied methods for fast matrix multiplication and

decomposition (Drineas et al. 2006a,b) to develop a sampling strategy for choosing

{x′j}
q
j=1, and proved bounds on the resulting approximation error in recovering the

full kernel matrix K. These bounds show that one can obtain a rank-q approximation

K̃(q) to K such that with high probability, K̃(q) approximates the true kernel matrix K

nearly as well as the best possible rank-q approximation. This approximation requires

that we be able to sample the rows and columns of K according to a probability

distribution that depends on the values {k(xi, xi)}ni=1. A similar result was proved

in Frieze et al. (2004), though the sampling algorithm requires a more complicated

probability distribution over the rows and columns of K. An empirical comparison

of several variations on the Nyström method by Kumar et al. (2009) showed that

uniform sampling of the points as done in Williams and Seeger (2001) outperforms

more complicated sampling schemes such as the one in Drineas and Mahoney (2005).

In light of this observation, they presented theoretical bounds for the performance of

the Nyström method, showing that with high probability, a uniform sampling version

of the Nyström method approximates the kernel matrix nearly as well as does the

best rank-q approximation.
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An approach related to but distinct from the Nyström method is that of finding

a reduced set. First introduced by Burges (1996) in the context of support vector

machines, the reduced set problem is to choose a set of q � n points {x′1, x′2, . . . , x′q} ⊂

{x1, x2, . . . , xn} so that φ(x) ∈ H for different values of x can be well approximated by

linear combinations of the {φ(x′i)}
q
i=1 rather than of the larger set {φ(xi)}ni=1. Thus,

rather than sampling points, one explicitly constructs a set of points that would be a

good sample from the standpoint of the Nyström method. By considering the problem

of finding preimages of features φ(x), Schölkopf et al. (1999) recast the reduced set

selection problem as an eigenproblem similar to the kernel PCA problem itself, and

developed an approximate solution to this problem. They also presented a different

approach to the reduced set problem based on an L1-regularized minimization problem

that encourages sparse coefficients in expressing φ(x).

Random features (Rahimi and Recht 2008, 2009) refers to a class of methods that

seek to use sampling to approximate the sum

k(x, y) =
N∑
i=1

λiui(x)ui(y) = 〈φ(x), φ(y)〉,

where N is the (possibly infinite) number of nonzero eigenvalues of the kernel k(·, ·)

and ui are the corresponding eigenfunctions. We note that 〈φ(x), φ(y)〉 = k(x, y) is

an inner product in a high-dimensional space Rp′ , where p′ � p. Rahimi and Recht

(2008) considered replacing k(x, y) with a cheap inner product that approximates this
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high-dimensional inner product by transforming the observations as x 7→ g(x) ∈ Rr,

where r � p′, so that 〈g(x), g(y)〉 ≈ k(x, y). This allows us to replace the expansion

f(x) =
∑n

i=1 αik(x, xi) with the approximation f(x) ≈ 〈w, g(x)〉, for a suitably chosen

vector w ∈ Rr. The transformation g : Rp → Rr is given by a random matrix

Z ∈ Rr×p with entries drawn as i.i.d. normals with 0 mean and suitably chosen

variance. Rahimi and Recht (2009) generalized this technique to a broader class of

learning problems. Le et al. (2013) reduced the space and time required for storage

and application of the matrix Z by replacing the matrix of Gaussians with a product

of a Hadamard matrix and random diagonal matrices.

B.2 Manifold Learning

The methods considered above tend to assume that the data have an inherent

linear structure, either in the ambient space Rp or in some high-dimensional feature

space. However, it is often the case that data has an inherently low-dimensional but

non-linear structure. Consider, for example, image data generated by photographing

an object from different angles and under different lighting directions. These obser-

vations are of a dimension equal to the number of pixels in the images, but they have

an inherent low-dimensional structure in the sense that they can be reparameterized

by specifying the angle and light direction of each photo was taken (see Figure 1a in

Tenenbaum et al. 2000, for an illustration).
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More formally, suppose that the data x1, x2, . . . , xn ∈ Rp lie on or near a d-

dimensional (d � p) surface S in Rp. It stands to reason that if this is the case,

then we should be able to approximately represent the data points in d dimensions

rather than p. If S is simply a hyperplane, then PCA will find this structure, but

if S is, for example, a swiss roll as pictured in Figure 3.1, then d-dimensional PCA

will not adequately capture the information present in the data, even though the

data are, in some sense, inherently d-dimensional. This intuition is the motivation

for manifold learning, sometimes called nonlinear dimensionality reduction, in which

we assume that the data lie on a low-dimensional surface in the ambient space Rp.

As high-dimensional data have become central to machine learning and the sciences

as a whole, manifold learning has become a standard tool for data exploration and

analysis. We refer the reader to the surveys by van der Maaten et al. (2009) and

Bengio et al. (2013) as well as the textbook by Lee and Verleysen (2007) for a more

thorough discussion of the relevant ideas and a comparison of popular techniques.

A wide variety of manifold learning techniques and algorithms exist, but they can

largely be divided into two sets of approaches. The first, exemplified by multidimen-

sional scaling (MDS Torgerson 1952) and ISOMAP (Tenenbaum et al. 2000), seek

to preserve the global geometry of the data, so that ‖f(xi) − f(xj)‖ ≈ ‖xi − xj‖

for all i, j ∈ [n], for example as in (B.1). The second, exemplified by Laplacian

eigenmaps (Belkin and Niyogi 2003; Belkin et al. 2006) and locally linear embeddings

(LLE Roweis and Saul 2000; Saul and Roweis 2003), do not attempt to preserve the
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global geometry of the full data. Instead, these methods seek only to preserve the

local geometry of the data, so that points near each other in the original space Rp are

also near each other in Rd after application of the function f . This latter approach

relaxes the global preservation of distances under the intuition that for most applica-

tions, the local information contained in the data is paramount. Most of these local

geometry-based techniques have the useful property that, similar to algorithms based

on rigidity theory (see, for example Javanmard and Montanari 2013), the embedding

depends only on assessing the similarity of nearby points. That is, we can construct

an LLE embedding even if we are only able to locate each point in relation to its

neighbors.

B.2.1 Global methods

Torgerson (1952) introduced multidimensional scaling (MDS), in which observa-

tions from some space X are embedded based on their squared dissimilarities, repre-

sented by a matrix

∆ = [d2(xi, xj)] ∈ Rn×n

for some dissimilarity function d : X × X → R. Note that MDS does not require

that our observations x1, x2, . . . , xn lie in Euclidean space. Indeed, it does not even

require that d(·, ·) be a metric, only that it be nonnegative, symmetric and satisfy

d(x, x) = 0. Classical MDS embeds these observations in Euclidean space according
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to the eigenvalues and eigenvectors of B = −H∆H/2, where H = I − eeT/n denotes

the “recentering” matrix. Many variants of MDS have been posited since Torgerson

(1952). See Borg and Groenen (2005) for detailed discussion.

The ISOMAP algorithm (Tenenbaum et al. 2000) expands upon MDS by seeking

to preserve a specific notion of distance, given by the shortest-path distance on a near-

neighbor graph. The algorithm first constructs a graph G with vertices corresponding

to the observations x1, x2, . . . , xn, and vertices i and j sharing an edge of weight

d(xi, xj) if and only if one is within the k nearest neighbors of the other for some user-

specified k. Letting dG(i, j) denote the shortest-path distance in G, the observations

are embedded according to MDS applied to the matrix [δij] = [d2
G(i, j)]. As pointed

out by Tenenbaum et al. (2000), this algorithm escapes the linearity of PCA and MDS

by using the shortest path distance as an approximation to the geodesic distance on

the manifold.

B.2.2 Local Methods

Most embedding techniques based on local manifold structure operate by encoding

the local geometry of the data in a graph. Another common approach is to view the

data as encoding a random walk or diffusion process, which captures the structure

of the underlying manifold. These diffusion-based approaches have the advantage of

being able to capture both the geometry of the data and the density of those points

in space. We give an overview of a few of these local methods here. We note that
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many of these methods can be viewed as special cases of a single graph embedding

framework (Yan et al. 2007).

Locally linear embeddings (LLE), introduced by Roweis and Saul (2000), is among

the earliest examples of the local geometry-based approaches to manifold learning.

LLE seeks to recover low-dimensional structure inherent in a set of high-dimensional

observations x1, x2, . . . , xn ∈ Rp, Rather than attempting to preserve the global ge-

ometry of the data, LLE attempts to embed the observations into Rd so as to preserve

the neighborhood geometry of the data. The algorithm represents each observed data

point xi as an affine combination of its nearest neighbors, seeking to minimize a sum

of squared errors of the form

n∑
i=1

‖xi −
n∑
j 6=i

Wi,jxj‖2, (B.2)

where the weight matrix [Wi,j] ∈ Rn×n is subject to the constraints that Wi,j = 0 for

all j for which xj is not among the near neighbors of xi and such that
∑n

j=1Wi,j = 1

for all i ∈ [n]. The data are then embedded as y1, y2, . . . , yn ∈ Rd by fixing the weight

matrix W and choosing the {yi}ni=1 to minimize

n∑
i=1

‖yi −
n∑
j 6=i

Wi,jyj‖2, (B.3)

subject to constraints on the centering and scaling of the {yi}. LLE has the ad-

vantage of being comparatively easy to solve, since (B.2) can be solved trivially by
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considering each row of W independently and (B.3) can be reframed as solving an

eigenvalue problem for the sparse matrix M = (I−W )T (I−W ). A robust version of

LLE was presented by Chang and Yeung (2006), using techniques from Holland and

Welsch (1977) and de la Torre and Black (2003) to prevent outliers from significantly

corrupting the estimated weights.

Stochastic neighbor embeddings (SNE Hinton and Roweis 2002) attempts to con-

struct a low-dimensional embedding by replacing the hard near-neighbor assignments

that appear in most local embedding procedures with a probabilistic notion of near

neighbors. In this sense, SNE is not a strictly local technique, since it produces an em-

bedding that takes all pairwise dissimilarities into account. For each observation xi,

SNE constructs a probability distribution over {xij : j 6= i}, with probabilities propor-

tional to exp{−d2(xi, xj)}. The points x1, x2, . . . , xn are them embedded by finding

points y1, y2, . . . , yn ∈ Rd such that the analogous probabilities qi,j ∝ exp{−‖yi−yj‖2}

minimize the sum of KL-divergences

n∑
i=1

∑
j 6=i

pij log
pij
qij

=
n∑
i=1

D(Pi ‖ Qi).

This minimization can be done via gradient descent, but later work (Cook et al. 2007;

van der Maaten and Hinton 2008) refined this approach by replacing this cost function

with one in which the {pij} and {qij} terms are interpreted as specifying distributions

over 1 ≤ i < j ≤ n, rather than specifying n separate distributions.
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Laplacian eigenmaps (Belkin and Niyogi 2003; Belkin et al. 2006) seeks to embed

the observations x1, x2, . . . , xn ∈ X into Rd so as to preserve the local geometry

of the data. This local geometry is encoded by an undirected graph G on n nodes

corresponding to the observations. This graph can constructed in any of several ways,

provided it adequately captures the local geometry of the observations. For example,

the graph be either binary or weighted according to a similarity function (e.g., a

Gaussian kernel). Similarly, it can be constructed either as the near-neighbor graph,

in which nodes i and j share an edge if and only if xi is among the nearest neighbors

of xj (or vice versa) or as an ε-graph, in which i and j share an edge if and only if xi

and xj are suitably close to one another. The Laplacian eigenmaps embedding arises

from attempting to embed the observations x1, x2, . . . , xn as y
(1)
1 , y

(1)
2 , . . . , y

(1)
n ∈ R so

as to minimize the weighted sum of squares

n∑
i=1

n∑
j=1

Wij(y
(1)
i − y

(1)
j )2 (B.4)

subject to certain orthogonality constraints. Letting D ∈ Rn×n be the diagonal

degree matrix of the (possibly weighted) graph G with entries Dii =
∑n

j=1 Wij, we

can rewrite (B.4) as

n∑
i=1

n∑
j=1

Wij(y
(1)
i − y

(1)
j )2 = 〈y(1), Ly(1)〉,

where L = D − W is the combinatorial graph Laplacian. Repeating this proce-

227



APPENDIX B. REPRESENTATION LEARNING

dure subject to orthogonality constraints on the embeddings {y(t)}dt=1 (see, for ex-

ample Bhatia 1997, Corollary III.1.2), we obtain an embedding of the observations

as y1, y2, . . . , yn ∈ Rd according to the d non-trivial solutions to the eigenproblem

Lf = λDf with smallest eigenvalues (note that f = ~1, λ = 0 is a trivial solution).

We note that the version of Laplacian eigenmaps first developed by Belkin and Niyogi

(2003), which we present here, differs from the one considered in Chapter 2 and stud-

ied in Chapter 3, where we considered the matrix L = D−1/2(D −W )D−1/2, which

we have found to yield better embeddings of the data. This matrix, typically called

the symmetric normalized graph Laplacian, corresponds to a different weighting the

vertices of G (see, for example, Chung 1997). Using techniques based on the Nyström

method, Bengio et al. (2004) developed an out-of-sample extension for Laplacian

eigenmaps as well as for LLE, ISOMAP and MDS, allowing one to embed previously

unseen data according to the embedding of x1, x2, . . . , xn. Belkin et al. (2006) devel-

oped a regularized out-of-sample extension of the Laplacian eigenmaps embedding,

in which the solution is penalized in both the intrinsic geometry of the manifold and

in the ambient space Rp.

As discussed in Belkin and Niyogi (2003), the graph Laplacian can be viewed as a

discrete analogue of the Laplace-Beltrami operator, defined on functions f :M→ R

by ∆f = ∇2f (see Rosenberg 1997, for detailed exposition). Indeed, this connection

becomes clear in light of the results proven by Belkin and Niyogi (2005), showing that
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under suitable conditions the finite-sample Laplacian operator

Ltn(f)(x) = f(x)
n∑
j=1

exp

{
−‖x− xj‖2

4t

}
−

n∑
j=1

f(xj) exp

{
−‖x− xj‖2

4t

}
, (B.5)

based on a uniform sample {x1, x2, . . . , xn} fromM, converges pointwise in probabil-

ity to the the Laplace-Beltrami operator associated withM. The core proof technique

hinges on relating the Laplace operator to the heat operators on the manifoldM, and

observing that for t suitably large, the Gaussians in (B.5) are good approximations

to the heat kernel. Similar, more general, results were presented by Hein et al. (2005)

using an approach based on smoothing operators in which the kernel function plays

a role similar to the heat kernel in Belkin and Niyogi (2005). Based on these conver-

gence results and the connections of the Laplacian to diffusion processes, Hein and

Maier (2007) developed an algorithm for denoising points sampled from a manifold

M.

Rohe et al. (2011a) theoretically and empirically explored the consistency of Lapla-

cian eigenmaps applied to a binary adjacency matrix followed by k-means clustering.

In the language of Chapter 3, they considered the kernel matrix K ∈ Rn×n on a

fixed (but unknown) subset X ⊂ Rp. From this kernel, they observed the matrix
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Y ∈ {0, 1}n×n with independent entries

Yij = Yji =


1 with probability Kij

0 with probability (1−Kij).

They compared the Laplacian spectral embedding based on K with that based on

Y . Their key result showed that, similar to our main result in Chapter 3, under some

mild assumptions on the spectrum of L (K ) (the normalized Laplacian of K ), the

eigenspace of L (Y ) does not significantly differ from the corresponding eigenspace

of L (K ) (after suitable rotation). As a result, they prove that spectral clustering

of L (Y ) consistently estimates the clusters obtained by spectrally clustering L (K ).

Similar ideas were explored in an earlier paper by von Luxburg et al. (2008), where

the authors established the consistency of both the normalized and unnormalized

Laplacians using techniques from empirical process theory (van der Vaart and Wellner

1996) and perturbation theory (Kato 1995).

Trosset and Tang (2010) demonstrated an interesting connection between com-

binatorial Laplacian eigenmaps, classical MDS and ISOMAP by showing that com-

binatorial Laplacian eigenmaps generate embeddings equivalent to applying MDS so

as to preserve the commute times of the random walk defined by transition matrix

P = D−1W . embedding the data according to MDS. This facilitates direct com-

parison of Laplacian eigenmaps and ISOMAP provided one has a suitable mapping

between similarities and distances on the data. This random walk interpretation of
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the Laplacian provides one of the main intuitions for why Laplacian eigenmaps and

similar methods should be expected to discover cluster structure in data. One ex-

pects clusters to manifest as low-potential wells in the stationary distribution of the

random walk defined by P (see von Luxburg 2007, for further discussion).

Donoho and Grimes (2003) combine ideas from LLE (Roweis and Saul 2000) and

Laplacian eigenmaps (Belkin and Niyogi 2003) to develop Hessian eigenmaps. Hessian

eigenmaps attempts to capture the local structure of the data {x1, x2, . . . , xn} ⊆ Rp

by embedding the points according to the local coordinates of the tangent spaces of

the d-dimensional data manifold M. The method adapts the intuition of Laplacian

eigenmaps in that is uses, in place of the Laplace-Beltrami operator the Hessian

operator, defined by

H(f) =

∫
M
‖Hf (z)‖2

Fdz,

where f :M→ R and Hf (z) denotes the Hessian of f at z.

Diffusion maps (Coifman and Lafon 2006) expands upon the intuition behind

Laplacian eigenmaps by constructing embeddings based on a random walk on the

data. Given data S = {x1, x2, . . . , xn}, diffusion maps seeks to embed the observations

based on the behavior of a Markov chain on state space S with transition matrix

P = [Pij] = [p(xi, xj)] = [
k(xi, xj)

d(xi)
],
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where

d(x) =
n∑
i=1

k(x, xi).

Letting (P t)i,j = pt(xi, xj) denote the probability that a t-step random walk started

at xi ends at xj, diffusion maps aims to preserve the diffusion distances

Dt(x, y) = ‖pt(x, ·)− pt(y, ·)‖2.

Following this reasoning, the diffusion maps embedding of S into Rd is given, for a

user-specified value of t, by ft(xi) = [λt1u1(xi), λ
t
2u2(xi), . . . , λ

t
dud(xi)]

T , where uj(xi)

denotes the component of the j-th eigenvector of P t corresponding to observation

xi. Coifman and Lafon (2006) approximate the diffusion distance Dt to arbitrary

precision by choosing d suitably large. That is, Dt(xi, xj) ≈ ‖ft(xi)−ft(xj)‖, with the

approximation becoming good for t large. Nadler et al. (2006) applied this framework

to analysis of data generated from dynamical systems, in which either the density or

geometry of the data may be of interest, depending on the application.

Locality sensitive discriminant analysis (LSDA; Cai et al. 2007) adapts LDA to the

setting where we wish to capture local structure rather than global structure of the

data. Rather than considering within- and between-class covariances, one considers

a pair of near-neighbor graphs Gw and Gb that encode the within- and between-

class local structures, respectively. LSDA embeds the data so as to maximize the

distances between embeddings of observations from different classes while simultane-
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ously embedding same-class observations near one another. Tomar and Rose (2012)

followed a similar line of reasoning in developing locality preserving discriminant anal-

ysis (LPDA), which embeds the data so as to maximize a measure of between-class

scatter while minimizing a measure of within-class scatter. Broadly similar ideas were

explored earlier by Cai et al. (2007), using a different optimization approach.

Finally, we briefly discuss a related embedding method, suited for graph data,

adjacency spectral embedding (ASE; Sussman et al. 2012). The ASE embedding arises

naturally from latent position models of graphs (Hoff et al. 2002), in particular from

random dot product graphs (RDPGs; Young and Scheinerman 2007). In the RDPG

model, a random graph G = (V,E) on |V | = n vertices is generated, conditioned on an

assignment of vertices u ∈ V to latent positions xu ∈ Rd, subject to the condition that

xTuxv ∈ [0, 1] for all u, v ∈ V . Typically, these latent positions are drawn identically

and independently according to some distribution F on Rd. Conditioned on these

latent positions, edges are present or absent in graph G independently according

to Pr[{u, v} ∈ E] = xTuxv. Working in this model, a natural inference task is to

recover the latent positions based on the observed graph, and this motivates adjacency

spectral embedding. Letting A = UΣU∗ be the singular value decomposition of the

adjacency matrix, let UA ∈ Rn×d be the matrix whose columns correspond to the

top d singular vectors, and let ΣA ∈ Rd×d denote the matrix of the top d singular

values. ASE estimates the latent positions of graph G as the rows of the matrix

X̂ = UAΣA ∈ Rn×d. It has been shown that X̂ consistently estimates the latent
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positions up to an orthonormal transformation of the latent positions (Sussman et al.

2012). A number of additional asymptotic properties of ASE are known, though a

detailed discussion of these results is beyond the scope of this survey. We refer the

interested reader to Sussman et al. (2012); Fishkind et al. (2013); Athreya et al. (2016);

Tang et al. (2013); Lyzinski et al. (2014b); Sussman et al. (2014), and highlight here

only an intermediate result from Lyzinski et al. (2014b), used to prove asymptotic

consistency of clustering of the estimated latent positions. Lemma 5 in Lyzinski

et al. (2014b) gives a concentration result somewhat comparable to that presented in

Chapter 3. In particular, it shows that under suitable model conditions the matrix

X̂ concentrates about the matrix of true latent positions X (after suitable rotation)

under the (2,∞) norm.
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Appendix C

Locality-Sensitive Hashing and

Near-Neighbor Retrieval

In this section, we give an overview of work related to locality-sensitive hashing

and near-neighbor retrieval. These techniques have become fundamental to machine

learning and related fields. See, for example, Sundaram et al. (2014), in which the

authors use these techniques to build a state-of-the-art system for performing search

over billions of text documents.

C.1 Problem definition

Consider a metric spaceM = (X, d) and a set of points P = {p1, p2, . . . , pn} ⊆ M,

called the search collection from that metric space.
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Definition 6. k-nearest neighbor (k-NN) retrieval Given a query point q ∈M and a

non-negative integer k, find the k points from P nearest to q under distance d. That

is, to retrieve a set Nk(q) = {x1, x2, . . . , xk} ⊆ P such that for all p ∈ P and all

i = 1, 2, . . . , k, we have d(p, q) ≥ d(xi, q).

One observes that in general, solving the k-NN problem exactly can be quite a

challenge. Barring the existence of some additional structure on the search collection,

computation of the distances {d(q, p) : p ∈ P} can require time linear in the size of the

search collection. Similarly, if distances are hard to compute precisely, then solving

the k-NN problem exactly may be expensive. For example, consider a case where all

points in P are either at distance d(p, q) = 1 or distance d(p, q) = 1 + ε for some

small ε > 0, and suppose that computing d(p, q) to within an additive error of ε is

expensive. Under such conditions, finding a suitable set Nk(q) satisfying our problem

statement in Definition 6 above may be quite challenging. We note, however, that in

many cases, it is not necessary to solve k-NN so precisely. In the example just given,

it may be the case that differences in distance of size ε is immaterial in terms of

downstream performance. This is often in the case in recommender and information

retrieval systems, and motivates the definition, initially given by Indyk and Motwani

(1998), of a relaxation of the exact near neighbor problem given in Definition 6. See

He et al. (2012) for an interesting approach to assessing the difficulty of near neighbor

search on a given data set and query distribution.

Definition 7. ε-approximate nearest neighbor (ANN) search Given a set
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of points P = {p1, p2, . . . , pn} from metric space M = (X, d), build a data structure

supporting the following operation: given a query point q ∈ X, find p ∈ P so that for

all p′ ∈ P , d(q, p′) ≤ (1 + ε)d(p, q).

Note that this problem is a relaxation of exact 1-NN retrieval problem, where we

would ask to retrieve p ∈ P so that for all p′ ∈ P , d(q, p′) ≤ d(p, q). The approximate

versions of the k-NN problem for k > 1 can be constructed similarly.

C.2 Locality Sensitive Hashing: Initial Work

Locality sensitive hashing (LSH) was first introduced in 1998 by Indyk and Mot-

wani (1998) for the purpose of ANN search. The goal of LSH is to define hash

functions on geometric objects (i.e., points) in such a way that objects that are near

one another are likely to be hashed to the same value, while objects that are distant

are unlikely to be hashed to the same value. Given metric space M = (X, d), we

have the following definition.

Definition 8. (r1, r2, p1, p2)-sensitive hash function (Indyk and Motwani 1998)

A family of functions F = {f : X 7→ U} is (r1, r2, p1, p2)-sensitive if the following

two conditions hold for all u, v ∈ X :

(a) If d(u, v) ≤ r1 then PrF [f(u) = f(v)] ≥ p1.

(b) If d(u, v) > r2 then PrF [f(u) = f(v)] ≤ p2.
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PrF is some distribution over family F .

Indyk and Motwani (1998) point out that for family F to be useful for approximate

nearest neighbor retrieval, we must have r2 > r1 and p1 > p2.

In the decade and a half since Indyk and Motwani’s paper, LSH functions have

been developed for a variety of distance functions and metric spaces. The primary

focus of this line of research lies in the tradeoff between query time and index size.

That is, broadly speaking, one can retrieve approximate near-neighbors quickly, at

the expense of more memory usage to build a more complicated index, or one can use

less memory at the cost of slower retrieval.

An improvement of the algorithm introduced in Indyk and Motwani (1998) for

use in the case of high-dimensional data was presented in Gionis et al. (1999), in

which the authors took advantage of the fact that under some conditions, Hamming

distance can be used as a stand-in for `1 distance. Gionis et al. (1999) improved the

O(dn1/ε) query time of the original paper by Indyk and Motwani (1998) to the more

manageable (and sublinear, for ε > 0) O(dn1/(1+ε)) query time.

A widely-used algorithm for LSH on points in Euclidean space was presented

by Andoni and Indyk (2006). Their technique improves over the LSH functions

presented in Indyk and Motwani (1998) by further improving both the query time

and runtime (though we note that the two papers are not directly comparable, since

they solve slightly different versions of the near-neighbor problem). The algorithm

operates by first covering Rd with a set of randomly-chosen grids of hyperspheres,
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with all hyperspheres in a given grid having the same small radius. They bound the

number of such grids and the radii required for use with each grid in such a way as to

guarantee that the set of grids will cover the space with high probability (specifically,

this is actually achieved by projecting to a lower-dimensional space that is easier to

cover). These grids can be used to form a family of locality-sensitive hash functions,

since if two points are near one another, it is far more likely that they will be covered

by the same balls.

Shortly thereafter, Andoni et al. (2006) improved upon Andoni and Indyk (2006)

by introducing a hashing scheme that performs retrieval on Rd under the `s norm

for any s ∈ [0, 2]. They describe a scheme for LSH that makes use of p-stable dis-

tributions. Distribution D is p-stable if given v1, . . . , vn ∈ R, and random variables

X1, . . . , Xn independently identically distributed according to D, then
∑n

i=1 viXi has

the same distribution as (X
∑

i |vi|p)1/p, where X is drawn from distribution D inde-

pendently of {Xi : i = 1, 2, . . . , n}. p-stable distributions have been used elsewhere in

the algorithms literature, for example in Indyk (2000), where they are used them for

sketching and metric embeddings. In Andoni et al. (2006), the idea is to generate a

random vector a ∈ Rd, with each component of a drawn from a p-stable distribution

D. Then, given a vector v ∈ Rd, the inner product 〈a, v〉 > is distributed as X‖v‖p,

where X is drawn from the same p-stable distribution. This allows us to use such

an inner product to project a vector onto the real line, and then partition the real

line into intervals such that vectors projected into the same interval are assigned the
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same hash value. Performing several such projections with different random vectors,

we can project onto a subspace that has dimension of our choosing. Given vectors

u, v ∈ Rd, the distance between their projections is distributed as ‖u− v‖pX ′, where

X ′ is again drawn from D independently of the variables {X,X1, . . . , Xn} mentioned

above. Thus, vectors near each other are likely to be hashed to the same location.

C.3 Locality-Sensitive Hashing: More Re-

cent Progress

In the ensuing years, a number of more specialized approaches to LSH have

emerged. These approaches can be roughly divided into two categories. The first

tries to find LSH families that work well for any data set. The second of these cate-

gories seeks to learn a set of functions that works well for a specific data set. That is,

these approaches attempt to find a set of functions that give rise to a good hashing

scheme for a specific search collection P , rather than finding a family of functions that

have the locality-sensitivity that works with high probability for any possible collec-

tion of points. The early work on LSH, including the original LSH papers by Indyk

and his colleagues focused on the former of these categories, but the vast majority of

techniques published more recently have fallen in the latter of these categories, most

of them applying unsupervised learning techniques to discover good hash functions

for a given data distribution.
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Work by Salakhutdinov and Hinton (2007) falls into the latter of these categories.

They developed a technique that applies an autoencoder to estimate a set of hyper-

planes that jointly give rise to an effective LSH code. In a similar spirit, Weiss et al.

(2009) introduced a hashing scheme for arbitrary sets of objects under some distance

function. They motivate their approach as opposed to that given in Salakhutdinov

and Hinton (2007) by claiming that geometric hash codes learned by autoencoders

tend not to make efficient use of code length. Their goal, then, was to find semantic

hashes whose binary codes are as close to optimal as possible in an information theo-

retic sense. Thus, they required that the hash signature of a randomly chosen item in

the ambient space has its bits independently distributed. Weiss, et al., posit this re-

quirement as an optimization problem, which they show to be NP-hard by a reduction

to a graph cut problem. Relaxing this problem, they require only that hash signature

bits be uncorrelated. The result is a problem whose solutions are precisely the eigen-

functions of the graph Laplacian (refer to Appendix B for an overview of Laplacian

eigenmaps). To hash an element, one simply applies the out-of-sample extension to

the Laplacian eigenmaps embedding (Belkin et al. 2006), and round its components

to {0, 1} according to their signs. Weiss et al. (2009) presented experiments showing

that their approach out-performed several other state-of-the-art hashing techniques

on an image search task. A similarly-motivated problem was considered by Masci

et al. (2014), where the goal was to construct hash functions that preserved pairwise

similarity and dissimilarity labels of a set of points, rather than directly preserv-
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ing distances. The authors proposed a feed-forward neural net to solve an objective

function subject to `1-regularization to enforce sparsity.

Wang et al. (2010) took a different approach, attempting to learn a sequence of

hash functions in such a way that hash functions learned later can “correct” those

learned earlier in the sequence. Their approach, which requires supervision in the

form of observation pairs labeled as to whether or not they are correct matches,

is based on minimizing an objective function that penalizes hash codes that assign

different labels to matching pairs or assign the same label to non-matching pairs.

Rather than solve this objective directly, which would lead to overfitting, the authors

include regularization that encourages high-entropy hash functions. This is similar to

the approach taken by Weiss et al. (2009), where the obstacle was that maximizing

the entropy resulted in an NP-hard optimization problem. To circumvent this issue,

Wang et al. (2010) replace their maximum-entropy regularization term with one that

encourages high variance in the bits of the hash functions.

Extending the ideas of Weiss et al. (2009), Liu et al. (2011) developed the idea of

an anchor graph. Rather than attempting to compute all O(n2) pair-wise distances

to construct the graph Laplacian, they select using k-means a set of m � n anchor

points from the collection of observations and use these to build an approximation to

the true nearest neighbor graph. Their technique achieves strong performance against

a number of other recent LSH techniques, though they gave no theoretical analysis

of their approach.
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Working along similar lines, Lin et al. (2013) presented compressed hashing, which

uses techniques from compressed sensing (in particular, the restricted isometry prop-

erty Candès (2008)), to learn an efficient coding of the sparse representations of a

given data set. The authors also used anchor points as in Liu et al. (2011), but rather

than using them to estimate the near-neighbor graph, they were used to estimate

linear operators on a reproducing kernel Hilbert space. They use this approximation

along with the observation from Donoho (2006b) that pairwise distances between a

set of vectors in the `1 ball can be approximately preserved by storing only a small

number of the largest-magnitude entries from each vector. Another approach, also

motivated by ideas from compressed sensing, was explored by Cherian et al. (2014),

who used sparse dictionary learning to build hash functions, with the goal of making

the hash signatures robust to noise in the data.

Kulis and Grauman (2009) developed a technique for applying LSH to kernelized

data when the feature map is not easily computed (see Appendix B for a discussion

of the relevant ideas from kernel methods). Their core observation is that a random

sample of the data will have feature representations that are approximately normally

distributed about a population mean in the feature space. This observation leads to

a formulation similar to the Nyström method (see Appendix B for discussion), and

the hash functions become weighted sums of the form h(x) =
∑t

i=1wik(x, xi).
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Matrix Completion and Random

Matrices

In many applications, the memory required to store large matrices can be a major

obstacle to data processing and analysis. One solution to this problem is to replace

a matrix X ∈ Rn×n with some suitable approximation X̂ ∈ Rn×n, chosen so that X̂

requires less storage space than X. For example, suppose X̂ is positive semidefinite,

say X̂ = BBT for some B ∈ Rn×k. If k � n, then X̂ requires only O(nk) memory

rather than O(n2). Similarly, if X̂ is sparse (i.e., most entries of X̂ are zero), then

X̂ can be stored economically by only recording the entries for which X̂ is nonzero.

Depending on the specific problem at hand, analysis of X̂ will yield approximately

the same results as if the analysis had been applied to X, while requiring a fraction of

the storage. The technique presented in Chapter 3 is precisely such an approximation
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result. In the last two decades, much research has been devoted to ideas of this sort,

and we give here a brief summary of some of those lines of work.

D.1 Matrix Completion and Compressed

Sensing

Computer science, statistics and engineering have been revolutionized by the ideas

of compressed sensing and sparsity Donoho (2006b). The key to these advances has

been the observation that many common signals, such as waveforms and images, can

be succinctly (approximately) represented in a suitable basis. Crucially, a handful of

pioneering papers (Donoho 2006a; Candès et al. 2006a,b) showed that the problem of

expressing a signal in a given basis can, under suitable conditions, be solved efficiently

using standard linear programming.

These ideas have given rise to a class of techniques for solving the problem of

low-rank matrix completion, where we observe a small subset of entries of a matrix

M ∈ Rn1×n2 and wish to determine the values of the unobserved entries. Of course, for

general matrices, this is an impossibility, but when M is low-rank, solutions exist and

can be recovered using well-known optimization techniques (Candès and Recht 2009).

More formally, in matrix completion we are presented with the entries Mij of a matrix

M ∈ Rn1×n2 for some (possibly random) set of entries indexed by Ω ⊆ [n1] × [n2].

We say that the entries Mi,j for (i, j) ∈ Ω are observed, and call all other entries
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unobserved. The goal is to solve the optimization problem

minimize rankX

subject to Xij = Mij (i, j) ∈ Ω.

(D.1)

That is, we wish to find a low-rank matrix X that agrees with the observed entries

of M . In the remainder of this chapter we will assume for ease of exhibition and

notation that n1 = n2 = n, i.e., that M is square, but we note that all results

presented here can be extended to rectangular matrices (though a few of the stated

orders of growth may depend on the ratio n1/n2 in the case of rectangular M). Candès

and Recht (2009) showed that under certain conditions the problem in (D.1) can be

solved exactly, despite the fact that it is NP-hard in general (Chistov and Grigoriev

1984), by solving the surrogate problem

minimize ‖X‖∗

subject to Xij = Mij (i, j) ∈ Ω,

(D.2)

where ‖ · ‖∗ denotes the nuclear norm

‖X‖∗ =
r∑

k=1

σk(X),

where r = rankX and σk(X) is the k-th largest singular value of matrix X. We can

think of (D.2) as a relaxation of (D.1), in which we have replaced the rank-based
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objective with an objective that encourages low-rank solutions.

Candès and Recht (2009) considered a matrix M ∈ Rn×n with rankM = r in

which we observe m entries of M whose locations are chosen uniformly at random.

The question of interest concerns how large m must be in order to ensure that with

high probability, solving (D.2) yields a solution to (D.1). A trivial lower bound

on m can be established by noting that completion of the matrix requires that we

observe at least one entry from each row and each column, and thus by the coupon

collector’s problem (Mitzenmacher and Upfal 2005), m ≥ n log n entries are required

for this event to hold with high probability. Writing the singular value decomposition

M = UΣV T , we see that M is in fact fully specified by (2n − r)r numbers. When

r = rankM is small compared to n, then, it is intuitively reasonable that we should be

able to recover M based on far fewer than n2 entries. As observed in Candès and Recht

(2009), there exist low-rank matrices for which m must be close to n2. For example,

if M is a matrix with all entries equal to 0 save for a single entry M1,1 = 1, then M

is certainly low-rank, but in order to recover M we must observe entry (1, 1), which

requires that m be large enough that (1, 1) ∈ Ω with high probability. Despite this,

it was shown in Candès and Recht (2009) that a broad class of low-rank matrices

are amenable to the above approach. In short, matrix completion requires both

low-rankedness and a property called incoherence. Given a k-dimensional subspace

U ⊆ Rn with orthonormal basis {u1, u2, . . . , uk}, the coherence of U with respect to
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the canonical basis {e1, e2, . . . , en} is defined as

µ(U) =
n

k
max
i∈[n]
‖PUei‖2, (D.3)

where PU denotes the orthogonal projection onto U . Note that 1 ≤ µ(U) ≤ n/k.

The main result of Candès and Recht (2009) shows that if µ0 is an upper bound on

µ(U) and µ(V ), and µ1

√
r/n is an upper bound on the maximum entry of the matrix∑r

k=1 ukv
∗
k, then

m = Ω(max{µ2
1, µ

1/2
0 µ1, µ0n

1/4}nr log n)

entries suffice to recover M exactly with high probability. The proof due to Candès

and Recht (2009) was the first of several to use the same general outline. In short, the

goal is to show that D.2 has a unique solution with high probability. At the heart of

this technique is the observation that the spectral norm is dual to the nuclear norm.

Rather than working directly with the problem in Equation D.2, Candès and Recht

(2009) proved that with high probability, a dual certificate for Equation D.2 exists.

Candès and Recht (2009) constructed their proof under the Bernoulli model, in which

(i, j) ∈ Ω with probability p = m/n2 independently over all pairs (i, j) ∈ [n] × [n].

We note that this is the model that we use in Chapter 3. An argument from Candès

et al. (2006b) shows that the probability of failure under the Bernoulli model is at

most twice that of the probability of failure under the |Ω| = m “uniform” model, so

that bounds for the Bernoulli model are sufficient for most purposes.
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Subsequent work has improved the results due to Candès and Recht (2009), typ-

ically by relaxing both the requisite lower bounds on the number of samples m and

the coherence constraints on matrix M required to ensure high probability of success.

Keshavan et al. (2010a) developed a spectral algorithm, based on a singular value

decomposition of the partially observed matrix, which recovers M to within a root

mean square error (RMSE)

‖M̂ −M‖F
n
√
r

= O(
√
nr/m). (D.4)

Additionally, they showed that under incoherence assumptions similar to those made

in Candès and Recht (2009) and assumptions bounding the singular values of M

away from 0 and ∞, recovery of M is exact. The algorithm presented by Keshavan

et al. (2010a) is distinct from the SDP-based algorithms considered by, for example,

Candès and Recht (2009) and Candès and Tao (2010), and is broadly similar to a

singular value thresholding approach later pursued by Chatterjee (2015), which we

discuss below. We note that a subsequent paper by the same authors extended their

analysis to the case where the matrix M is also corrupted by noise (Keshavan et al.

2010b).

Candès and Tao (2010) showed that m can be brought closer to the coupon col-

lector Ω(n log n) lower bound provided we accept stronger incoherence constraints on

M , than the incoherence property introduced by Candès and Recht (2009). Under
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these stronger incoherence properties, Candès and Tao (2010) showed that (Theo-

rem 1.2) m = Ω(µ2nr log6 n) samples suffice for the nuclear norm minimization in

Equation (D.2) to recover M exactly with high probability. Their proof uses com-

binatorial techniques that are broadly similar to those that appear in the moment

method proof of Wigner’s semi-circle law, a classic result in random matrix theory

(Wigner 1958; Füredi and Komlós 1981; Bai and Silverstein 2010), though the argu-

ment given by Candès and Tao (2010) requires a far more complicated combinatorial

argument, owing to the occlusion of M .

Gross (2011) further improved these results, showing that recovery of M succeeds

with high probability provided m = Ω(nrν log2 n), where ν is a coherence parameter

roughly comparable to µ0 in Recht (2011), discussed below. The sampling model

considered by Gross (2011) differs from many related papers in that he considered a

model in which the entries of Ω are chosen independently with replacement. Among

the proof techniques used by Gross (2011) is the celebrated “golfing scheme”, in which

a dual certificate Y is expressed as a sum of random matrices, generated according to

a process so that matrices later in the sequence can (partially) correct errors caused

by earlier elements in the sequence. This technique has emerged as a standard tool

for constructing dual certificates in matrix completion problems (see, for example

Candès et al. 2011; Chen et al. 2013).

Recht (2011) established a similar result to that in Gross (2011), showing that

m = Ω(max{µ0, µ
2
1}rn log2 2n) entries suffice to recover M with high probability.
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Here µ0 is an upper bound on the coherences of the row and column spaces of M and

µ1 is an upper bound on the entries of the matrix UV ∗. Recht’s analysis follows the

general form of that in Gross (2011), using slightly different operator norm bounds.

Recht speculated that it might be possible to remove dependence on µ1 from the lower

bound on m. More recent results have shown, in keeping with experimental observa-

tions, that indeed this incoherence bound on the maximum entry of UV ∗, required

in one form or another by all of the initial results on low-rank matrix completion, is

superfluous. Chen (2015) showed that only incoherence of the row and column spaces

with respect to the standard basis is necessary for exact low-rank completion and

that only m = Ω(µnr log2 n) entries are necessary. Chen’s analysis largely follows the

reasoning in Candès and Recht (2009) and Candès and Tao (2010) but departs from

these prior results by bounding the∞, 2-norm ‖UV T‖∞,2 rather than ‖UV T‖∞, thus

escaping the need for a bound on the coherence between the row and column spaces

of M = UΣV T .

D.1.1 Matrix Completion with Noise

In many applications, including the one considered in Chapter 3, the matrix M is

not only occluded, but is also noisy. That is, we assume that rather than observing

entries Mi,j for (i, j) ∈ Ω, we observe Yi,j = Mi,j + Zi,j where {Zi,j : (i, j) ∈ Ω} are a

collection of error terms, typically assumed to be independent.
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Candès and Plan (2009) considered this problem, starting from the ideas first

presented by Candès and Tao (2010). Letting Z ∈ Rn×n denote a matrix of noise

terms, and letting Y = M +Z denote the noisy version of the matrix M , Candès and

Plan (2009) adapt the problem in (D.2) to write

minimize ‖X‖∗

subject to ‖PΩ(X − Y )‖F ≤ δ

(D.5)

where ‖PΩ(Z)‖ ≤ δ. Candès and Plan (2009) viewed Equation (D.5) as a semidefinite

program (SDP) and showed that when a dual certificate for (D.5) exists and obeys a

certain semidefinite inequality, then, letting m = |Ω|, the solution M̂ obeys

‖M̂ −M‖F = O
(
δ
√
n3/m

)
. (D.6)

Crucially, the results proved by Candès and Tao (2010) imply that such a dual cer-

tificate exists with high probability, and hence (D.6) holds with high probability. In

essence, the result shows that recovery of matrix M in the presence of noise is possible

under precisely the same conditions as in the clean condition presented in Candès and

Tao (2010).

Chen et al. (2013) considered the case where the matrix M is occluded as in the

cases above, but also has at most a constant (in n) fraction of its entries corrupted

by arbitrary noise. That is, we observe PΩ(Y ) where Y = M + Z for Z a matrix
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of errors, with at least a constant fraction of its entries equal to 0. Their results,

which match those of Chen (2015) up to a polylogarithmic factor, were proved via an

approach similar to the golfing scheme described above.

Chatterjee (2015) considered the matrix completion problem in the presence of

noise, under the Bernoulli model with observation probability p, taking an approach

that is broadly similar to, but simpler than, the algorithm presented by Keshavan

et al. (2010a). Chatterjee (2015) considered a matrix M ∈ Rn×n corrupted by unbi-

ased noise with entries bounded in absolute value almost surely. By suitable recenter-

ing and rescaling of entries, the entries of Y = M+Z can be assumed to lie in [−1, 1].

From the sampled matrix PΩ(Y ), Chatterjee’s universal singular value thresholding

(USVT) estimator constructs an estimate M̂ by first estimating the Bernoulli param-

eter p as p̂ = |Ω|/n2, then discarding all singular values of PΩ(Y ) that are below the

threshold (2 + η)
√
np̂, where η ∈ (0, 1) is a parameter required by the concentration

inequalities applied in the proofs. This step of throwing out the small singular values

is on the one hand quite similar to the algorithm due to Keshavan et al. (2010a) in

its aim, while also being in some sense at odds with it. Keshavan et al. (2010a) dis-

card certain rows of their sampled matrix to decrease the large singular values (and

then later rescale and clean the matrix), while Chatterjee (2015) achieves a similar

“smoothing” effect by discarding the small singular values. The main result is that

253



APPENDIX D. MATRIX COMPLETION AND RANDOM MATRICES

the estimate M̂ obtained via this method has, provided p > n−1+ε for some ε > 0,

E‖M̂ −M‖2
F

n2
= O

(
min

{
1,
‖M‖∗
pn3/2

,
‖M‖2

∗
n2

})
+ Cε exp{−O(np)},

where Cε depends on ε and η. The proof of this result made heavy use of several

spectral norm bounds, along with classic concentration inequalities (Bhatia 1997;

Talagrand 1996; Boucheron et al. 2013). The core of the proof consists of (i) a

spectral norm bound for random matrices based on the moment method (Bai and

Silverstein 2010) and an application of a concentration inequality due to Talagrand

(1996) and (ii) a bound on the Frobenius-norm error in estimating a matrix B using

singular value thresholding of A−B for some other matrix A.

D.2 Matrix Perturbation

Many of the results summarized in the previous section are, at their core, results

about the behavior of matrices under perturbation. We are concerned with the be-

havior of the matrix M+E where M ∈ Rn×n is a matrix, and E ∈ Rn×n is a (possibly

random) perturbation of M . This area of mathematics is well-studied, and a thorough

literature review is beyond the scope of this thesis. We instead collect here only a

few key results, mostly focused on applications to sums of random matrices. For a

more thorough treatment, we refer the reader to the classic textbooks Stewart and

Sun (1990); Kato (1995); Bhatia (1997) and to the recent manuscript Tropp (2015).
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As an example, consider how the spectrum of M relates to that of M + E. A

classic theorem due to Weyl (Bhatia 1997, Theorem III.2.1) relates the spectrum of

a Hermitian matrix H to the spectrum of a perturbed version of H given by H +E.

Theorem 9. Let A,B ∈ Rn×n be Hermitian matrices with eigenvalues λ1(A) ≥

λ2(A) ≥ · · · ≥ λn(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B). Then

λj(A+B) ≤ λi(A) + λj−i+1(B) for i ≤ j

and

λj(A+B) ≥ λi(A) + λj−i+1(B) for i ≥ j.

Theorems of the sort just quoted allow us to examine how the spectrum of M +E

relates to those of M and E. For example, they let us bound the amount by which

perturbation E can change the eigenvalues of M as |λi(M + E)− λi(M)| ≤ ‖E‖.

While matrix perturbation bounds similar to those above are plentiful in the case

of eigenvalues and singular values (Horn and Johnson 1994; Bhatia 1997, see, e.g.,),

analogous bounds for eigenvectors and singular vectors are harder to come by. The

most prominent such result, the Davis-Kahan sin Θ theorem (Davis and Kahan 1970),

remains as the standard approach to such bounds. We paraphrase here the version

stated in Bhatia (1997), which we contrast with the version of the theorem used to

prove Theorem 1 in Chapter 3.

Theorem 10. Let A,B ∈ Rn×n be Hermitian and let S1, S2 ⊂ R such that d(S1, S2) =
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δ > 0. Let Q1 = PA(S1) be the orthogonal projection onto the span of the eigenvectors

of A with corresponding eigenvalues in S1, and define Q2 = PB(S2) analogously. Then

for any unitarily invariant norm ‖ · ‖, we have

‖Q1Q2‖ ≤
π

2δ
‖Q1(A−B)Q2‖ ≤

π

2δ
‖Q1Q2‖.

The reference to sin Θ in the name of the theorem derives from the observation

that the quantity ‖Q1Q2‖ is precisely the sine of the (largest) canonical angle between

the range of Q1 and the orthogonal complement of the range of Q2 (Bhatia 1997).

While general results improving upon the Davis-Kahan theorem have been few and

far between, we note that there do exist a number of results characterizing the eigen-

vectors of random matrices. See, in particular, the recent survey by O’Rourke et al.

(2016a).

Bounds of this sort have been extended to the case of sums of (typically inde-

pendent) random matrices in the form of matrix concentration inequalities. Just

as sums of real-valued random variables exhibit the concentration of measure phe-

nomenon (Boucheron et al. 2013), sums of random matrices concentrate about their

mean under certain conditions. Based on results first developed in statistical me-

chanics (Golden 1965; Thompson 1965) and quantum information theory (Ahlswede

and Winter 2002), these results have fast become standard tools in mathematics,

physics, engineering and statistics (see the survey Tropp 2015, and citations therein).
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Of particular interest for the purposes of this thesis are applications to spectral graph

theory (Chung et al. 2003; Feige and Ofek 2005; Oliviera 2010; Lu and Peng 2013),

where these tools have enabled the development and investigation of spectral methods

in statistics and machine learning, in which the eigenvalues and eigenvectors of graphs

or matrices are of prime interest. Such methods include Laplacian eigenmaps (Belkin

and Niyogi 2003), adjacency spectral embedding (Sussman et al. 2012) and spectral

clustering (von Luxburg 2007), and of course the sparse, noisy Laplacian eigenmaps

embeddings discussed in Chapter 3 fall under this heading. Refer to Appendix B for

a discussion of these methods.

Just as the Laplace transform yields a plethora of concentration inequalities for

sums of random variables (Boucheron et al. 2013), a similar idea has been central to

developing analogous bounds for sums of random matrices. The following theorem,

originally due to Lieb (1973), and which we quote from Tropp (2015), lies at the heart

of these matrix concentration inequalities:

Theorem 11. Let H ∈ Rn×n be a Hermitian matrix. Then the function f(A) =

tr exp{H + logA} is concave on the cone of positive-definite matrices.

As an example of a typical matrix concentration result, also from Tropp (2015),

consider the following “matrix Bernstein” theorem, so-called owing to its similarity

to an inequality originally due to S. Bernstein for sums of independent real-valued

random variables (Chung and Lu 2006; Boucheron et al. 2013).
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Theorem 12. Let X1, X2, . . . , Xn be a sequence of n independent random d-by-d

matrices with EXk = 0 and ‖Xk‖ ≤ L for all k ∈ [n]. Define the matrix Z =∑n
k=1Xk, and define

v(Z) = max {‖EZZ∗‖, ‖EZ∗Z} .

For all t ≥ 0, we have

Pr [‖Z‖ ≥ t] ≤ 2d exp

{
−t2/2

v(Z) + Lt/3

}
.

As an illustrative example of these concentration results in action, consider a

random undirected simple graph G = (V,E) on n nodes with adjacency matrix A ∈

Rn×n, so that Aij = 1 if and only if an edge joins vertices i and j in G, and Aii = 0

for all i ∈ [n]. Suppose that the indicator random variables {Aij : 1 ≤ i < j ≤ n}

are independent Bernoulli random variables with probability of success Pij. That is,

the edges {i, j} are present or absent in G independently, with Pr[{i, j} ∈ E] = Pij,

and we have EA = P . An application of the matrix Bernstein theorem given above

shows that A concentrates about its expected value in spectral norm, a result that

appeared first in Oliviera (2010) and also appears in slightly more general form in

Tropp (2012).

Theorem 13. Let A be the adjacency matrix of the random graph G just described.

Define the maximum expected degree ∆ = maxi
∑n

j=1 Pij, and suppose that there exists
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a constant c > 0 such that

3∆

6∆ + 2
√

∆ log n
≥ c.

Then with probability at least 1− 2n1−c,

‖A− P‖ ≤
√

∆ log n. (D.7)

That is, the spectrum of the adjacency matrix concentrates within
√

∆ log n of the

spectrum of the matrix P .

Proof. Observe that E(A − P ) = 0, and letting Fij = eie
T
j + eje

T
i , we can express

A− P as a sum

A− P =
∑

1≤i<j≤n

(A− P )ijFij,

in which every summand is bounded in spectral norm by 1. Noting that

‖E(A− P )2‖ ≤ max
i∈[n]

n∑
j=1

E(A− P )2
ij ≤ ∆,

an application of Theorem 12 with t =
√

∆ log n and the assumption in (D.7) yields

the result.

Many results require a bound on the average degree like the one just seen in order

to ensure concentration Rohe et al. (2011a); Oliviera (2010). In the case of the graph

Laplacian, the high variance associated with small average degree precludes concen-
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tration for general weighted graphs Chung et al. (2003); Le et al. (2016); Klopp

et al. (2015). As part of their examination of spectral clustering in sparse graphs,

Amini et al. (2013) noted that adding a small number of low-weight edges, which

reconnects the disconnected components that tend to occur in sparse random graphs,

results in better performance of spectral clustering. Joseph and Yu (2014) examined

the approach of Amini et al. (2013) theoretically in the case of the stochastic block

model, and showed that the eigenvalues and eigenvectors of the normalized graph

Laplacian concentrate once we regularize the adjacency matrix A as Ar = A + rJ

for small regularization parameter r > 0. Chaudhuri et al. (2012) considered similar

ideas, working in a related random graph model, where they showed that the nor-

malized graph Laplacian concentrates after degree-correction, in which the adjacency

matrix A is replaced by (D+ τI)−1, where D is the diagonal degree matrix. Qin and

Rohe (2013) considered a spectral clustering algorithm inspired by the approaches of

Chaudhuri et al. (2012) and Amini et al. (2013). They considered regularization in

which the degree matrix D is replaced by Dτ = D + τI, and showed that under the

degree-corrected SBM, the regularized normalized graph Laplacian D
−1/2
τ AD

−1/2
τ con-

centrates in spectral norm, strengthening the analogous result presented in Chaudhuri

et al. (2012).

Le et al. (2016) considered concentration of both the adjacency matrix and the

graph Laplacian. In the case of the graph Laplacian, where small-degree vertices

prevent concentration, the authors showed that regularizing the adjacency matrix
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as Aτ = A + (τ/n)J , for τ ∈ R chosen approximately equal to the average degree,

ensures that with high probability

‖L (Aτ )−L (EAτ )‖ = O(d−1/2),

where d = max1≤i<j≤n nEAij. The proof of this fact follows from an analogous con-

centration result for the regularized adjacency matrix Aτ about its mean. This con-

centration of the adjacency matrix is proved by decomposing the graph into a set of

high-degree vertices, for which the degrees concentrate about their means, and a set

of small-degree vertices, which are shown to contribute little to the spectral norm.
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Appendix E

Vertex Nomination and Graph

Matching

In Chapter 4, the graph matching problem is important primarily because it makes

possible a maximum-likelihood-based solution to the vertex nomination problem. As

network data has become ever more prominent in the sciences, problems of this sort

have become increasingly central to data analysis. In this appendix, we review the

recent literature on the problems of graph matching and vertex nomination. We refer

the reader to the excellent survey by Conte et al. (2004) for an overview of earlier

approaches, and focus here primarily on the results of the past fifteen years.
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E.1 Graph Matching

The graph matching (GM) problem is to find a correspondence between the ver-

tices of two graphs that best preserves graph topology.

Definition 9. Given graphs G1 and G2 on common vertex set V = [n] with respective

adjacency matrices A,B ∈ Rn×n, the graph matching problem is to find a permutation

matrix P ∗ ∈ Sn solving

min
P∈Sn

‖A− PBP T‖F , (E.1)

where Sn is the set of n-by-n permutation matrices.

In what follows, we assume that all graphs involved are undirected, so that A and

B are symmetric. This assumption is made only for ease of presentation, as most

of the techniques discussed are easily extended to the directed case. We note the

similarity of the minimization in (E.1) to the well-known graph isomorphism problem

(Garey and Johnson 1979), in which the goal is to determine whether graphs G1 and

G2 are isomorphic. Indeed, the graph matching problem and many related problems

are known to be NP-hard (Conte et al. 2004). Many early approaches attempted to

treat GM as a search problem, with various search and pruning heuristics suggested

in the literature (see citations in van Wyk et al. 2002). Most approaches in the last 25

years have instead considered approximate solutions to (E.1) rather than attempting

to find an exact optimal solution. These approximate approaches can be broadly

divided into two categorizes. The first attempts to map the vertices of graphs G1 and
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G2 into some common (typically Euclidean) space and then finds a correspondence

between the points using, for example, Procrustes alignment (Luo and Hancock 2000;

Gower and Dijksterhuis 2004). The second category of approach applies optimization

techniques, typically by relaxing the minimization problem in (E.1).

The first category of approach had its start in the work of Umeyama (1988). At

the heart of Umeyama’s approach is the observation that the minimization

min
QTQ=I

‖A−QBQT‖F (E.2)

is minimized by choosing any Q = UBSU
T
A , where A and B have singular value de-

compositions A = UAΛAU
T
A and B = UBΛBU

T
B and S is a diagonal matrix with entries

Sii ∈ {−1, 1}. Umeyama’s method is, in effect, applying a Procrustes alignment of

the latent vertex positions of graphs G1 and G2 in the case where vertex positions

are given by rows of the matrices UA and UB. Umeyama motivated this approach in

the case where G1 and G2 are nearly isomorphic by conjecturing that in such cases

this procedure will find a good initial solution, which can be refined by hill climbing

or other local search methods.

Embedding-based approaches in the spirit of Umeyama (1988) have been espe-

cially prominent in image processing, where the geometrical interpretation of image

features or mesh points is particularly natural (see, for example, Scott and Longuet-

Higgins 1991; Shapiro and Brady 1992; Sclaroff and Pentland 1995; Cross and Hancock
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1998; Wang and Hancock 2006; Knossow et al. 2009, and citations therein). Scott

and Longuet-Higgins (1991) considered the problem of discovering a correspondence

between the features in two images by vectorizing the images and maximizing a trace

trQTK, where K is a (possibly rectangular) matrix whose entries capture affinities

between nodes in G1 and G2, and Q is an orthogonal matrix (with orthogonal rows,

in the event that K is rectangular). A singular value decomposition similar to that

in Umeyama (1988) yields a solution to the problem.

Observing that the approach in Scott and Longuet-Higgins (1991) did little to

respect structure within the images being aligned, Shapiro and Brady (1992) pro-

posed an alignment method that first applies a spectral embedding of the image

features according to the images’ geometry and then aligns those embeddings. Cross

and Hancock (1998) presented a method for aligning pairs of point-sets based on

expectation-maximization (EM; Dempster et al. 1977), in which alignment of points

and (possibly nonlinear) transformation of those points occur probabilistically. This

approach allows uncertainty in the image features to be incorporated into the prob-

abilistic model, making the algorithm comparatively robust to noise and outliers.

Carcassoni and Hancock (2003) combined this EM-based framework with spectral

methods.

Keselman et al. (2003) extended the graph matching problem to the case where

vertex correspondence need not be one-to-one, instead allowing a many-to-many cor-

respondence between the vertices of graphs G1 and G2. Their method used techniques
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from metric embeddings (Indyk 2001; Linial 2002) to map the vertices of G1 and G2

into normed spaces B1 and B2, respectively, then aligned the spaces B1 and B2 with

the goal of minimizing the earth mover’s distance between the graphs’ correspond-

ing point clouds (the earth mover’s distance is a metric on probability distributions;

see, for example, Rubner et al. 1998). Leordeanu and Hebert (2005) presented a

method for one-to-many graph matching that applies spectral clustering to the ma-

trix of feature affinities K to find ensembles of feature correspondences that are jointly

preferable. Cour et al. (2007) modified the spectral method of Leordeanu and Hebert

(2005) to include an affine constraint that prevents a solution from assigning any

vertex in G1 to too many vertices in G2.

Knossow et al. (2009) considered aligning graphs with possibly different numbers

of vertices. Their approach computes a Laplacian eigenmaps embedding (Belkin and

Niyogi 2003) of each of the graphs, then seeks to align those embeddings. Viewing

the eigenvectors of the two graphs as mappings of the vertices onto the real line,

histograms are built of these two projections, and the histograms of the two graphs

are aligned using the Hungarian method (Kuhn 1955). Viewed differently, we can

think of the method of Knossow et al. (2009) as aligning spectral clusterings of G1

and G2. Broadly similar approaches were considered earlier by Caelli and Kosinov

(2004) and Robles-Kelly and Hancock (2007). Laplacian eigenmaps and diffusion-

based embeddings (Belkin and Niyogi 2003; Coifman and Lafon 2006) were also used

by Xiao et al. (2009) to determine vertex correspondences across multiple graphs
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at once. Escolano et al. (2011) proposed mapping vertices to Euclidean space via

a commute-time embedding (Qiu and Hancock 2007; Trosset and Tang 2010) and

aligning the resulting point clouds according to an information theoretic objective (see

Escolano et al. 2013, for further discussion of this and related information-theoretic

graph matching methods).

A different approach to graph matching for image processing was considered by

Zhou and la Torre (2016), working in the context of directed graphs in which both

edges and nodes are endowed with features. Their approach works by factorizing two

matrices K1 and K2 that capture affinities among the nodes and edges, respectively.

The authors solved an optimization problem similar to Equation (E.4) below, using

a path-following algorithm similar to that in Zaslavskiy et al. (2009a).

Lyzinski et al. (2014a) considered an extension of the graph matching problem

in which one knows, a priori, a few vertex correspondences between graphs G1 and

G2, and the goal is to find a matching that preserves the correspondence between

these seed vertices while also leveraging the information that they provide about the

topology of the two graphs. This seeded graph matching (SGM) problem is central

to the vertex nomination techniques considered in Chapters 4 and 5. Lyzinski et al.

(2014a) considered the case of matching graphs G1 = (V,E1) and G2 = (V,E2) when

the pair (G1, G2) is drawn from the ρ-correlated Erdős-Rényimodel, which we define

here.

Definition 10. Erdős-Rényirandom graph (Erdős and Rényi 1959) A random graph
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G = (V,E) is said to be an Erdős-Rényirandom graph if there is some p ∈ [0, 1] so

that the possible edges of G are present or absent, independently, with probability p.

Definition 11. ρ-correlated Erdős-Rényirandom graphs We say that the random

graphs G1 and G2 are ρ-correlated Erdős-Rényirandom graphs if G1 and G2 are each

marginally distributed as Erdős-Rényirandom graphs and if, letting A and B denote

the adjacency matrices of G1 and G2 respectively, the Bernoulli random variables

{Aij : 1 ≤ i < j ≤ n = |V |} ∪ {Bij : 1 ≤ i < j ≤ n}

are independent except that the pairs (Aij, Bij) have correlation ρ for all 1 ≤ i < j ≤

|V | = n.

Lyzinski et al. (2014a) considered how the values of ρ and p influence the feasibility

of graph matching and how the number of seeds s influences the quality of seeded

graph matching. They showed that under suitable growth conditions on p and ρ,

graph matching is still feasible, even for comparatively small values of ρ, in the

sense that the minimizer of (E.1) is unaffected by the uncertainty introduced by

the imperfect correlation. They proved a similar result for the case of seeded graph

matching, which shows that the presence of seed vertices makes over a wider range

of values for p and ρ. Their methods are largely similar to those used in Chapter

4, in that they use standard concentration inequalities to bound the probability that

too many edges are flipped in a way that drastically alters the minimizer of (E.1).
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Lyzinski et al. (2014a) explored the in-practice efficacy of seeded graph matching by

applying Frank-Wolfe to a modification of the relaxation in (E.4) that takes seed

information into account.

Lyzinski et al. (2015) considered a spectral embedding approach to the seeded

graph matching problem. Their approach makes use of the adjacency spectral em-

bedding (ASE; see Sussman et al. 2012, or refer to Appendix B for a brief overview),

which (asymptotically) perfectly recovers latent cluster structure in the graphs G1

and G2. Their method first embeds the vertices of graphs G1 and G2 into a common

space Rd using ASE followed by Procrustes analysis. k-means clustering is then ap-

plied to the 2n embeddings of the two graphs to obtain k clusters. Matching is then

performed within clusters, across the two graphs. That is, for each of the k clusters,

the subgraphs of G1 and G2 induced by the vertices in that cluster are matched. This

method is motivated by the fact that, owing to the consistency properties of ASE

(Sussman et al. 2012; Lyzinski et al. 2014b), the joint clustering of the embeddings

will, in the large-n limit, perfectly recover the k clusters of G1 and G2 when such

structure exists (i.e., when G1 and G2 are both k-block SBMs). Working under the

stochastic block model, the main theoretical result showed, using techniques broadly

similar to those used to prove the results in Chapter 4, that this spectral seeded graph

matching approach correctly recovers the vertex correspondence up to a permutation

within the blocks.

An early example (though hardly the first; see, e.g., Davis 1979; Li 1992; Almo-
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hamad and Duffuaa 1993) of the optimization-based approach to graph-matching can

be found in Gold and Rangarajan (1996). The authors considered a relaxation of the

objective function in (E.1) given by

min
M∈Nn

‖A−MBMT‖F , (E.3)

where Nn = {M : ∀i, j : Mij ≥ 0}. Letting Qij denote the gradient of the cost

function in (E.3) with respect to Mij, optimization proceeds by repeatedly updating

M̂
(t+1)
ij = exp{−βQij}, and applying Sinkhorn’s method (Sinkhorn 1964) to transform

M̂ into a doubly stochastic matrix. Here β > 0 is a parameter that increases with the

number of steps. Gold and Rangarajan (1996) also convexify the objective in (E.3)

by adding an entropy term of the form 1
β

∑
i,jMij logMij. Thus, as β increases, the

problem becomes less convex while the M̂ij terms are closer to binary.

The PATH algorithm presented in Zaslavskiy et al. (2009a) follows a classic ap-

proach in optimization– one finds a solution to a convex relaxation of a given problem,

and then projects that solution back to an integral solution (Raghavan and Thomp-

son 1987). Letting Dn denote the set of all n-by-n doubly stochastic matrices (i.e.,

the Birkhoff polytope Bhatia 1997), the algorithm proceeds by alternatingly solving

a convex relaxation of (E.1), given by

min
D∈Dn

‖A−DBDT‖F , (E.4)
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and the concave problem

min
P∈Dn

− tr ∆P − 2~(P )T (LT1 ⊗ LT2 )~(P ), (E.5)

where ∆ ∈ Rn×n is the matrix with entries ∆ij = (
∑n

k=1Aik−Bjk)
2, and L1, L2 are the

combinatorial Laplacians of graphs G1 and G2, respectively. That is, L1 = D1 − A,

where D1 is the degree matrix of G1. Here ⊗ denotes the Kronecker product and

~(P ) ∈ Rn2
denotes the vectorization of matrix P ∈ Rn×n (Horn and Johnson 1994,

Chapter 4). The problem in (E.4) can be solved efficiently using the celebrated Frank-

Wolfe algorithm Frank and Wolfe (1956), but (E.5) has no such efficient algorithm.

Zaslavskiy et al. (2009a) eased this drawback by considering linear interpolations

between the objectives in (E.4) and (E.5). By slowly varying the coefficient of this

interpolation and repeatedly finding local solutions, a path of solutions are found,

leading to a locally optimal solution to (E.5). The PATH algorithm achieved state-

of-the-art performance on the QAPLIB benchmarks (Burkard et al. 1997), a collection

of quadratic assignment problem (QAP; Burkard et al. 2009) instances. Later work

by Liu et al. (2012) explored several variations on the concave relaxation (E.5) and

demonstrated similarly strong performance on the same benchmarks.

Zaslavskiy et al. (2010) considered the case of many-to-many graph matching. In

the case of geometric approaches to graph matching, this extension is natural via,

for example, the binning approach taken in Knossow et al. (2009). In the case of
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the more general optimization approaches, such as the PATH algorithm (Zaslavskiy

et al. 2009a), it is less clear how to extend to the many-to-many case. Letting n1 be

the number of vertices in graph G1, n2 be the number of vertices in graph G2, and

n = min{n1, n2}, Zaslavskiy et al. (2010) suggest the optimization

min
P1∈Πn1,n,P2∈Πn2,n

‖P1AP
T
1 − P2BP

T
2 ‖2

F , (E.6)

where

Πn,k = {P ∈ {0, 1}n×k, P~1 = ~1, ~1TP ≤ kmax, ~1},

and kmax is a chosen upper bound on how many vertices in one graph may be assigned

to the same vertex in the other. Zaslavskiy et al. (2010) presented two approaches

to solving the optimization problem in (E.6). The first, based on a convex relaxation

of the sets Πn1,n and Πn2,n, follows an approach largely similar to the approach of

Zaslavskiy et al. (2009a) to the convex relaxation in (E.4). The second approach was

based on a semidefinite relaxation of (E.6). Earlier examples of SDP-based approaches

to one-to-many and many-to-many graph matching can be found in Torr (2003),

in which the author adapted the randomized rounding approach of Goemans and

Williamson (1995), and Schellewald and Schnörr (2005), in which the authors applied

semidefinite programming techniques to the the natural semidefinite relaxation of an

objective similar to that in (E.1).

Cho and Lee (2012), working in the setting of one-to-one graph matching, consid-
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ered a different approach, based on building up a vertex correspondence incrementally.

Their approach is based on estimating a distribution over candidate vertex corre-

spondences, conditioned on a current matching between two active graphs, which are

subgraphs of graphs G1 and G2. At each time step of the algorithm, this distribution

functions similarly to a sum of experts (Kittler and Alkoot 2003) to decide how to

update the current matching.

Singh et al. (2008), working in the context of biological graph matching applica-

tions such as protein-protein interaction networks, considered the task of attributed

graph alignment, in which the nodes and edges are endowed with features which we

wish to preserve in our alignment. Their method is based on an optimization that can

be recast as an eigenproblem, solved via the power method, which is feasible since the

networks involved are typically large but sparse. Rather than a more typical rounding

solution, the authors use the result of this optimization to obtain a set of scores {Rij},

where i and j range over the vertices of G1 and G2, respectively. Singh et al. (2008)

used these ranking scores to align vertices according to a heuristic. Working on a

similar biologically-motivated attributed alignment problem, Zhang and Tong (2016)

sought an alignment preserving graph topology, node-level attribute consistency, and

edge-level attribute consistency all at once. These concerns led an objection function

in which the node- and edge-level feature similarities are taken into account, simi-

larly to the vertex nomination generalizations discussed in Section 4.5. Properties

of the Kronecker product (Horn and Johnson 1994) allow a simple gradient descent
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approach, which Zhang and Tong (2016) prove converges to the global optimizer. We

note that a number of papers have considered attributed graph matching problems

of this sort, primarily with applications in biology. Many of these techniques are

based on heuristics or are tailored to the domain of application, and are thus outside

the scope of this survey. We refer the interested reader to Singh et al. (2008); Klau

(2009); Zhang and Tong (2016) and citations therein.

An approach to many-to-one based on message-passing was considered by Bayati

et al. (2013), in which the authors presented two approximation schemes for solving

an indefinite QAP similar to (E.7). The local information in the nodes and edges of

the graphs G1 and G2 is encoded in a factor graph (Koller and Friedman 2009), with

variable nodes that capture whether or not edge-matching constraints are met and

function nodes that fire if and only if the integer constraints of the original (integral)

QAP are satisfied. Standard belief propagation techniques (Koller and Friedman

2009) are used to maximize the score in the factor graph, with a final bipartite

matching problem used to round the solution to a proper assignment function.

Rather than the relaxation (E.4), Vogelstein et al. (2015) considered the relaxation

min
D∈Dn

− trDTADB. (E.7)

This relaxation has the disadvantage that its objective is indefinite (if G1 and G2

are hollow graphs, the Hessian of trDTABD with respect to D has trace 0), and
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hence unlike in the case of (E.4), we cannot expect to find a global minimizer in Dn

using the standard convex optimization tools. Nonetheless, Vogelstein et al. (2015)

proposed the fast approximate QAP (FAQ) algorithm to approximately solve (E.1)

by finding a local minimizer D ∈ Dn of (E.7) via Frank-Wolfe (Frank and Wolfe

1956) and projecting back to a permutation matrix P ∗ = arg maxP∈Πn trDP T , found

via the Hungarian algorithm. The natural convex relaxation in (E.4), used in, for

example, Zaslavskiy et al. (2009a), has the advantage of being solvable in polynomial

time via the Frank-Wolfe algorithm (Frank and Wolfe 1956), but, Lyzinski et al.

(2016a) showed that (E.7) is, in a certain sense, the correct optimization to consider.

The authors considered the case of ρ-correlated Bernoulli random graphs A and B,

and showed that under suitable conditions on the model parameters, the solution

to (E.7) is, with high probability, the solution to (E.1). In a partial converse, the

authors showed that with high probability the solution to (E.4) is not a solution to

(E.1). The proof follows an argument broadly similar to that used in Chapter 4, in

which standard concentration inequalities are used to show that certain conditions do

or don’t hold with high probability. Aflalo et al. (2015) considered similar questions

related to the convex relaxation in (E.4), for a broad class of graphs, which they

term friendly graphs. A friendly graph is defined to have a simple spectrum (i.e.,

the eigenvalues of its adjacency matrix are distinct) and none of its eigenvectors

orthogonal to the vector of all ones. It is immediate that friendly graphs are a subset

of the asymmetric graphs. The authors showed that in the case of friendly graphs,
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solutions to (E.4) are also solutions to (E.1), and extended their analysis to symmetric

graphs (which are necessarily unfriendly) for a certain class of regularized versions of

(E.4).

Based on ideas from sparse recovery (see Appendix D), Fiori et al. (2013) presented

the group lasso graph matching (GLAG) algorithm. They modeled the adjacency

matrices A and B as noisy, possibly permuted copies of an underlying adjacency

matrix T , so that A = T + OA and B = QTQT + OB, where Q ∈ Πn and OA, OB

are sparse (but their nonzero entries may be arbitrary). Applying the group Lasso

(Yuan and Lin 2006) with one entry for each graph edge, they obtained the penalty

function

F (P ) =
∑
i,j

√
(AP )2

ij + (PB)2
ij

and the corresponding relaxed optimization

P̂ = arg min
D∈Dn

F (D).

This nonconvex optimization problem is solved (approximately) using the alternating

direction method of multipliers (ADMM; Boyd et al. 2010).
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E.2 Vertex Nomination

We turn now to a brief overview of the vertex nomination (VN) problem. This

problem is the focus of Chapter 4. As discussed in that chapter, the VN problem is to

find, given a collection of vertices labeled as being “interesting” or “uninteresting”,

other vertices in the graph that are likely to be interesting. In particular, we wish

to rank the unlabeled vertices by how likely we believe them to be interesting. We

call a ranking procedure of this sort a nomination scheme. Recalling the notation

from Chapter 4, we are given a graph G = (V,E) with vertex set V of size |V | = n,

partitioned into K disjoint “blocks” V1, V2, . . . , VK so that V = V1 ∪ V2 ∪ · · · ∪ VK ,

with |Vk| = nk for all k ∈ [K]. We let V1 be the block of interest in the graph,

with all other blocks being “uninteresting”. We let S ⊆ V denote the |S| = m seed

vertices, chosen uniformly at random from among all subsets of V of size m, whose

block membership labels are known. These labels are unobserved for the non-seed

vertices U = V \ S. We let u = |U | = n−m denote the number of non-seed vertices,

and we partition the blocks of V , so that Vk = Sk ∪ Uk for all k ∈ [K]. The goal

of VN is to produce a nomination list L : U → [u], i.e., a ranking of the non-seed

vertices, so that the vertices in U1 concentrate near the top of the ranking. Recall

that we assess the quality of a ranking scheme by average precision (AP),

AP(L) =
1

u1

u1∑
i=1

∑i
j=1 I{L−1(j) ∈ U1}

i
, (E.8)
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which ranges from 0 to 1, with AP(L ) = 1 corresponding to perfect performance

and AP(L ) = 0 corresponding to the fact that none of the interesting vertices were

ranked among the u1 top vertices.

The VN problem overlaps quite heavily with the problem faced by recommender

systems, a parallel discussed briefly in the survey by Coppersmith (2014). The typ-

ical recommender system task is to retrieve, based on a small number of documents

deemed interesting, more documents from among a large collection that are also likely

to be interesting. The key difference between this task and that of VN is that graph

topology is explicit in the VN problem, whereas such network structure is not nec-

essarily present in the case of, say, document retrieval. We refer the reader to the

survey by Resnick and Varian (1997) and the handbook by Ricci et al. (2011) for a

more thorough overview and discussion of recommender systems.

The vertex nomination problem was introduced in Coppersmith and Priebe (2012),

in which the authors were motivated by the task of performing vertex nomination in

the context of the Enron email data set (Priebe et al. 2005, see, e.g.,). Copper-

smith and Priebe (2012) considered ranking schemes based on assumptions about

the stochastic behavior of interesting vertices as compared to uninteresting vertices.

They contrasted context-based statistics, which leverage the attributes (e.g., block la-

bels, or other additional information) of neighboring vertices to classify a given vertex

u ∈ U , with content-based statistics, which make use of attributes of the the edges

incident on a vertex u ∈ U . The authors considered a range of convex combinations
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of such approaches, and explored their empirical performance. Suwan et al. (2015)

extended this approach, recasting the problem within in a Bayesian framework.

Motivated by a similar task, Marchette et al. (2011) considered the vertex nom-

ination problem in the context of random dot product graphs (RDPGs; Young and

Scheinerman 2007), a latent position model (Hoff et al. 2002) that generalizes the

notion of the stochastic block model. The authors extended this model to include

edge-level attribute distributions, so that the attribute value of edge (u, v) ∈ E de-

pends on the latent positions of vertices u, v ∈ V . This attributed model lends itself

to a VN scheme based on a linear discriminant, in contrast to an approach that

simply uses a latent position estimation procedure akin to adjacency spectral em-

bedding (ASE; see Appendix B for a brief overview). In follow-up work, Sun et al.

(2012) compared the performance of two embedding-based nomination schemes and

explored the task of estimating the power of such schemes using the Wilcoxon rank

sum test (Wilcoxon 1945) and investigated the performance of embeddings related

to ASE and multidimensional scaling (MDS; see Appendix B for a brief overview of

ASE and MDS).

Finally, Fishkind et al. (2015), discussed at some length in Chapter 4, explored

three approaches to vertex nomination. The first, called the canonical nomination,

was based on an explicit computation of the distribution over all possible membership

labelings, conditioned on the seeds S and the model parameters. This canonical

approach is feasible only for small numbers of vertices, but was proved to be Bayes
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optimal for the vertex nomination scheme. A second approach, based on ASE, and a

third approach, based on a maximum-likelihood formulation, were also presented. We

refer the reader to Chapter 4 for a more thorough discussion of these three approaches.

In particular, the maximum-likelihood approach is of particular interest in Chapters

4 and 5, and makes heavy use of the graph matching techniques discussed in the

previous section.
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A. Smola. Input space vs. feature space in kernel-based methods. IEEE Transac-

tions on Neural Networks, 10(5):1000–1017, 1999.

S. Sclaroff and A. Pentland. Modal matching for correspondence and recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):545–561,

1995.

G. L. Scott and H. C. Longuet-Higgins. An algorithm for associating the features of

two images. Proceedings of the Royal Society B, 224(1309):21–26, 1991.

N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst. Robust

317



BIBLIOGRAPHY

principle component analysis on graphs. Retrieved from arXiv, 2015. URL http:

//arxiv.org/abs/1504.06151.

L. S. Shapiro and J. M. Brady. Feature-based correspondence: an eigenvector ap-

proach. Image and Vision Computing, 10(5):283–288, 1992.

A. Shashua and A. Levin. Taxonomy of large margin principle algorithms for ordinal

regression. In Advances in Neural Information Processing Systems (NIPS) 15, pages

961–968, 2003.

R. Shibata. Consistency of model selection and parameter estimation. Journal of

Applied Probability, 23:127–141, 1986.

R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction

networks with application to functional orthology detection. Proceedings of the

National Academy of Sciences of the United States of America, 105(35):12763–

12768, 2008.

R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic

matrices. Annals of Mathematical Statistics, 35(2):876–879, 1964.

A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine

learning. In Proceedings of the 17th International Conference on Machine Learning,

2000.

318

http://arxiv.org/abs/1504.06151
http://arxiv.org/abs/1504.06151


BIBLIOGRAPHY

V. Soto, L. Mangu, A. Rosenberg, and J. Hirschberg. A comparison of multiple meth-

ods for rescoring keyword search lists for low resource languages. In Proceedings

of the Annual Conference of the International Speech Communication Association

(INTERSPEECH), 2014.

G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, 1990.

M. Sun, M. Tang, and C. E. Priebe. A comparison of graph embedding methods

for vertex nomination. In 11th International Conference on Machine Learning and

Applications, volume 1, pages 398–403, 2012.

N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden,

and P. Dubey. Streaming similarity search over one billion tweets using parallel

locality-sensitive hashing. In Proceedings of the International Conference on Very

Large Data Bases (VLDB), 2014.

D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe. A consistent adjacency

spectral embedding for stochastic blockmodel graphs. Journal of the American

Statistical Association, 107(499):1119–1128, 2012.

D. L. Sussman, M. Tang, and C. E. Priebe. Consistent latent position estimation

and vertex classification for random dot product graphs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 36:48–57, 2014.

S. Suwan, D. S. Lee, and C. E. Priebe. Bayesian vertex nomination using content and

319



BIBLIOGRAPHY

context. Wiley Interdisciplinary Reviews: Computational Statistics, 7(6):400–416,

2015.

C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In

Advances in Neural Information Processing Systems (NIPS) 26, pages 2553–2561,

2013.

M. Talagrand. A new look at independence. Annals of Probability, 24:1–34, 1996.

H. Tang, M. Hasegawa-Johnson, and T. Huang. A novel vector representation of

stochastic signals based on adapted ergodic HMMs. IEEE Signal Processing Letters,

17(8):715–718, 2010.

M. Tang and C. E. Priebe. Limit theorems for eigenvectors of the normalized Lapla-

cian for random graphs. arXiv preprint arXiv:1607.08601, 2016.

M. Tang, D. L. Sussman, and C. E. Priebe. Universally consistent vertex classification

for latent position graphs. The Annals of Statistics, 31:1406–1430, 2013.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

S. Thomas, S. Ganapathy, and H. Hermansky. Phoneme recognition using spectral

envelope and modulation frequency features. In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009.

320



BIBLIOGRAPHY

C. J. Thompson. Inequality with applications in statistical mechanics. Journal of

Mathematical Physics, 6:1812–1813, 1965.

V. S. Tomar and R. C. Rose. Application of a locality preserving discriminant analysis

approach to ASR. In Proceedings of the 11th International Conference on Infor-

mation Sciences, Signal Processing and their Applications (ISSPA), pages 103–107,

2012.

W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,

17(4):401–419, 1952.

P. H. S. Torr. Solving Markov random fields using semi definite programming. In C. M.

Bishop and B. J. Frey, editors, Proceedings of the Ninth International Workshop

on Artificial Intelligence and Statistics, Key West, FL, January 2003.

J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Compu-

tational Mathematics, 12(4):389–434, 2012.

J. A. Tropp. An introduction to matrix concentration inequalities. Found. and Trends

in Machine Learning, 8(1-2):1–230, 2015.

M. W. Trosset. Distance matrix completion by numerical optimization. Computa-

tional Optimization and Applications, 17(1):11–22, 2000.

M. W. Trosset and M. Tang. On combinatorial laplacian eigenmaps. Technical Report

10-02, Department of Statistics, Indiana University, October 2010.

321



BIBLIOGRAPHY

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y Altun. Large margin methods

for structured and interdependent output variables. Journal of Machine Learning

Research, 6:1453–1484, 2005.

R. E. Ulanowicz, C. Bondavalli, and M. S. Egnotovich. Network analysis of trophic

dynamics in South Florida ecosystems, FY 97: The Florida Bay ecosystem. An-

nual Report to the U.S. Geological Survey, Biological Resources Division. Ref. No.

[UMCES]CBL 98-123, 1997.

S. Umeyama. An eigendecomposition approach to weighted graph matching problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5):695–703,

1988.

L. van der Maaten and G. E. Hinton. Visualizing data using t-SNE. Journal of

Machine Learning Research, 9:2579–2605, 2008.

L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimensionality

reduction: A comparative review. Journal of Machine Learning Research, 10(1-41):

66–71, 2009.

A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes.

Springer, New York, 1996.

M. A. van Wyk, T. S. Durrani, and B. J. van Wyk. RKHS interpolator-based graph

322



BIBLIOGRAPHY

matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 24(7):988–995, 2002.

J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T.

Harley, D. E. Fishkind, R. T. Vogelstein, and C. E. Priebe. Fast approximate

quadratic programming for graph matching. PLoS ONE, 10(04), 2015.

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):

395–416, 2007.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. The

Annals of Statistics, 36(2):555–586, 2008.

M. De Wachter, M. Matton, K. Demuynck, P. Wambacq, R. Cools, and D. Van

Compernolle. Template-based continuous speech recognition. IEEE Transactions

on Audio, Speech, and Language Processing, 15(4):1377–1390, 2007.

H. F. Wang and E. R. Hancock. Correspondence matching using kernel principal

components analysis and label consistency constraints. Pattern Recognition, 39(6):

1012–1025, 2006.

J. Wang, M. Li, Z. Li, and W.-Y. Ma. Learning ranking function via relevance

propagation. Technical report, Microsoft Research Asia, 2005.

J. Wang, S. Kumar, and S. Chang. Sequential projection learning for hashing with

323



BIBLIOGRAPHY

compact codes. In Proceedings of the 27th International Conference on Machine

learning, Haifa, Israel, 2010.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.

Cambridge University Press, 1994.

Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in Neural

Information Processing Systems (NIPS) 21, pages 1753–1760, 2009.

E. P. Wigner. On the distributions of the roots of certain symmetric matrices. Annals

of Mathematics, 67:325–327, 1958.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):

80–83, 1945.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel

machines. In Advances in Neural Information Processing Systems (NIPS) 13, pages

682–688, 2001.

B. Xiao, E. R. Hancock, and R. C. Wilson. A generative model for graph matching

and embedding. Computer Vision and Image Understanding, 113(7):777–789, 2009.

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig.

Achieving human parity in conversational speech recognition. Technical Report

MSR-TR-2016-71, Microsoft Research, 2016.

324



BIBLIOGRAPHY

S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph embedding and

extensions: A general framework for dimensionality reduction. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 29(1):40–51, 2007.

J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with node

attributes. In Proceedings of the IEEE 13th International Conference on Data

Mining, pages 1151–1156, 2013.

S. Young and E. Scheinerman. Random dot product graph models for social networks.

In Proceedings of the 5th International Conference on Algorithms and Models for

the Web-graph, pages 138–149, 2007.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society B, 68(1):49–67, 2006.

W. W. Zachary. An information flow model for conflict and fission in small groups.

Journal of Anthropological Research, 33(4):452–473, 1977.

M. Zaslavskiy, F. Bach, and J.P. Vert. A path following algorithm for the graph

matching problem. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 31(12):2227–2242, 2009a.

M. Zaslavskiy, F. Bach, and J.P. Vert. A path following algorithm for the graph

325



BIBLIOGRAPHY

matching problem. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 31(12):2227–2242, 2009b.

M. Zaslavskiy, F. Bach, and J.P. Vert. Many-to-many graph matching: A continu-
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