Graph Inference with Applications to Low-Resource Audio

Search and Indexing

by

Keith Levin

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

May, 2017

© Keith Levin 2017

All rights reserved

Abstract

The task of query-by-example search is to retrieve, from among a collection of
data, the observations most similar to a given query. A common approach to this
problem is based on viewing the data as vertices in a graph in which edge weights
reflect similarities between observations. Errors arise in this graph-based framework
both from errors in measuring these similarities and from approximations required
for fast retrieval. In this thesis, we use tools from graph inference to analyze and
control the sources of these errors. We establish novel theoretical results related to
representation learning and to vertex nomination, and use these results to control the
effects of model misspecification, noisy similarity measurement and approximation
error on search accuracy. We present a state-of-the-art system for query-by-example
audio search in the context of low-resource speech recognition, which also serves as
an illustrative example and testbed for applying our theoretical results.

Primary Reader: Professor Ben Van Durme
Secondary Reader: Professor Vince Lyzinski

Tertiary Reader: Professor Carey E. Priebe

i

Acknowledgments

This thesis would not have been possible without the support of countless peo-
ple. My thanks belong first and foremost to my co-advisors Vince Lyzinski, Ben Van
Durme and Carey Priebe, whose guidance and insights have been invaluable. To my
father Rick, my brother Craig, and the rest of my family, for your love and encour-
agement I offer my humble thanks. I owe a debt of gratitude to the faculty and staff
of the Johns Hopkins University Center for Language and Speech Processing and the
Departments of Computer Science and Applied Math and Statistics. In particular, my
thanks to Ruth Scally, Debbie Deford, Cathy Thornton, Laura Graham and Zachary
Burwell, without whom I would have been entirely lost, and to Glen Coppersmith,
Aren Jansen, Vladimir Braverman, Avanti Athreya, Minh Tang, Donniell Fishkind,
Sanjeev Khudanpur, Jason Eisner, Raman Arora and Amitabh Basu, who have all
influenced this thesis for the better in discussions over the past few years. My deepest
thanks to my fellow students and dear friends at JHU for lively discussion on matters
both technical and less so, countless coffees and beers, soccer games and occasional

live music. To the educators throughout my life, for setting me on this path, I offer

il

ACKNOWLEDGMENTS

my sincere appreciation. My thanks are due in particular to Mary Cawley, George
Farrell, Eric Michelson, Marty Badoian, Marina Todorova, Neal Pearlmutter, Joanne
Miller, Karl Lieberherr, Emanuele Viola and Robert Chase. My deepest thanks to my
former colleagues at BBN, in particular to Bernhard Suhm, Jeff Schachter, Pat Peter-
son and John Makhoul for their patience and advice. Finally, my warmest thanks to
my friends Matthew Gray, Eric Woods, Bonnie Le, Dana Brocious, Paige Brocious,

Lou Vitelli, Brian Correia, Becky Gerstein, Phil Small and Jenny Bagnyuk.

v

Dedication

This thesis is dedicated to the memory of my mother, Leslie Levin.

Contents

[Abstract] ii
[Acknowledgments| iii
[List_of Tables xii
[List of Figures| xiii
I ich [Motivation 1
(1.1 Similarity Search and Indexing of Large Data Sets| 3
(L1I.1 Sources of Frror. 5

(1.1.2 Reranking Candidate Matches| 7

(1.2 Roadmap| 8

2 Low-resource Audio Search Using Fixed-Dimensional Embeddings |

[of Audio Segments| 10

[2.1 Fixed-Dimensional Embeddings of Variable-Length Audio Segments| . 12

vi

CONTENTS

[2.2 Embedding Methods| 0. 15
[2.2.1 Time series downsampling| 16
2.2.2 Vector of distances to reference setl 17
[2.2.3 Linear embedding techniques| 19
[2.2.4 Nonlinear graph embedding techniques 20

[2.3 Comparing Embeddings: Evaluation| 24
[2.3.1 Baselines (the NoTrain condition)| 26
[2.3.2 Unsupervised embeddings (the UnsupTrain condition)|. 27
[2.3.3 Supervised embeddings (the SupTrain condition)| 29
234 Discussionl 31

[2.4 Large-Scale Audio Keyword Searchf 33

2.5 The S-RAILS System|. 36
[2.5.1 Fixed-dimensional Segment Embeddings| 38
[2.5.2 Near-neighbor retrieval 38

2.6 Experiments| 41
[2.6.1 Selecting Index Parameters|. 43
[2.6.2 Constructing the Index | 44
[2.6.3 Controlling False Positives| 45
[2.6.4 Post-processing of query results| 46
.65 Results. 47

[3 Laplacian Eigenmaps in the Presence of Noise and Occlusion| 49

vil

CONTENTS

3.1 Introduction and Motivationl 51
[3.1.1 Problem Description| 52
.12 Our Modell. oo 54
[3.1.3 Laplacian Eigenmaps/ 56
[3.1.4 Notation and conventionsl o8

.2 Related Workl o oo 60
[3.2.1 Manitold Learning| 60
[3.2.2 Matrix Completion and Data Imputation| 63
(3.2.3 Matrix Concentration|. 64

.3 Main Resultsl oo 66

[3.4 Experiments| 76
.41 DataSetd 76
.42 Noise Conditionsl oL 78
[3.4.3 Effect of Noise and Occlusion on Embeddings| 81
[3.4.4 Effect of Multiplicative Exror and Bias| 82
[3.4.5 Model Misspecification| 85
[3.4.6 Effect of regularizationl L. 86

3.5 Discussionl 89
[3.5.1 Adaptive Techniques| 89
3.5.2 Other Frror Models 90
[3.5.3 Graph Construction| 90

viil

CONTENTS

[3.5.4 Other Dimensionality Reduction Techniques| 91

8.6 Prootdetails|.o 92
4 Vertex Nomination| 109
(4.1 Introduction and Background 110
[4.1.1 Background oo 113

4.2 Graph Matching and Maximum Likelihood Estimation| 118
4.2.1 The £ Vertex Nomination Scheme 122

4.2.2 The LY Vertex Nomination Scheme| 125

4.3 Consistency of LY and L¥X. 129

4.4 Consistency of LY~ and L3~ When the Model Parameters are Unknown|(131

1.5 Model Generalizationsl L oL 133
(4.6 Experiments o 139
4.6.1 Simulationso 140

462 Word Co-occurrences L 146

[4.6.3 Zachary’s Karate Club[. 149

[4.6.4 Political Blogs|.o 150

[4.6.5 Ecological Networkl 152

K7 Discussion and Future Workl o000 155
U8 Proofdetails|. o 156

[> Query Reranking Using Vertex Nomination| 169

X

CONTENTS

[>.1 Reranking: The basic problem|. 172
(5.2 Reranking using Vertex Nomination|. 176
[>.3 VN-based reranking for audio search| 178
b.3.1 Modeling edge weights| 179

H.3.2 Parameter Fstimationl L. 181

[5.3.3 Choosing block sizes| 183

[p.4 Experiments| 183
[5.4.1 Augmenting Query Examples| 190

.o Discussionlo 193
6__Discussion and Future Workl 196
6.1 The S-RAILS System|. 0oL 196
[6.2 Convergence of Sparse, Noisy Laplacian Eigenmaps| 199
0.3 Vertex Nomination| L oL 200
[6.4 Reranking using VN| o000 202

[A Large-Scale Audio Search| 204
[A.1 Speech Processing: an Overview| 204
[A.2 Keyword Searchl o 00 206
[A.3 Dynamic Time Warpingl 207

(B Representation Learning| 211
[B.1 Dimension Reductionlo 211

CONTENTS

(B.1.1 Random Projections|

(C.2 Locality Sensitive Hashing: Initial Workl

[C.3 Locality-Sensitive Hashing: More Recent Progress|

(D Matrix Completion and Random Matrices|

[D.1 Matrix Completion and Compressed Sensing|

(D.1.1 Matrix Completion with Noise/.

[E2 Vertex Nomination and Graph Matching)

[£.1 Graph Matching|.

(Bibliography|

[Vital

X1

235

235

237

240

244

245

251

254

262

263

277

281

328

List of Tables

[2.1 Average precision of baseline algorithms| 27
[2.2 Average precision in UnsupTrain condition| 28
[2.3 Overview of average precision for different embedding schemes| 33
[2.4 5-RAILS performance as a function of signature lengthl 41
[2.5 S-RAILS performance as a function of number of permutations|. . . . 41
[2.6 S-RAILS performance as a function of beamwidth| 41
[2.7 Performance of RAILS system as function of beamwidth| 42
[2.8 S-RAILS performance as function of signature threshold 46
4.1 Empirical estimates of MAP on SBM datal 146
U2 ARI of different nomination schemes on SBM datal. 146
[>.1 Baseline S-RAILS performance on the development set| 184
[5.2 Performance of VN-based reranking of top 500 S-RAILS results, as a |

function of signature length and number of permutations| 185
[>.3 Performance of VN-based reranking of top 1,000 5S-RAILS results, as |

a function of signature length and number of permutations| 187
[5.4 Performance of kernel-based reranking ot S-RAILS results, as a func- |

tion of signature length and number of permutations 188

x1i

List of Figures

[2.1 Average precision as a tunction of target space dimension| 28
[2.2 Average precision as a tunction of reference set size. | 32
[2.3 Diagram of the S-RAILS audio search system. 38
[3.1 Points sampled from a 3-dimensional swissroll| 70
[3.2 Relative error in recovering swiss roll embeddings as a tunction of noise |
I and occlusion| 73
[3.3 Relative error in recovering swiss roll embeddings as a function of oc- |
| clusion and variance in a multiplicative error model| 74
[3.4 Relative error in recovering swiss roll embedding as a function ot oc- |
L clusion and noise level for different levels of biasl 75

[3.5 Average precision on a speech task as a function of embedding dimension| 79
[3.6 Relative error in recovering swiss roll embedding as a tunction of di- |
I Mensionl e e e e e e e e e e 80
[3.7 Average precision on a speech task as a tunction of noise and occlusion| 82
[3.8 Adjusted Rand index on a neuroscience data set as a tunction of em- |

| bedding dimension for different regularization levels| 87
[3.9 Average precision on a speech task as a function of dimension for dif- |
| ferent regularization levels) 88
4.1 Mean nomination lists for SBM datal 144
4.2 Adjacency matrix of the collocation datal 147
4.3 Vertex nomination performance on collocation data| 149
4.4 Zachary’s karate club networklo 0000 150
[4.5 Vertex nomination performance on Zachary’s karate network{ 151
[4.6 Vertex nomination performance on a political blogs networkl 152

4.7 Florida Bay trophic network: adjacency matrix and VN performance] 154

[>.1 P@I10 of rescored S-RAILS results as a function of the number of aug- |
| menting seeds| 193

xiil

Chapter 1

Introduction and Motivation

Researchers throughout the sciences are now generating data from both observa-
tion and simulation at increasingly large scales, aided by the ubiquity of inexpensive
sensors and storage. Indeed, some posit that we have entered a new “fourth paradigm”
(Hey et al. 2009) of scientific research, in which collection, curation and analysis of
massive data sets are central to the advancement of our understanding of the natural
world. Under this fourth paradigm, methods for analyzing, exploring and summa-
rizing data sets are paramount. One such operation is query-by-example similarity
search, in which a researcher, having found an observation of interest, called the query,
wishes to find more like it from among a collection of observations called the search
collection. Problems of this sort arise in machine learning in the form of recommender
systems (Resnick and Varian||1997), in genomics in the form of sequence similarity

search (Lipman and Pearson|[1985; |Altschul et al.[|1990), and in computer vision in

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

the form of content-based retrieval (Datta et al.|2008), among countless other appli-
cations. Owing to computational constraints and model misspecification, similarity
search on large data sets can incur errors that negatively impact the quality of search
results and downstream performance. This thesis aims to better control and mitigate
the sources of these errors using tools from graph inference.

The typical approach to query-by-example similarity search consists of first em-
bedding the search collection into some finite-dimensional normed linear space in such
a way that the similarity structure of the data is preserved. Next, one constructs an
index for performing (approximate) near neighbor retrieval. Given a query, this index
allows the fast retrieval of near neighbors of the embedded query observation from
the search collection. We call these near neighbors the query results. In applying
this approach, it is typical that one must accept approximation error from a number
of sources. Under most realistic circumstances, any given embedding technique will
preserve the similarity structure of the search collection only approximately. Ad-
ditionally, the size of the search collection may make it prohibitively expensive to
construct this embedding exactly, and a researcher may have to settle instead for an
approximate embedding. The approximate, probabilistic nature of large-scale near-
neighbor search adds yet another source of error. Finally, the similarity measure itself
may be a source of error, since it is often infeasible in practice to precisely compute the
researcher’s intended or desired notion of similarity. This makes it necessary to use

some other, more readily computed similarity function that is only an approximation

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

to the one actually intended.

In this thesis, we explore how these various approximation errors influence the
performance of the search system and attempt to minimize their effects using tech-
niques from graph inference. In particular, we focus on the effects of replacing the
intended, ideal notion of similarity, which we call the oracle similarity function, with
a more feasible approximation, which we call the ersatz similarity function. We mo-
tivate the choice to focus on this source of error by observing, firstly, that it tends
to dominate the error introduced by embedding and near-neighbor retrieval, and sec-
ondly that selection of the oracle similarity (and its approximation) occurs prior to
the construction of embeddings and the near-neighbor index. A better understanding
of the effects of these choices is central to improving systems for large-scale search

and for analyzing and summarizing large data sets generally.

1.1 Similarity Search and Indexing of Large

Data Sets

The problem of query-by-example search is to find, from among a large number of
observations, those that are most similar to a given query observation. This notion of
similarity depends, of course, on the domain and application at hand. For example,
in the case of astronomy data, a researcher looking to find stars with similar spectra

will have in mind a different notion of similarity than does a researcher looking to

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

find stars with similar redshifts (Morison|[2008]).

Having chosen a similarity function, how should we perform retrieval from the
search collection when presented with a query? Naively, one could compute the
similarity of the query to all observations in the search collection and return those that
score highest. This brute force approach is, of course, infeasible for search collections
of even moderate size. Near-neighbor retrieval, discussed in detail in Appendix [C]
suggests a way forward: if one can represent observations as points in such a way
that similar observations have corresponding points that are near one another, then
we can recast similarity search as near-neighbor retrieval and apply the existing tools
of near-neighbor search to the similarity search problem. Of course, this only raises
the new issue of representing the search collection by geometric points. Fortunately,
this problem is itself well-studied in the areas of dimensionality reduction, manifold
learning and metric embedding (see Appendix [B|for an overview of these areas).

The tools of embeddings and near-neighbor retrieval suggest the following commonly-
used pipeline. Having chosen a notion of similarity, one first embeds the search col-
lection into a metric space in which it is easy to perform near-neighbor retrieval. By
construction, this embedding is such that observations are similar if and only if their
embedded points are near one another. Having embedded the search collection, one
then builds an index to facilitate near-neighbor retrieval on the embedded points.
Upon arrival of a query observation, one simply embeds the query, finds the points

nearest to it, and returns their corresponding observations.

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

1.1.1 Sources of Error

Unfortunately, approximation error is introduced at every step of this proposed
pipeline. All scalable algorithms for near neighbor retrieval are only approximate,
and typically involve an accuracy guarantee that holds only probabilistically. Fur-
ther, most embedding techniques preserve the similarity structure of the data only
approximately, and thus in the above pipeline, near-neighbor retrieval is actually re-
trieving only the observations that are approximately the most similar to the query.
But both of these sources of error are, in some sense, secondary to the approximation
error introduced, before either of these steps take place, by the similarity measure
itself.

This approximation error arises from the fact that in most cases of interest, even
writing down a sensible notion of similarity is a challenge. Consider an image retrieval
task, in which we have a database of images of common objects, and the goal is to
retrieve from the database all images that contain the same object as is pictured in
a given query image. Here, the ideal notion of similarity is easy to state: two images
are similar if and only if they contain the same object. Unfortunately, while most
humans can readily identify whether or not, say, a cat is present in a given photo, the
same task is a notoriously hard problem in computer vision (Krizhevsky et al.|[2012;
Szegedy et al.2013). Thus, even though this ideal notion of similarity is an easy one
to state, and even easy for most humans, it is an infeasible one for use in retrieval.

In such a situation, a researcher must settle for a simpler notion of similarity that

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

is more easily computed. For example, in the image retrieval task just described,
a researcher may instead use a similarity scoring function based on low-level image
features. Using an ersatz similarity function yields computational tractability at the
cost of accuracy, in that the ersatz similarity does not fully capture the similarity
that was originally intended. We illustrate the typical search pipeline as well as many
of these computational and approximation concerns in Chapter [2, where we present
a system for performing large-scale query-by-example search on speech audio.

A second source of difficulty arises from related but distinct computational con-
cerns. In general, even having chosen an ersatz similarity, there remains the matter
of actually computing the embedding of the search collection. In some cases, it may
still be prohibitively expensive to compute even the ersatz function for all pairs of
observations in the search collection. In such a case, a researcher may back off to
computing an approximation of the ersatz function or computing the ersatz function
for only a fraction of the pairs of observations in the search collection. We explore how
such tradeoffs influence the quality of the embedded points in Chapter |3 Our main
result of the chapter shows that a certain class of embeddings are largely unaffected
by these various sources of approximation error, provided certain mild assumptions

hold concerning the search collection and the nature of the approximation.

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

1.1.2 Reranking Candidate Matches

A technique commonly applied in large-scale search, called reranking (Mei et al.
2014)), is to retrieve results in two passes. A first pass performs an inexpensive coarse-
grained search on the entire collection, which returns a set of candidate matches far
larger than the intended set of results to be returned to the user. A second-pass
search, the reranking step, provides a more expensive, more accurate assessment of
similarity. This second pass is applied only to the candidate matches, with the goal
of refining the ranking of the matches returned by the first pass.

The retrieval system described in the previous sections makes fast large-scale
similarity search possible at the cost of introducing approximation error at several
steps in the pipeline. Our theoretical results in Chapter |3| suggest that the errors
introduced by the ersatz function and the embedding step are not overly large. Is
it possible to devise a reranking procedure so that we do not merely control these
errors, but reduce their effect on the quality of search results?

It is natural to take a reranking approach in which we use this standard pipeline
to perform a fast first-pass search. A naive approach to this reranking problem would
be to simply reorder the search results in decreasing order of similarity to the query,
but this approach yields a ranking that reflects the oracle similarity only as well as
the ersatz similarity does. If we think of the ersatz similarity function as an estimate
of the oracle similarity, then it makes sense to make use of the pairwise similarities for

all of the candidate matches. These pairwise similarity scores, taken jointly, define

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

a weighted graph whose vertices correspond to the candidate matches, in which we
expect similarity among the candidate matches to yield graph structure that better
reflects the oracle similarity. This intuition motivates the results presented in Chapter
[, in which we consider the vertex momination problem. The vertex nomination
problem, which we discuss in detail in Appendix [E] generalizes this reranking idea
by considering a semi-supervised problem in which a few vertices are marked as
“Interesting” in a given graph G = (V, E), and one wishes to rank the remaining
vertices from V' so that other vertices also believed to be interesting concentrate at
the top of the list. In Chapter [5, we adapt the vertex nomination scheme presented in
[to the reranking problem discussed above and show that it improves the performance

of the audio search system presented in Chapter [2|

1.2 Roadmap

We begin in Chapter 2| by presenting a basic system for performing query-by-
example search on large collections of speech audio data. This system illustrates
the design issues typical of similarity search, and serves as a testbed for the ideas
introduced in later chapters. In Chapter [3 we give more detailed attention to the
Laplacian eigenmaps embedding (Belkin and Niyogi 2003) used in the system intro-
duced in Chapter 2] We prove that the Laplacian eigenmaps embedding is robust

to misspecification and occlusion of the sort discussed in Section [1.1.1l In Chapter

CHAPTER 1. SEARCH AND INDEXING PROBLEMS

[, we consider the vertex nomination problem, motivated by the reranking problem
discussed in Section [I.1.2] We introduce a maximum-likelihood-based technique for
solving the vertex nomination problem and prove its consistency under the stochastic
block model. In Chapter [5| we apply our vertex nomination scheme to the reranking
problem and show that it improves the performance of the system presented in Chap-
ter 2] We close in Chapter [6] with a discussion of our overall results and directions

for future research.

Chapter 2

Low-resource Audio Search Using
Fixed-Dimensional Embeddings of

Audio Segments

In this chapter, we present a system for performing large-scale search of speech
audio in the low-resource setting, where little or no training data is available for build-
ing a search system. The low-resource setting is in contrast to the situation usually
considered in speech recognition, in which it is assumed that large collections of anno-
tated speech data are available for training statistical models. While such quantities
of data are available for well-studied languages such as English and Mandarin, this is
not the case for the vast majority of the world’s languages. As such, there is a need for

approaches to large-scale audio search and related tasks that can operate even with

10

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

little or no training data. More broadly, this low-resource setting is the norm in many
applications beyond speech processing. That is, in many domains and applications,
little or no labeled data are available for training supervised statistical models. As
such, unsupervised and semi-supervised systems, such as the one presented in this
chapter and discussed more broadly throughout this thesis, are crucial.

In the first half of this chapter, we explore a number of methods for representing
segmental audio data as fixed-dimensional vectors in such a way that nearness in
Euclidean space approximately preserves some notion of linguistic similarity. Such
a representation is necessary before we can apply the pipeline discussed in Chapter
[[We consider several methods, varying in the required amount of supervisory in-
formation, and compare them on a word discrimination task. We will see that, in
particular, an embedding based on Laplacian eigenmaps (Belkin and Niyogi |2003)
achieves promising performance on this task. In the second half of this chapter, we
will apply these Laplacian eigenmaps embeddings in a large-scale audio search task
using a framework akin to that described in Chapter [l We will see that this search
system improves over an earlier system that operated at the frame level rather than
performing search at the segmental level.

The material in this chapter appeared originally in slightly altered form in Levin
et al. (2013) and |Levin et al|(2015). A more detailed introduction to the problem
of audio search and indexing, as well as a brief overview of relevant background in

speech processing and keyword search can be found in Appendix [A] Overviews of

11

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

fixed-dimensional embeddings and locality-sensitive hashing (LSH), which are central
to the search system presented in this chapter, are given in Appendices [B| and [C]

respectively.

2.1 Fixed-Dimensional Embeddings of Variable-

Length Audio Segments

Historically, the workhorse of speech recognition has been the hidden Markov
model (Gales and Young| 2008). The speech signal is represented as a sequence of
vectors called frames. The basic speech recognition architecture consists of an acous-
tic model, which models the distribution of frames conditioned on a given hidden
state, and a language model, which models sequences of states (Jelinek [1997)). The
hidden states, which can broadly be interpreted as corresponding to phones or other
basic units of speech, constitute a sequence of latent variables, assumed to obey
the Markov property. That is, the transition the sequence of state transitions is
memoryless. Such frame-level independence assumptions make estimation of model
parameters and hidden state trajectories feasible (Rabiner||1989), but these assump-
tions come with well-documented drawbacks (see, for example, Gillick et al.|2011]).
As a simple example, note that the Markov assumption implies that the number of
frames spent in a given state should follow a geometric distribution, while actual du-

rations of speech segments, such as syllables or vowels, do not appear to follow such

12

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

a distribution (Rosen 2005).

One way forward in light of the shortcomings of frame-based models is to model
acoustic features over longer durations, in the hope of capturing segment-level and
contextual information. Approaches of this sort, such as sparse exemplar mod-
els (Sainath et al.2012), construct super-vectors of concatenated frames, often fol-
lowed by dimensionality reduction. While larger windows allow for the modeling of
some segment-level information, these windows are still of fixed length. Owing to vari-
ation in segment duration (due to, for example, inter- and intra-speaker variability),
these fixed-context windows do not always align with meaningful linguistic segments.
In contrast, template-based and segmental approaches use variable-length acoustic
windows, which enables modeling of whole linguistic units. Template-based acoustic
models typically rely on dynamic time warping (DTW; Sakoe and Chibal|1978) to
quantify the similarity of phone or word segments (Wachter et al.|2007}; [Heigold et al.
2012)) (refer to Appendix [A]for an overview of the DTW algorithm and related work).
Unfortunately, DTW often misestimates word segment similarity due to, among other
factors, oversensitivity to longer phonetic segments (e.g., vowels). Furthermore, DTW
alignment requires time polynomial in the duration of the segments being compared.
This runtime requirement can prove especially burdensome when comparing test au-
dio to a large repository of exemplars. This drawback could be avoided by embedding
arbitrary-length segments into fixed-dimensional spaces in which common distances

provide estimates of linguistic dissimilarity. Such embeddings would

13

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

(i) enable the application of standard distance learning techniques (Labiak and

Livescu| 2011} [Kulis|2012) to template-based acoustic modeling and

(ii) support a new generation of efficient segment-based audio indexing algorithms,

enabling highly scalable spoken term discovery (Park and Glass|/[2008; |Jansen et al.
2010; |Jansen and Van Durme [2011) and query-by-example search (Jansen and Van
Durme|2012; |Zhang and Glass |2009; Metze et al.[2013) (for an overview of the tasks
of spoken term discovery and query-by-example search, refer to Appendix [A)).

Existing segmental acoustic models use fixed-dimensional representations of hy-
pothesized variable-length segments. The various types of segmental models provide
several ways of constructing these representations. These include downsampling (Zue
et al.||[1989; (Glass 2003}, |Ostendorf(|1996; |Abdel-Hamid et al.[2013), phonetic acoustic
model-derived features (Zweig et al.2011; Layton and Gales 2005), and convolutional
deep neural networks (Maas et al|2012). These techniques do not necessarily produce
linguistically meaningful embeddings, but rather rely on supervision in the segmental
feature space for linguistic discrimination. Furthermore, with the exception of basic
downsampling, these approaches do not extend well to low- or zero-resource settings,
in which supervised training data is limited or non-existent.

With these motivations, we explore multiple unsupervised and supervised ap-
proaches to extracting fixed-dimensional embeddings of variable-length audio signals.
Our goal is to identify embeddings that preserve word discrimination under simple
cosine or Euclidean distances. To apply our techniques to large amounts of speech, we

14

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

require built-in out-of-sample extension capabilities. We consider three operational
settings in which we have access to varying levels of information. At one extreme,
we assume that we see each unlabeled speech segment in isolation with no additional
training data. Here we are limited, essentially, to downsampling methods. At the
opposite extreme, with a training set of word exemplars of known type, we can learn
feature maps that maintain word type discrimination. Finally, in the intermediate
case, we have a training set of segments of unknown types, but we can still exploit
the class-independent distribution of the exemplars. In each of these three cases, we
explore both linear and non-linear embeddings and evaluate their effectiveness on a
word type discrimination task in a multi-speaker corpus of conversational telephone
speech. In all cases, we consider only low-resource settings, i.e., no more than a few

hours of labeled speech.

2.2 Embedding Methods

Our goal is to define a function that maps audio signals of arbitrary length to a
continuous vector space that parsimoniously encodes the underlying linguistic content.
Formally, let X denote the set of all arbitrary-length acoustic vector time series,
X ={X=x129...270 | T € ZT}, with each x; € RP, where p is the dimensionality of
some frame-level acoustic feature representation (e.g. MFCC, PLP). We would like

to learn functions f : X — R? that map acoustic feature vector time series in X' to

15

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

points in R? such that f(X) and f(Y') are similar if and only if X and Y are acoustic
observations generated by similar linguistic units (e.g., phones, morphemes, syllables,
words). For now we restrict the discussion and experiments to word segments, but
the methods apply similarly to any meaningful unit. We consider three settings for

learning these functions, relying on varying amounts of available information:

1. (NoTrain) We may access each test word segment X € X in isolation with no

additional information.

2. (UnsupTrain) We have a collection of Ny, word exemplars Xy = {Xi}ﬁ\ﬁrfi“,

with each X; € X.

3. (SupTrain) In addition to a collection of Niam word segments Xypaim C X, we

have the corresponding word labels Wi ain = {w,;}ZN:‘jai“ for those word segments.

In what follows, we define approaches for these three settings. More detailed expla-

nation and discussion of many of these methods can be found in Appendix [B]

2.2.1 Time series downsampling

If no information is available to us aside from a given feature vector time series, we
must adopt strategies to select a fixed-sized set of observations. The simplest approach
is to uniformly downsample so that any segment is represented by a constant number k
of vectors: given a feature vector time series X = z1x5... 27 € X, with each x; € RP,
we sample vectors from X at intervals of T'/k with suitable interpolation as needed.

16

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

The downsampled time series is concatenated into a single vector of dimensionality
d = kp. A more sophisticated approach is to perform non-uniform downsampling of
the time series using HMMs. For a segment X = x125... 270 € X', we train a k-state
left-to-right HMM, modeling the acoustics with a single spherical Gaussian in each
state. This approach segments X non-uniformly into k£ regions. Concatenating the
means of these regions into a single vector yields an embedding into R*” regardless
of the length of X. While we restrict our experiments to this HMM-based approach,
other HMM-based techniques may be applicable to our setting (e.g., see Tang et al.
2010), as may other non-uniform downsampling approaches (Zue et al. [1989; |Glass

2003).

2.2.2 Vector of distances to reference set

When we have access to a collection of training word exemplars Xipaim, We can
consider more sophisticated embedding techniques. Here, we designate a reference
set of r exemplars, Xer = { X, |1 < My < Nyain, @ = 1,..., 7} € Xiyain, that covers a
broad selection of word types and speakers. Given a feature vector time series X € X,
we form a vector u € R” with the i-th component of u given by DTW (X, X,,,,), where
DTW(-,-) is the DTW alignment cost between pairs of segments. We refer to u
as a reference vector for segment X. Note that this is a special case of a Lipschitz
embedding in which each reference set has cardinality one (Hjaltason and Samet|2003))

and that we use the term reference set in a slightly different sense. We can think

17

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

of this reference vector as representing a word in terms of its similarity to a set of
exemplars that forms a “basis” for the space of all words. Thus, this and similar such
representations can be applied even to word types not seen in the training set.

One of our motivations for deriving fixed-dimensional word embeddings is to avoid
costly DTW alignments over large collections of speech, such as in |Jansen and Van
Durme| (2011, 2012). Here, we are explicitly constructing a representation that re-
quires computing DTW alignment cost against a set of reference examples. While
this is an expensive operation, it is still linear in the size of the speech collection
if the reference set is fixed. In the context of indexing for search applications, these
DTW calculations need only be performed once offline for the entire search collection,
allowing sublinear-time search using approximate nearest neighbor techniques (Indyk
and Motwani 1998). As commonly employed for costly Lipschitz embeddings, in-
ducing sparsity would also mitigate the computational burden (e.g., see |Hristescu
and Farach-Colton||1999). In general, the approaches presented here replace DTW
alignments with simple Euclidean or cosine distance computations. Thus, letting m
and n be the lengths of the vector time series being aligned and letting p be the
dimensionality of the vectors in the time series, we replace an operation requiring
time O(mnp) with an operation requiring time O(d), where d is the dimensionality
of our embedding. Thus, when using the techniques in Indyk and Motwani (1998) to
search for a query term of length m in a vector time series of length N, we require

only O(log N) time using approximate nearest neighbor search, rather than O(Nmp)

18

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

operations required by DTW-based search.

2.2.3 Linear embedding techniques

Linear dimensionality reduction techniques use a collection of labeled or unlabeled
data to derive a linear map from the original feature space to a space of lower dimen-
sionality. Applying such techniques to the reference vectors defined in Section [2.2.2]
we obtain a projection matrix P € R¥" where d < r. Given a new segment X € X,
we project its reference vector u € R” to v/ = Pu € R%. In the absence of word type
information, we may derive P using principal components analysis (PCA). If word
labels are available, supervised techniques such as linear discriminant analysis (LDA)
can be used. Note that if we use Euclidean distance to compare embedded segment
pairs, then operating in the linear embedding space defined by projection matrix P
is equivalent to using a Mahalanobis distance parameterized by matrix M = PTP in
the original r-dimensional space.

PCA and LDA. PCA is a well-established unsupervised dimensionality reduction
technique. Given X, C X, we construct the reference vector of each X; € X ain.
The d < r top (largest-magnitude eigenvalue) eigenvectors of the resulting covariance
matrix form a basis of lower dimensionality that best preserves the variance of the
data.

When we have word type labels Wipain = {ws, ..., wn,,,,, } for the training exem-

plars, multi-class LDA can be used. Multi-class LDA finds a set of vectors pointing

19

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

along the directions in which between-class variability is maximized while within-class
variability is minimized. Specifically, we form a basis of the first d largest-eigenvalue
non-trivial solutions v to the generalized eigenproblem Ygv = AXwv, where ¥ and
Yw are the between- and within-class covariance matrices of the training data, re-
spectively. In our implementation, we regularize the within-class covariance matrix
with shrinkage by adding a scaled identity matrix.

Metric learning to rank (MLR) Another supervised option is to use one of
many existing techniques for discriminatively learning a Mahalanobis distance, given

by a positive semidefinite matrix M, with distance between vectors wuy,us defined

as /(u; — ug)TM(uy — uz). Here we use MLR (McFee and Lanckriet| 2010), as it
optimizes a criterion closely related to our task. MLR is a large-margin approach
that aims to separate vectors that are similar to a given query vector from those that
are dissimilar by a margin given by a ranking loss, which in our case is mean average
precision Given the learned matrix M, we find a matrix U whose i-th row is \/WUZ-,
where v; is the i-th eigenvector of M with corresponding eigenvalue ;. We obtain

projection matrix P by retaining only the first d rows of U.

2.2.4 Nonlinear graph embedding techniques

Numerous non-linear dimensionality reduction techniques are available for con-
sideration (e.g., Roweis and Saul 2000; Hinton and Roweis |2002) We use Laplacian

eigenmaps (Belkin and Niyogi| 2003)), including a variant proposed in [Belkin et al.

20

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

(2006) that defines an out-of-sample extension. In the supervised setting, we can
encode word type information by adding graph edges that reflect word identity.

Laplacian eigenmaps. We begin by constructing a graph GG with one vertex
per training example and edges reflecting the nearest neighbor structure under DTW
alignment cost. The binary-valued adjacency matrix A™ € RNwain*Nesain hag A2 = 1
if and only if example 7 is one of the k nearest neighbors of example j or vice versa.
Given matrix A™, the normalized graph Laplacian operator is defined as L™ =
I — §2A™S %, where S is diagonal with S; = > ; Aij'. Following Belkin and Niyogi
(2003), we wish to find a set of d projection maps {hy, ..., hq}, where h; : V(G) — R,
such that vertices near one another under the topology of G are mapped to similar
locations in R?. Since the graph Laplacian operator acts as a measure of smoothness
of functions defined on the graph, the desired set {h;} is defined implicitly by the
eigenvectors of L™ with the d smallest eigenvalues (after discarding the first trivial
eigenvector, which has eigenvalue 0). Each eigenvector encodes the image of the
vertex set under a map in {h;}.

A problem arises when we wish to project a segment with no corresponding ver-
tex in G into this d-dimensional space. Without some procedure for out-of-sample
extension, this technique has little practical utility. An out-of-sample solution for
Laplacian eigenmaps is given in [Belkin et al.| (2006) and is summarized below. We
construct matrices A™ and L™ as described above. Our new optimization problem

takes the form

21

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

I = arg min h” L™h + £||h||?, (2.1)

where H, is the reproducing kernel Hilbert space for some positive semi-definite
kernel function x: X x X =R, h = (h(X;),...,h(Xn,,.)T is the vector of values of
h computed on the vertices of the graph, and ¢ is a non-negative regularization term.

We use a kernel function of the form

K(Xi, X;) = exp {— max(0, DTVfo’? X,) —n) }

where DTW(-,) is DTW alignment cost and 1,0 € R. By the RKHS representer
theorem (Belkin et al.| 2006} Berlinet and Thomas-Agnan|2004)), the j-th component

of our projection map is

Ntrain

E(X) = Z o k(X X), (2.2)

where the {a,(j)} are given by solutions to the generalized eigenvector problem (L™ K+
¢l)a = AKa, with K being the Gram matrix with entries K;; = x(X;, X;) for
Xi, X € Xirain. Intuitively, this eigenproblem attempts to find mappings from Xain
to R such that word exemplars that are connected in graph G take similar values. In
the out-of-sample extension, the kernelization performs an interpolation (similar to

the Nystrom method; see Appendix[B]) such that a test exemplar “similar” to a vertex

22

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

in G takes a similar value. Given the d eigenvectors with the smallest eigenvalues
(ignoring the trivial one, as above), we can map an arbitrary segment X € X to a
point v € R? given by v = (hy(X), ..., hq(X))T according to Equation

Supervised graph embedding. When available, it is desirable to incorporate
class label information into the Laplacian eigenmaps approach. Notable recent al-
gorithms for this problem include locality preserving discriminant analysis (Tomar
and Rose 2012), locality sensitive discriminant analysis (LSDA |Cai et al.|[2007)), and
marginal Fisher analysis (Yan et al|[2007). In our approach, we construct kernel
matrix K and matrix A™ as described above. Additionally, we construct a matrix
A% such that AP = 1if i # j and w; = wy, and A7" = 0 if w; # w; or if
1 = j. Thus, A®"P captures our knowledge of which pairs of words ought to be ad-
jacent to one another in an “ideal” graph reflecting the true class labels. We can
combine our supervised and unsupervised information into a single graph Laplacian
L =L"+ BL* B € R is non-negative and L™ and L*"P are the normalized graph
Laplacians of A™ and A®"P, respectively. L captures both acoustic similarity and
true word label information in a single operator. This is analogous to LSDA, but
where we linearly combine the normalized Laplacians of within- and between-class
graphs rather than the adjacency matrices. Replacing L™ with L, we proceed as in
the previous algorithm, constructing a subspace from the first d non-trivial solutions
to Equation [2.1]

LDA applied to graph embeddings. We again assume that we have a labeled

23

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

set of vector time series, which we use to learn an embedding into R? using Laplacian
eigenmaps as described above. This map is applied to the training set exemplars and
an LDA projection is learned from the resulting vectors and their labels to produce
a final embedding into RY. This two-step process provides an alternate means of
introducing supervision into the graph embedding framework. We note that other
supervised projections could also be used here, e.g. via Mahalanobis distance learning

as in Section [2.2.3], but here we limit ourselves to LDA.

2.3 Comparing Embeddings: Evaluation

To evaluate the techniques described above, we use the task in Carlin et al.| (2011]),
designed to evaluate the word discrimination performance of acoustic front ends and
acoustic models that do not explicitly model phones. An evaluation set of preseg-
mented words Xt is presented. For each pair (X, X;) € Xiest X Xiest for i # j, we
compute D(X;, X;) under the representation and distance D being evaluated. We set
a threshold 7 such that we declare words X; and X; to be the same if D(X;, X;) <7
and declare them to be different otherwise. Discriminative power is then quantified
by the average precision (AP), the area under the precision-recall curve, which char-
acterizes discrimination performance at all possible settings of 7. Let Ngw(7) denote
the number of same-label word pairs with distance less than or equal to 7 under

the model. We define the model’s precision Psw(7) and recall Rsw(7) at operating

24

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

threshold 7 as

Paw() = oy (7) = S,

(2.3)

where N(7) denotes the total number of word pairs in the corpus whose distance
under the model is less than or equal to 7 (i.e., the number of hypothesized same-
word pairs) and Ngw is the number of true same-word pairs in the corpus. Thus, to
evaluate one of our candidate algorithms, we embed the test set according to that
algorithm, compute all pairwise distances between the embedded points and compute
the area under the precision-recall curve.

We assembled two collections of words from the Switchboard English corpus, Xt ain
and X, containing Ny = 10383 and Nieyy = 11024 words, respectively. Both sets
were constrained to include only words of 6 or more orthographic characters and to
be at least 50 frames in length (0.5 s). The train and test sets contained 5539 and
3392 word types, respectively, with 6971 unique word types in all. The train set was
constructed to have a broad sampling of word types, with at most 5 tokens of any given
word type and with each token of a given type taken from a different speaker. The
resulting word set covered 360 conversation sides and 156 unique speakers. The test
set was identical to that in |Carlin et al. (2011]). It was constructed to reflect a content
word distribution encountered in a typical conversational speech setting. It consisted
of all words meeting the above length criteria from 360 conversation sides covering 236
unique speakers, none of whom appeared in the train set. To investigate the effect of

acoustic front end on this task, we performed this evaluation using vector time series of

25

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

39-dimensional perceptual linear prediction (PLP) feature vectors and 15-dimensional
truncated frequency-domain linear prediction (FDLP) feature vectors (Thomas et al.
2009). Previous work has indicated that truncating the spectrum in this way from
13 to 5 dimensions yields a gain in this task relative to front ends with more detailed
spectral content (Jansen et al|2013]). Cosine distance, defined for vectors a,b as 1 —
a’d/||al|||b||, generally outperformed Euclidean distance for the embedding techniques
described here. The basic reference vector and PCA experiments used Fuclidean

distance between embedded points. All other experiments used cosine distance.

2.3.1 Baselines (the NoTrain condition)

Using DTW alignment cost as an inter-word distance measure establishes a base-
line for our task. A successful algorithm will be one that can improve upon this
result or maintain comparable performance without supervision while being compu-
tationally less expensive. Table [2.1] shows the performance of this baseline approach
on both PLP and FDLP acoustic features. Also listed in Table are the results
using uniform and nonuniform downsampling approaches outlined in [2.2.1], where we
consider target sample sizes of n € {5,10,25,50} and use cosine distance to compare
the resulting supervectors. As is the case for the DTW baseline, the downsampling
results using FDLP are consistently comparable to or better than PLP. The gains of
nonuniform sampling over uniform are marginal, with the best downsampling APs

roughly 1/3 that of the baseline DTW performance for n > 10.

26

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

Table 2.1: Average precision scores achieved by our baseline algorithms in the
NoTrain condition, by feature type (all scores are given as proportions).

Ave. Prec.

Algorithm PLP | FDLP
Baseline DTW 0.198 | 0.226
n = 0.036 | 0.040

n =10 | 0.062 | 0.069
n=2510.072] 0.081
n =950 [0.074 | 0.082
n= 0.050 | 0.033
n =10 | 0.086 | 0.080
n=25|0.081 | 0.088
n =250 | 0.076 | 0.086

Uniform Downsampling

Non-uniform Downsampling

2.3.2 Unsupervised embeddings (the Unsup Train con-
dition)

Next we evaluated the reference vectors described in Section 2.2.21 A drawback
of this approach (and the approaches that depend on it) is that constructing an
acoustic segment’s reference vector requires computing |X,ef] = r DTW alignment
costs. Lower-dimensional reference vectors, if still effective in distinguishing words,
would allow us to maintain similar performance with fewer DTW calculations required
to embed a given word. To examine this possibility, we selected reference sets X C
Xirain Of various sizes r. Reference sets were selected randomly, but biased to favor
selecting clusters of same-word tokens. As reflected in Table [2.2] these results fall

short of the baseline DTW scores, but they do demonstrate that we can safely shrink

the size of our reference set by as much as a factor of 20 without paying too large

27

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

Table 2.2: Average precision scores achieved by our basic reference vectors in the
Unsup Train condition, by feature type (all scores are proportions).

Ave. Prec.

r PLP | FDLP
100 | 0.041 | 0.078
500 | 0.089 | 0.137
1,000 | 0.089 | 0.142
5,000 | 0.094 | 0.149
10,000 | 0.096 | 0.150

T T T

—%— PCA (FDLP)
PCA (PLP)

035 —©— LapEig OOS (FDLP) H 0.35
LapEig OOS (PLP)

= = = DTW Baseline (FDLP)

0.3 DTW Baseline (PLP) H 0.3~

D o025k

o
N
3]

Average Precision
e °
: ’\: T
Average Precision
°
B

o
N

—— DA (FDLP)
LDA (PLP) i
—O— Supervised Graph Embedding (FDLP)
y Supervised Graph Embedding (PLP)
01 01 LapEig + LDA (FDLP) n
LapEig + LDA (PLP)
—E— MLR (FDLP)
0.05 0.05 MLR (PLP)
= = = DTW Baseline (FDLP)
‘ DTW Baseline (PLP)
I I I I | I I I I I I I I T T T T
"% 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Embedding dimension Embedding dimension
(a) (b)

Figure 2.1: Average precision as a function of target space dimension for (a) unsu-
pervised embeddings (Unsup Train) and (b) supervised embeddings (Sup Train).

a penalty in performance. We leave the problem of optimal reference set design for
future work.

We constructed train set reference vectors using a reference set of size r =10,000.
We applied PCA to these reference vectors, and applied the learned projection to the
test set reference vectors for evaluation. To apply Laplacian eigenmaps to our data,
we first calculated all pairwise DTW alignment costs for words in X, and, based

on those costs, assembled the adjacency matrix A™ and Gram matrix K as described

28

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

in Section [2.2] Laplacian eigenmaps require setting certain parameters in addition to
the target space dimensionality. Performance was reasonably stable for the number of
nearest neighbors (k), the regularizer weight (£), and the kernel function parameters
(n,0) in the ranges k € [7,30], £ € [0.001,0.1], n € [0.01,0.05], and o € [0.15,0.04].
We report results for the best-performing parameter settings, leaving the challenge of
automatic selection for future work.

Figure (a) shows the performance of the unsupervised techniques outlined in
Section for varying target space dimensionalities. We find that using PCA, we
can reduce dimension from 10,000 to 100 without substantial loss in performance, but
overall performance falls short of the DTW baseline. Laplacian eigenmaps matches
the DTW baseline for target dimensionalities d > 100 and greatly surpasses PCA
at all target dimensionalities, indicating a more efficient use of dimensions than is

possible with unsupervised linear methods.

2.3.3 Supervised embeddings (the SupTrain condi-

tion)

Analogously to PCA, multi-class LDA and MLR were performed on the train set
reference vectors with word types as class labels. [[| The resulting linear projections

were applied to the test set reference vectors for evaluation. We used a reference

I'We used Brian McFee’s implementation of MLR, available at
https://github.com/bmcfee/mlr/

29

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

set of size r = 10,000, except for MLR applied to FDLP features, where we used
r = 5,000. LDA performance depended moderately on the shrinkage scale factor,
observing a change of up to 0.1 AP as we varied the scale factor from 0 to 5. All
reported results used a scale factor of 1. MLR results depended moderately on the
slack parameter, with typical good values in the range [10%,105]. Supervised graph-
based embeddings were obtained using the procedure described in Section[2.2.4] Using
the optimal parameter settings for Laplacian eigenmaps and varying /3, we found that
performance was stable for 5 > 1, indicating that the utility of supervision dominates
that of the nearest neighbor graph structure. Finally, LDA was also applied to the
Laplacian eigenmaps embeddings, with the projection again learned on the training
set and evaluated on the test set.

Figure (b) shows the performance of the supervised techniques from Section
for varying target space dimensionalities. We find that LDA and MLR greatly im-
prove upon the DTW baselines, with AP stable down to 50 dimensions. Interestingly,
with supervision the 39-dimensional PLP features usually outperform the cepstral-
truncated 15-dimensional FDLP, indicating that increased spectral detail is useful
even when supervision is provided indirectly at the word level. Our supervised vari-
ant of Laplacian eigenmaps posts significant gains over its unsupervised counterpart,
but falls short of direct application of LDA and MLR to the reference vectors. This
indicates that supervised discriminative training of a linear embedding is better than

nonlinear embedding learned with implicit supervision. This suggests that discrimi-

30

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

native nonlinear graph embedding techniques such as marginal Fisher analysis (Yan
et al. 2007) may succeed in our setting. LDA applied to the output of unsupervised
Laplacian eigenmaps outperforms LDA on its own, indicating that nonlinear graph

embedding improves the linear separability of word types.

2.3.4 Discussion

Representative average precision scores for all of our methods are summarized in
Table 2.3 organized according to the settings described in Section 2.2} along with the
target dimensionalities that yielded the listed scores. For comparison, we include the
setting in which an unsupervised Laplacian eigenmap embedding is learned from the
test set (UnsupTest). This yields the best FDLP performance (0.416 AP) reported
here while using only d = 20 dimensions. Unfortunately, since it lacks an out-of-
sample extension, this embedding is of limited practical utility.

Unsurprisingly, downsampling techniques, even nonuniform ones, fall short of the
exhaustive alignment search performed under DTW. Embedding each speech segment
with respect to a reference set encodes substantially more duration variability than
downsampling, but still does not match the DTW baseline. PCA applied to refer-
ence vectors yields good word discriminability with fewer dimensions, but only with
supervised embedding (LDA or MLR) do linear methods exceed the DTW baseline.
Nonlinear embedding using Laplacian eigenmaps matches DTW using no supervision

whatsoever, a significant result for zero-resource applications. Introducing super-

31

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

—%— LDA (FDLP)
LDA (PLP)

035{{ =©— RefVec (FDLP)
RefVec (PLP)

= = = Baseline DTW (FDLP)|

Baseline DTW (PLP) /x———!

Average Precision

10°
Reference set size

Figure 2.2: Average precision as a function of reference set size.

vision into this algorithm produces substantial gains, but falls short of the linear
supervised embeddings produced by LDA and MLR. This indicates that nonlinearity
is most important in the unsupervised setting. Combining Laplacian eigenmaps with
LDA improves upon LDA alone, suggesting that Laplacian eigenmaps preserves or
perhaps magnifies the information that makes LDA effective on its own. While dif-
ferent supervised methods produce the best performance at different operating points
— the best performance on PLPs results from LDA applied to Laplacian eigenmaps
while MLR posts the best FDLP results — the supervised methods all outperform the
baselines and unsupervised methods.

Finally, the reference vectors required by some of our methods are expensive to
construct. Table shows that reference set size can be reduced with negligible
loss in word discriminability. Figure shows how reference set size affects task
performance, with LDA target dimensionality chosen optimally for each condition.
LDA beats the DTW baseline with as few as 1000 reference examples, a promising

result, though the large gains in Table require several thousand.

32

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

Table 2.3: Representative average precision scores attained for each of the embed-
ding schemes using r = 10, 000 reference examples (when applicable).

Ave. Prec.

’ Setting | Algorithm \ d \ PLP \ FDLP
1. NoTrain Baseline DTW - 0.198 | 0.226
Unif. Downsamp. | 25-p | 0.072 | 0.081

Nonunif. ” 25-p | 0.081 | 0.088

2. UnsupTrain Ref. Vector 10,000 | 0.096 | 0.150
PCA 200 | 0.081 | 0.139

LapEig w/ OOS 200 | 0.195 | 0.236

3. SupTrain Sup. LapEig 200 | 0.284 | 0.290
LDA 50 0.346 | 0.293

MLR 100 | 0.328 | 0.318

LapEig + LDA 20 0.365 | 0.302

’ UnsupTest | Unsup. LapEig \ 20 \0.253\ 0.416 ‘

2.4 Large-Scale Audio Keyword Search

Having explored a number of potential embeddings of acoustic segments, we turn
to applying them to the task of keyword search. In keyword search, we are given an
example utterance, and wish to locate occurrences of that utterance in a collection
of speech audio. Keyword search has received increasing attention in recent years
as speech data has become more ubiquitous and ever more integral to mobile phone
technology. Consider, for example, that in 2012, YouTube users uploaded one hour
of video every second. E] To search audio collections of this magnitude, we must able
to build speech processing systems of unprecedented scale. Most previous approaches
have employed lattice indexing techniques (Miller et al. 2007)), enabling search of
thousands of hours of speech in interactive time. Typical systems build a model to

map sequences of frames to segmental units (e.g., phones or words) that are more

Zhttp://www.onehourpersecond. com Accessed October 30, 2016.

33

http://www.onehourpersecond.com

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

amenable to standard lattice-based approaches. Unfortunately, these techniques re-
quire large collections of annotated speech audio to be used as training data, and such
training data sets are unavailable in most languages. As a result, the zero-resource
setting, in which detailed annotations are unavailable and linguistic structure must
be discovered without the aid of training data, has attracted attention both in the
speech processing community (Glass|2012) and among scientists interested in human
language acquisition (Jansen et al.|2013).

Query-by-example search, where search terms are presented as audio segments
rather than in graphemic or phonetic form, has applications in probing large collec-
tions of unstructured audio data (Anguera et al.|2013)) and in voice interfaces (Chen
et al. 2014, 2015). The standard approach involves training a model to map query
audio to a sequence of symbols (e.g., a phonetic representation) and searching for
this sequence in a lattice built on the search collection (Parada et al.|2009). Finite
state automata techniques have made lattice search of this kind both fast and accu-
rate (Allauzen et al.|[2004)), but the nature of the required training data makes these
approaches infeasible in zero- and low-resource settings.

Dynamic time warping (DTW), explained in Appendix [A] has been effective in
zero-resource query-by-example search (Park and Glass| 2008; Jansen et al. 2010;
Anguera and Ferrarons 2013). Unfortunately, as mentioned in Section and Ap-
pendix [A] DTW sequence alignment requires time linear in the size of the search col-

lection, which limits its scalability. Techniques such as those in|[Mantena and Anguera

34

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

(2013); Zhang and Glass| (2011) have improved runtime by, in essence, reducing the
constants in this linear dependence. In contrast, the Randomized Acoustic Indexing
and Logarithmic-Time Search (RAILS) system introduced in [Jansen and Van Durme
(2012) avoids this linear dependence altogether. Given an audio query, RAILS oper-
ates in two steps. First, for each frame of the query, similar frames (with similarity
defined by cosine distance between frames) are retrieved from the search collection
using logarithmic-time approximate nearest-neighbor retrieval (see Appendix |C| for
an overview of near-neighbor retrieval and related problems). As a second step, these
frame-level matches are extended to segment-level matches using image processing
techniques.

The RAILS system has two main limitations. First, its accuracy depends ulti-
mately on DTW as a measure of segment-level similarity, an issue mentioned above
and discussed at more length in Appendix[A] Second, the process by which frame-level
matches are extended requires a computationally expensive digital image processing
step, which introduces a major runtime bottleneck. This motivates the Segmen-
tal RAILS (S-RAILS) system, an extension of the RAILS methodology that avoids
both of these shortcoming by performing search directly at the segment level using
the fixed-dimensional segmental embeddings explored above. As we have seen, such
embedding techniques show a marked improvement over a purely DTW-based ap-
proach as measured by performance on the evaluation task introduced in |Carlin et al.

(2011)). Further, by performing search directly at the segment level, we avoid the need

35

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

to extend frame-level matches as in the original RAILS system. In what follows, we
introduce the S-RAILS system and evaluate its performance on a query-by-example
keyword search task on a corpus of telephone speech, in which our system improves

dramatically over the original RAILS system in both accuracy and runtime.

2.5 The S-RAILS System

The S-RAILS system is an adaptation of the RAILS query-by-example search
system presented in |Jansen and Van Durme (2012)). In RAILS, indexing consists of
building a structure to support fast approximate nearest-neighbor retrieval at the
frame level using an adaptation of the point location in equal balls (PLEB) algo-
rithm (Indyk and Motwani/[1998). Given a query, the near neighbors of each frame
in the query are retrieved from the index along with scores reflecting their similarity.
These frame-level candidate matches are then extended to segment-level matches us-
ing digital image processing. We refer the reader to Appendix [A] for a more detailed
description.

These near neighbor frames along with their scores yield a sparse approximation
to the frame-level similarity matrix, the entries of which correspond to similarities
between frames in the query and frames in the search collection. Segments of the
search audio that are similar to the query give rise to approximately diagonal lines

in the similarity matrix. These diagonal lines in turn appear as peaks in the Hough

36

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

transform of the matrix, and thus can be quickly located.

S-RAILS differs from the original RAILS system by indexing the acoustic features
of whole word-sized segments directly, altogether avoiding both the intermediate step
of frame-level indexing and the need to construct a similarity matrix. It operates as

follows:

1. Voice activity detection (VAD) locates regions likely to contain speech.

2. Each VAD region is split into overlapping segments from some minimum dura-
tion to some maximum duration. Each segment is mapped to a fixed-dimensional

vector using techniques discussed previously in this chapter.

3. Anindex is constructed for randomized approximate nearest-neighbor retrieval (In-
dyk and Motwani|1998]) on the collection of fixed-dimensional embeddings. Each

segment created in the previous step appears as an entry in the index.

4. At query time, a query segment is mapped to its fixed-dimensional representa-

tion and the near-neighbors of that representation are retrieved from the index.

5. Candidate matches to a query can be rescored after retrieval, e.g., by computing

exact DTW scores as in [Jansen and Van Durme| (2012).

Figure [2.3] provides a system diagram of the S-RAILS system.

37

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

e s
e 1]

Search audio segments Segment embeddmgs

ﬂ-‘M — LapEig —> B ——> NNIndex [gl s
Query audio Query embedding Query result(s)

Figure 2.3: Diagram of the S-RAILS audio search system.
2.5.1 Fixed-dimensional Segment Embeddings

To obtain fixed-dimensional representations of speech segments, we use the unsu-
pervised Laplacian eigenmaps embedding described in Section[2.2.4] Letting X’ denote
the set of all arbitrary-length feature vector time series, X = {X = 1, 29,..., 27 :
T € Z*}, where each z; € RP and p is the dimensionality of a speech frame, we
learn this embedding using a reference set R = {X1, Xo,..., X} C X and a kernel

function

K(Xi, X;) = exp {_ [max(0, DTW (X, X;) —n)]? }

202

where DTW(-,) denotes DTW alignment cost and 7,0 € R are parameters to be

specified.

2.5.2 Near-neighbor retrieval

A crucial step in both RAILS and S-RAILS consists of retrieving a set of embed-
dings that are similar to a query embedding. Our goal is to build an index which,

given a query vector, returns vectors from the index that are near to the query vec-

38

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

tor under cosine distance. To solve this problem, RAILS used an implementation
of point location in equal balls (PLEB) as presented in Indyk and Motwani (1998)).
PLEB makes use of locality sensitive hash (LSH) functions, which capture the ge-
ometric proximity of pairs of items in the sense that nearby items are likely to be
hashed to the same value and distant items are unlikely to be hashed to the same
value. An overview of the state of the art in LSH and near neighbor search is given
in Appendix [C]

The LSH variant used here is similar to that used in the original RAILS sys-
tem [Jansen and Van Durme (2012)). We map vectors to binary strings of length S,
which we call signatures. This mapping is chosen such that cosine distance between
two vectors can be approximated by some function of the Hamming distance between
their respective signatures. These signatures are generated by randomly choosing a
set of S hyperplanes through the origin in the vector space. Each bit of a vector’s
signature is determined by which side of a corresponding hyperplane it falls on. Pairs
of vectors with small cosine distance are unlikely to be separated by a randomly-
chosen hyperplane, and thus their signatures are likely to be similar. This permits
fast retrieval of the approximate near neighbors of a given query vector by computing
its signature and returning all vectors from the search collection whose signatures are
at a small Hamming distance from it.

The near-neighbor retrieval algorithm used in S-RAILS is discussed in detail

in |Jansen and Van Durme (2011) and we summarize it here. We let B denote the

39

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

beamwidth, a parameter that controls the number of near neighbors that we retrieve.
Retrieval is performed by sorting the signatures in the search collection and return-
ing signatures that share a prefix with the query signature. Given a collection of
signatures Z = {21, 29,..., 2y} with each z; € {0,1}, we sort the elements of Z
in lexicographic order. Let m be a permutation of the integers 1,2,..., N such that
Zr(1)s Zx(2)s - - - » Zr(N) 18 the lexicographic sort of the elements of Z. Given a query sig-
nature ¢ € {0, 1}, we find via binary search the location where ¢ belongs in the sorted
list and return the B signatures before that position and the B signatures after that
position. That is, if ¢ belongs between z(;) and z(41) in the sorted list, we return
the set {2z(a), Zr(at1) - - -+ 2= (v) }, Where a = max{1,i— B+ 1} and b = min{N, i+ B}.
Of course, in this lexicographic sorting scheme, a given ordering of the signature bits
means that bits appearing early in the signature have a greater influence over which
pairs of signatures are considered similar. This problem is mitigated by performing
several of these searches under different permutations of the signature bit ordering.
We denote by P the number of such permutations that we use. In practice, rather
than repeatedly permuting and sorting the signature list, we keep P separate lists of
the search collection signatures, each sorted according to a different one of the P per-
mutations. Retrieval of near-neighbors under this scheme requires time logarithmic
in N and linear in both P and S. We have observed in our experiments that runtime

depends only weakly on S compared to dependence on P and N.

40

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

Table 2.4: S-RAILS performance on the development search collection, averaged
over all query types as a function of signature length S for fixed number of permuta-
tions P = 8 and beamwidth B = 10,000. All scores are percentages.

Median Example Best Example ‘
S| FOM | OTWYV | P@10 | FOM | OTWYV | P@10
64 22.3 9.8 9.1 48.7 26.2 45.4
128 27.5 11.4 11.4 56.0 30.4 55.1
512 30.4 14.0 14.4 o577 33.8 59.1
1024 30.2 13.9 14.8 58.3 35.0 60.7

Table 2.5: S-RAILS performance on the development search collection, averaged
over all query types as a function of number permutations P for fixed beamwidth
B = 100,000 and signature length S = 512. All scores are percentages.

Median Example Best Example |
P | FOM | OTWYV | P@10 | FOM | OTWV | P@10
4 31.3 13.6 15.2 60.7 34.1 58.7
8 33.1 14.5 15.4 63.0 35.2 59.6

2.6 Experiments

Our experiments follow those presented in |Jansen and Van Durme| (2012). We
evaluated our system in a query-by-example keyword search task on the Switchboard

corpus, a collection of conversational telephone speech. A 37-hour collection was set

Table 2.6: S-RAILS performance on the evaluation search set, averaged over all
query types as a function of beam width B for fixed number of permutations P = 8
and signature length S = 512. All scores are percentages except Real Time Speedup,
which is the ratio of search collection duration to the average time required to perform
a single query.

Median Example Best Example
B | FOM | OTWV | P@Q10 | FOM | OTWYV | PQ10 | Real Time Speedup
100 7.6 6.0 39.3 19.8 15.5 85.3 307,000,000
1,000 15.0 9.7 38.3 34.1 21.8 87.4 40,800,000
10,000 26.0 12.7 38.6 47.7 26.3 91.6 5,770,000
100,000 37.3 15.1 38.6 56.9 29.6 89.3 510,000

41

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING

FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

Table 2.7: Baseline RAILS performance, reproduced from [Jansen and Van Durme
(2012), on the evaluation search set averaged over all query types as a function of
beamwidth B. All scores are percentages except Real Time Speedup, which is the
ratio of search collection duration to the average time required to perform a single

query.
Median Example Best Example
B| FOM | OTWV | PQ10 | FOM | OTWYV | P@10 | Real Time Speedup
200 0.8 0.9 21.0 3.6 2.8 08.4 620,000
5,000 6.7 2.7 44.0 20.7 10.4 84.4 63,000
50,000 19.0 4.7 49.2 39.9 16.5 88.4 7,000
100,000 20.2 4.8 49.8 41.1 16.6 88.1 3,600

aside from which to draw query terms, a 48-hour development search collection was

used to explore the effect of different parameters on the system’s performance, and

a 433-hour evaluation set was used to obtain final performance metrics. Query word

types were chosen to have corpus-wide median duration of at least 0.5 seconds and

orthographic representation at least six characters long. This resulted in a collection

of 43 query word types:

absolutely basically benefit bottles business California college community companies

control crimes definitely deterrent employees expenses expensive important individual

insurance interesting mandatory Massachusetts newspaper organization performance

plastic policy positive process program punishment recently recycle recycling retire-

ment salary savings situation society understand unfortunately university vacation

Each query type appeared between 20 and 162 times in the query set, between 2

and 188 times in the development search collection, and between 39 and 1386 times

in the evaluation collection. More than half of the selected query types had median

duration less than 0.55 s and all query types had median duration less than 0.75 s.

We considered three common keyword search metrics:

42

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

(i) Figure-of-merit (FOM), the average recall over the 10 operating points at which

the false alarm rate is 1,2, ..., 10 false alarms per hour of search audio.

(ii) Oracular term weighted value (OTWYV), a weighted difference between the sys-
tem’s recall and false alarm rate. The oracular variant of this metric assumes an
optimal query-specific threshold. See Miller et al.| (2007) for a detailed account

of this metric.

(iii) Precision at 10 (P@10), the fraction of the top ten ranked candidate matches

that are correct.

Metrics were computed separately for each query type, and are reported as unweighted
averages over all 43 query types. Performance is sensitive to the specific query exam-
ple. Thus, for each metric, we report both (i) the median query example performance,

and (ii) the best query example performance.

2.6.1 Selecting Index Parameters

Table [2.4] shows the effect of signature length on system performance for fixed
beamwidth B = 10,000 and number of permutations P = 8. Performance saturates
at a signature length of 512 bits. These signatures are larger than the 64-bit signatures
used in RAILS owing to the fact that RAILS indexes 39-dimensional feature vectors
while S-RAILS indexes 1000-dimensional fixed-dimensional embeddings. As a result,

a larger number of bits are required to achieve suitably high fidelity in approximating

43

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

cosine distance between vectors. Table shows system performance as a function of
the number of permutations for fixed beamwidth B = 100,000 and signature length
S = 512. We see that P = 8 yields a non-negligible performance gain over P = 4 in
the best-example case, though median performance is largely insensitive to P. These
two tables jointly suggest that performance saturates at a signature length of 512 bits

and P = 8. We use these parameters in the remainder of our evaluation.

2.6.2 Constructing the Index

To segment the search collection, candidate segment boundaries were placed at
3-frame intervals in all VAD regions. Resulting segments with duration at least 40
frames (400 ms) and at most 100 frames (1 s) were included in the index. To construct
Laplacian eigenmaps embeddings, we used a set of 10,383 unlabeled word examples
from the Switchboard corpus to define our similarity graph. As discussed previously,
the process of constructing Laplacian eigenmaps embeddings is slow, since a single
embedding requires computing a DTW alignment of a segment with every segment
in the similarity graph. Indeed, this process is currently the major bottleneck in con-
structing an index. In order to speed up the embedding process, rather than explicitly
computing DTW (X, X;) for all 7 as in (2.2)), we performed a spectral clustering of the
10,383-segment similarity graph and selected a representative segment (the medoid)
from each cluster. Given a segment X € X to embed, its DTW alignment was com-

puted with each cluster representative. For representatives whose alignment cost was

44

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

above some threshold, we set K (X, X;) = 0 for all X; in the corresponding cluster
rather than computing exact alignment costs. Experiments showed that 550 clusters
with a threshold of 0.17 yielded a very good approximation to the true values of
the kernel function. This approximation yielded a factor of 6 speedup with respect
to the exact computation, but even with this speedup, computing fixed-dimensional
embeddings of speech audio is approximately 130 times slower than real time on cur-
rent hardware. This process produced approximately 30 million 1,000-dimensional
embeddings in the case of the development search collection and approximately 280
million in the case of the evaluation search collection, which became the input to the

index.

2.6.3 Controlling False Positives

By the nature of the Laplacian eigenmaps embedding, word examples that are
not similar to any words in the reference set are mapped to locations near the origin.
At query time, when similarity search is performed under cosine distance, many of
these small-norm embeddings are retrieved as candidate matches. This results in
many false positives, reflected in the low median precision at 10 scores in Tables
and [2.5] To reduce this effect, we removed from the index all embeddings with norm
less than a set threshold Tinesn. Table [2.8 summarizes the effect of this thresholding.
We found a threshold of 0.06 to be best, though performance was comparatively flat

for thresholds between 0.01 and 0.1. In experiments on the development search set,

45

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

this resulted in 50% to 70% relative improvements in median precision at 10, as well
approximately 8% relative improvement in maximum precision at 10 and, somewhat

surprisingly, small improvements on all other metrics.

Table 2.8: Effect of signature threshold on S-RAILS performance on the develop-
ment search collection, averaged over all query types. All experiments use signature
length S = 512, number of permutations P = 8 and beamwidth B = 10,000. All
scores are percentages.

Median Example Best Example \
Tiresh | FOM | OTWYV | P@Q10 | FOM | OTWYV | PQ10
0.2 23.3 16.8 28.6 29.7 24.3 50.4
0.1 36.3 22.9 27.7 54.2 39.1 64.6
0.09 37.4 23.1 26.1 55.6 39.6 64.1
0.08 37.8 23.2 24.7 57.5 40.0 64.2
0.07 37.8 22.6 23.5 59.2 40.1 64.3
0.06 38.6 22.1 23.7 60.3 40.7 65.8
0.05 37.9 21.3 23.1 60.5 40.3 64.6
0.02 36.4 17.6 19.6 61.6 38.5 60.7
0.01 33.8 16.0 16.9 60.6 36.7 61.0
0.005 32.9 15.2 16.2 59.6 35.4 58.7
0.001 31.0 14.2 15.3 58.2 34.3 58.9
0.0001 30.5 14.0 14.4 57.7 33.8 59.1
0.0 30.4 14.0 14.4 57.7 33.8 59.1

2.6.4 Post-processing of query results

Owing to the segmentation scheme used in S-RAILS, the index contains many
entries corresponding to overlapping segments, and our embedding technique causes
these segments to be mapped to similar fixed-dimensional vectors. The result is that
at query time, if one of these segments is retrieved, many other overlapping segments

are likely to be retrieved, as well. To eliminate this redundancy, we performed a

46

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

post-processing step in which retrieved segments whose midpoints were within a given
number of frames of one another were greedily merged by discarding the segment with
lower score. This operation was repeated until no further merge operations could be
performed. We found that merging pairs of segments whose midpoints were within

10 frames of one another proved effective.

2.6.5 Results

Table shows system performance on the evaluation search set as a function of
beamwidth for fixed number of permutations P = 8 and signature length S = 512.
Table shows performance of the original RAILS system for comparison. We note
that values of B in RAILS and S-RAILS are not directly comparable, since the two
systems operate on different objects, though both systems’ runtimes depend linearly
on the parameter. Comparing the best performance of the two systems, we see that S-
RAILS achieves more than 80% relative improvement over RAILS in median example
FOM and upwards of 200% relative improvement in median example OTWYV. In
the case of best example performance, S-RAILS exhibits approximately 78% relative
improvement in OTWYV and 38% relative improvement in FOM performance. P@10
scores are less decisive. S-RAILS improves marginally on RAILS in best example
P@10, but lags by a non-negligible margin in median example P@10. As alluded
to previously, this is due to a small number of particularly high-scoring false alarms

introduced by the embedding process. This issue might be ameliorated by a suitable

47

CHAPTER 2. LOW-RESOURCE AUDIO SEARCH USING
FIXED-DIMENSIONAL EMBEDDINGS OF AUDIO SEGMENTS

rescoring procedure.

Comparing system runtimes paints a more impressive picture. S-RAILS tends
to achieve a speedup of between two and five orders of magnitude with respect to
RAILS at any given performance level. To take a particularly striking example, S-
RAILS with B = 100 achieves better median OTWYV performance than RAILS with

B = 200,000 while running more than 85,000 times faster.

48

Chapter 3

Laplacian Eigenmaps in the

Presence of Noise and Occlusion

In Chapter [2, we compared the performance of several embedding techniques on a
word similarity task, and found that Laplacian eigenmaps embeddings yielded strong
performance in all training conditions. We saw subsequently that these embeddings
yield strong results on a large-scale audio search task. Under the pipeline described
in Chapter [, we would have liked to compute an embedding using the entire search
collection as the reference set, but we saw that this was infeasible, since this would
require computing DTW alignments for all pairs of segments in the search collection.
This motivated our use of the Laplacian eigenmaps out-of-sample extension, which
allowed us to compute an embedding of a small number of examples (the reference

set), and extend that embedding to apply to the entire search collection, as well as

49

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the queries.

We observed in Chapter [2| that the quality of our embeddings thus depended on
the reference set. Hence, one way to improve the embedding of the search collection
would be to carefully choose a reference set from among the segments in the search
collection. Indeed, this was the intuition behind our centroid-based method to speed
up the out-of-sample embedding. It is natural to ask, however, whether we might
devise an embedding scheme that embeds the entire search collection more accurately.
In Chapter [T}, we discussed the question of how well a given embedding preserves the
similarity structure of the search collection. The acoustic embeddings considered in
Chapter [2| rely on the computation of a matrix of pairwise DTW alignments. When
the reference set is large (as is the case when we wish to embed the entire search
collection), this matrix is expensive to compute. Further, we know DTW is at best
an approximation to some ideal notion of word similarity.

These concerns motivate the problem considered in this chapter, in which we
investigate the behavior of Laplacian eigenmaps when we replace the kernel matrix 2
with a sparse, noisy approximation, in which we have noisy estimates of .%;; for only
a handful of the entries of J#". Our results show that from our sparse, noisy version
of J£, we can obtain embeddings that are of quality comparable to those obtained
from using the full, clean version of .#". These results have applications beyond the
search problems considered in this thesis, owing to the ubiquity of embeddings in

machine learning. Problems of the sort considered here limit the viability of many

20

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

dimensionality reduction techniques, which tend to require the computation of all
pairwise distance or similarity functions on a set of objects.
The results presented in this chapter appeared first in |Levin and Lyzinski| (to

Appear).

3.1 Introduction and Motivation

Manifold-based dimensionality reduction techniques operate under the assump-
tion that data observed in a high-dimensional space lie on a low-dimensional mani-
fold (Tenenbaum et al. 2000; Roweis and Saul 2000; Belkin and Niyogi [2003; |Belkin
et al.|2006). Owing to the ubiquity of large high-dimensional data sets, these tech-
niques have been well studied, with applications across many disparate fields (see Ap-
pendix [Bf for a more thorough discussion of manifold learning and related material).
In addition to the classical linear techniques such as PCA (Jolliffe/2002), MDS (Cox
and Cox 2001) and CCA (Hotelling| 1936} [Hardoon et al. 2004), numerous manifold
embedding procedures have been proposed to discover intrinsic low-dimensional struc-
ture in nonlinear data. These nonlinear techniques, such as ISOMAP (Tenenbaum
et al.2000) and Laplacian eigenmaps (Belkin and Niyogi [2003)), typically attempt to
preserve some notion of local geometry in the embedding. As such, they tend to be
empirically robust to modest noise and outliers, but general theoretical results in this

direction are comparatively few.

o1

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

In this chapter, we theoretically and practically explore the robustness of Lapla-
cian eigenmaps to very general noise conditions. This work differs from most manifold
embedding robustness results in two key ways: first, we assume that the uncertainty
lies not in the observations themselves, but rather in our measurement of the pair-
wise similarities used to construct the kernel matrix. Second, the noise model is

entirely nonparametric: we make no distributional assumptions on the noise other

than unbiasedness (see Equation (3.2]) below).

3.1.1 Problem Description

Suppose that X' is a set of objects, endowed with a notion of similarity captured
by a kernel function o : X x X — [0,1]; i.e., z,y € X are similar if o(x,y) ~ 1, and
x,y € X are not similar if o(z,y) ~ 0. Given n observations zy,xs,...,x, € X, we
can represent their similarities via a hollow, undirected weighted graph with adjacency
matrix J¢ given by

Ay = 3)

0 otherwise.
Manifold-based dimensionality reduction techniques seek to recover the low-dimensional
structure intrinsic in the similarities captured by .#". We note that some manifold em-
bedding algorithms rely on distance or dissimilarity measures rather than similarities,

but the distinction is immaterial here.

52

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

As discussed in Chapter [T} it is often the case that while a researcher may have
some oracle similarity ¢ in mind, one must typically fall back on an ersatz similarity
k that only approximates o. If k only approximately captures the oracle notion of
similarity between observations, it is natural to ask how this influences the quality of
the embedding. Similarly, when (z, y) is expensive to compute, we might ask whether
an embedding of similar quality is possible based on an inexpensive approximation or
by computing x(x,y) for only a fraction of all pairs of observations, and inferring the
rest of £, for example, by applying Chatterjee’s universal singular value thresholding
(USVT; |Chatterjee|2015)).

The Laplacian eigenmaps embeddings constructed in Chapter [2 serve as an illus-
trative example. Recall that for word examples x; and z;, the corresponding entry in

the kernel matrix is given by

k(w5 x5) = exp{—d*(z;, ;) 207},

where d(z;, z;) is a function of the dynamic time warping (DTW) alignment cost (Sakoe
and Chibal1978) between x; and x;. This choice of kernel function is only an approxi-
mation to an idealized notion of word similarity, that we cannot hope to compute— as
mentioned in Chapter [, the inadequacies of DTW as a word similarity measure are
well known. Additionally, DTW alignment is computationally expensive, requiring

time that scales as the product of the lengths of the two aligned sequences. As such,

23

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

a fast estimate of d(x;,x;) or k(z;, ;) is acceptable, and we would prefer to avoid

computing all O(n?) alignments required to populate the kernel matrix.

3.1.2 Our Model

In light of the above, we consider the following model. We assume a fixed set of
observations xq, Ts, ..., x, € X, and an oracle similarity function ¢ defined on X x X,

giving rise to a true but unknown symmetric kernel matrix

H =[] = [o(wi, ;)] € 0, 1],

The embedding learned from % is the best embedding we could hope to learn, in
that it accurately and completely captures all the information available to us about
x1,Ta,...,T,. The data processing inequality (Cover and Thomas 2006|) implies that
given the data, kernel function and embedding procedure, adding noise and occlusion
to £ cannot improve the embeddings from the standpoint of subsequent inference or
classification. Suppose, however, that rather than observing ", we observe a random

symmetric matrix Y € R™*" whose entries are generated independently as

K;; with probability p
Vi, =Y} = (3.2)

0 with probability (1 — p),

o4

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

where the K;; € [0, 1] are independent random variables with EK;; = %;; and p €
[0,1] is the (expected) fraction of entries of J# that are observed. We note that our
results hold for similarity functions bounded by any constant, and our use of the
range [0, 1] is without loss of generality. We can think of K as a corrupted version
of ¢, with errors reflecting, for example, the failure of the ersatz similarity s to
fully reflect the oracle similarity o, or approximation error arising from estimating
a computationally expensive x(z,y). Similarly, we can view the sparsity of Y as
reflecting the fact that when n is large or k is expensive to compute, we would like to
avoid computing all O(n?) pairwise similarities. Our model is meant to account for
general uncertainty in the kernel matrix, which may come from many sources (e.g.,
computational restrictions, estimation, etc.). Ultimately, we require only that errors
be entry-wise independent and unbiased.

When J#; ~ 0 or J; ~ 1, our model allows Kj;; very little variance. In many
applications, the cases when x(x,y) ~ 0 or x(x,y) ~ 1 are less prone to error, which
is reflected in our model. Indeed, it is often easy to detect when two observations are
very similar or very dissimilar, whereas one expects higher variance in estimation of

similarity when, say, x(z,y) = 1/2.

Remark 1 (Error Generalization). Our model is a good approximation to more
complicated error models. As an example, consider the Gaussian kernel k(z,y) =
exp{—d?(x,y)/[%}, where 3 > 0 is the kernel bandwidth. A more natural but less

tractable error model is one in which D;; is an estimate (possibly biased) of d(x;, x;)

25

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and our kernel matrix is K;; = exp{—D%/ﬁQ}, say, D;; = dp + E;; where Ej; is a
random error term. A Taylor expansion of exp{—t*/3%} about dy = d(x;, ;) shows

that (taking § = 1 without loss of generality and using the fact that J#; = e®)

Kij = Hjj — 2doe™ 0By + (4d% — 2)e BB}, + O(E).

We see that so long as the error term FEj; is reasonably well-behaved, we still have
EK;; ~ J;, and an approximate version of the results presented here will hold. More
broadly, we note that so long as |[EK;; — J;| is suitably small for most entries, our

results can be extended to the case of biased errors. These observations are borne

out by experiment (See Figures [3.3 and [3.4).

In this paper, we theoretically and practically explore under what conditions it is
suitable to use the embedding learned from Y in place of 2#". Under such conditions,
we can obtain embeddings with quality comparable to those produced from %, at a
greatly reduced computational cost. In the present work, we consider the performance
of Laplacian eigenmaps (Belkin and Niyogi|[2003}; Belkin et al.|2006) under this model,

though we believe that the results extend to other embedding techniques, as well.

3.1.3 Laplacian Eigenmaps

As presented in Chapter , Laplacian eigenmaps (Belkin and Niyogi 2003} Belkin

et al.|2006) embeds the observed data X into R? by first constructing the k-nearest-

26

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

neighbor (k-NN) or e-graph G = (V, E) from X. In the k-NN graph, an edge is present
between ¢ and j if z; is among the k nearest neighbors (according to some distance
defined on X) of x; or vice versa. In the e-graph, i and j are adjacent if ||z; —x;]|* < €
for a given threshold parameter e. We define W, the weighted adjacency matrix of
G, by

Ky it {i,j}€E
Wi]’ —

0 else,

and let 7 € R™" be the diagonal matrix defined by Z;; = >_; Wj; for i € [n]. Then
the normalized weighted graph Laplacian of G' (Chung [1997) is given by Z(W) =
P~V2W@~1/2. If the eigendecomposition of Z(W) is given by Z(W) = UAUT
with the diagonal entries of A nonincreasing, then Laplacian eigenmaps embeds X
via U[:,2 : d+ 1]—the first d nontrivial eigenvectors of .Z(W). (note that U[:,1] = 1,
the trivial all-ones vector). This embedding optimally preserves the local geometry
of X in a least squares sense.

In the event that # is noisily and incompletely observed as Y, how does the
d-dimensional Laplacian eigenmaps embedding of Y compare with that of 7 Our
main result, Theorem [I, deals with the regularized matrix [Y;; + r] rather than Y
itself, owing to the fact that when p is small, the matrix p.# = EY may be quite
sparse, in the sense that some or all of the row sums Z?Zl pJ;; are too small to
guarantee necessary concentration inequalities (Oliviera 2010; Tropp 2012; Le et al.

2016). Regularization prevents this pitfall, at the cost of changing the matrix to which

27

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

we converge. We discuss regularization at more length in Section [3.2.3] Intuitively,
our main theorem states that the embedding produced from a regularized version of
Y is similar to that produced by #". This implies that we can avoid the O(n?) exact
computations for %, using instead the potentially less computationally expensive Y,

with little loss in downstream performance.

Remark 2. We depart from Laplacian eigenmaps as originally described (Belkin
and Niyogi [2003) and as used in Chapter |2 in that we do not build a k-NN graph
or e-graph from X. However, a suitably-chosen kernel function (e.g., the Gaussian
kernel) ensures that J#" approximates a k-NN or e-graph, with Y a noisily-observed

subgraph of JZ".

3.1.4 Notation and conventions

For a set S, we denote the complement of S by S¢. For a matrix B € R™",
we let A\(B) denote the multi-set of eigenvalues of B, and for S C R, we define
As(B) = A(B)NS. We let J € R" denote the matrix of all ones.

We make use of standard big-O notation, writing f(n) = O(g(n)) to mean that
there exists a constant C' > 0 such that f(n) < Cg(n) for suitably large n. Similarly,
we write f(n) = o(g(n)) to mean that f(n)/g(n) — 0 as n — oco. We use f(n) =
Q(g(n)) to denote that f grows at least as quickly as g does, i.e., to denote that
g(n) = O(f(n)), and we write f(n) = w(g(n)) when g(n) = o(f(n)).

Throughout this chapter, all quantities are assumed to depend on n, a fact that we

o8

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

highlight by subscripting or superscripting with n (e.g., # = .2 ™), but which we
will suppress in many places for ease of notation. Our main theorem, Theorem [1] is a
finite-sample result, with J# (™ viewed as fixed for each n, and K™ and Y™ randomly
generated from % ™. We note that all of our results in this chapter can be restated as
holding almost surely as n — oo by assuming suitable lower bounds on the constants
in the supporting Lemmas so as to ensure that the probabilities of the various “bad
events” are summably small. An application of the Borel-Cantelli lemma then implies
that our desired events hold almost surely. This modification can be made to work
either in the case (a) where we view Y, K and . as (growing, “nested”) principle
submatrices of infinite matrices, or (b) in the case where we consider a sequence of
fixed matrices (M) .

In this chapter, we assume . to be fixed for each n (i.e., not random— the
randomness lies entirely in Y and K). This assumption is made primarily for the
sake of brevity and simplicity, since randomness in .# would have to come from
random selection of the sample z1, x,,...,x, € X according to some distribution F
on X. Clearly, the properties of .# depend on the properties of F' and X', but a

thorough exploration of precisely how F' and X influence % is beyond the scope of

this thesis.

29

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

3.2 Related Work

We briefly survey some existing work from the fields of manifold learning, ma-
trix completion and matrix concentration as it relates to the work presented in this

chapter. These works are discussed in more detail in Appendices [B] and [D]

3.2.1 Manifold Learning

Manifold learning is a general class of techniques for nonlinear dimensionality
reduction that seek to embed a collection of observations into Euclidean space in a
way that preserves some aspect of the structure of those observations. For example,
given a collection of objects and some notion of distance on those objects, we may wish
to embed the objects into Euclidean space in such a way that all pairwise distances are
(approximately) preserved (Indyk 2001} [Linial 2002). A host of different embedding
techniques have been proposed in the literature (see, for example, Roweis and Saul
2000; 'Tenenbaum et al./2000; Cox and Cox [2001; [Hinton and Roweis 2002; Donoho
and Grimes|2003; Coifman and Lafon 2006)) to preserve the numerous different notions
of structure in the data. As outlined in |Yan et al. (2007)), it is possible to view many
of these approaches as special cases of a more general framework

There is a large amount of literature dedicated to improving the performance of
manifold learning and dimensionality reduction algorithms in the presence of noise

and missing data; see, for example, |(Chang and Yeung (2006)); Hein and Maier| (2007));

60

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Candes et al.| (2011)); Shahid et al|(2015). The present work differs from most such
results in the following key ways: We assume that the uncertainty lies not in the
observations themselves, but rather in the computation of the pairwise similarities
or distances used to construct the kernel matrix, and our model of this uncertainty
is nonparametric. Additionally, we make no assumption that the observations lie in
Euclidean space. Rather, the objects under study are arbitrary (e.g., they may be
time series, graphs, etc.), and information about the geometry of X' comes through
the ersatz kernel function .

With the rise of big data and the continued popularity of kernel methods, much
research has gone toward faster construction and embedding of the kernel matrix
by speeding up the evaluation of the kernel function itself (Williams and Seeger
2001; Le et al.|[[2013), the embedding procedure (Baglama and Reichel 2005; Brand
2006), and construction of the kernel matrix as a whole (Fine and Scheinberg[2001)).
Construction of the kernel matrix is often the major bottleneck in machine learning
systems (Hofmann et al. [2008; [Levin et al. 2013, 2015)). In our model, embedding
the partially observed noisy kernel matrix Y allows for potentially dramatic speedups
compared to the computation of the full, clean kernel .#". A similarly-motivated idea
was explored in (Chen et al. (2009), where the authors presented a pair of divide-and-
conquer algorithms for approximately constructing k-NN graphs on observations in
Fuclidean space. However, unlike our approach, they do not consider noise in the

observations themselves or in the assessment of distances between observations.

61

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Another close analogue to our present work is Rohe et al. (2011a), in which the
authors theoretically and empirically explored the robustness properties of spectral
clustering: i.e., Laplacian eigenmaps applied to a binary adjacency matrix followed by
k-means clustering. In the language of this thesis, they considered the inner product
kernel matrix % € R™" on a fixed (but unknown) subset X C R¢. From this kernel,

they observed the matrix Y € {0,1}"*" with independent entries

1 with probability %,
Yij =Yy = (3.3)

0 with probability (1 — J;).

They compared the Laplacian spectral embedding based on .# with that based on Y.
Their key result showed that, under some mild assumptions on the spectrum of .Z(¢")
(the normalized Laplacian of J¢), the eigenspace of Z(Y) does not significantly
differ from the corresponding eigenspace of Z (") (after suitable rotation). As a
result, they prove that spectral clustering of .Z(Y") consistently estimates the clusters
obtained by spectrally clustering .2 (.#"). While our main theorem uses results (Rohe
et al.|[2011a, Prop. 2.1 and Thm. 2.2) developed in that paper, the generality of our
occlusion model compared to (3.3) requires new proof techniques. Additionally,
our manifolds do not necessarily have a well-defined cluster structure (as the stochastic
blockmodel graphs of Rohe et al.| (2011a)) do), and so we do not consider consistency
of clustering of our embedding. Rather, in Theorem [I we prove that the relevant

eigenvectors of Z(Y") do not significantly differ from the corresponding eigenvectors of

62

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Z (). As in Rohe et al.| (2011a), we expect the consistency of subsequent inference

to similarly follow.

3.2.2 Matrix Completion and Data Imputation

A natural approach to applying Laplacian eigenmaps to Y is to first impute the
missing entries of Y using matrix completion techniques. For example, with the
additional assumption that J# is approximately low-rank, it would be possible to
impute the missing data via the techniques developed in compressed sensing (Candes
and Recht| 2009, see Appendix @ for a survey of the relevant literature). While
some compressed sensing papers have considered matrix completion in the presence
of both noise and occlusion (Candes and Plan|[2009; |[Chen et al. 2013)), most also
require bounds on the incoherence of matrix ", a requirement that need not hold in
general for the kernel matrices we consider here.

Some matrix completion work has considered imputing missing entries in a dis-
tance matrix (Alfakih et al.|1999; Trosset| [2000; Javanmard and Montanari 2013)).
Among these, the work by |Javanmard and Montanari (2013) is closest in spirit to the
problem considered here. |Javanmard and Montanari (2013)) considered the problem of
placing n objects into d-dimensional Euclidean space based on noisy, occluded mea-
surements of the O(n?) pairwise distances. Their semidefinite programming-based
approach solves this problem under a very general error model, where nothing is

known about the errors other than a bound on their magnitude. However, their

63

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

model differs from ours in two key ways. First, the observations in question are as-
sumed to lie in d-dimensional Euclidean space, while ours need only be endowed with
a kernel function. Second, they assume that distance measurements are taken on all
pairs of points within a fixed radius of one another. However, under our model, all
entries of " are equally likely to be (noisily) observed.

Chatterjee (2015) considered the problem of completing an arbitrary matrix based
on partial, noisy observations, with no specific assumptions on the matrix structure.
His universal singular value thresholding (USVT) procedure constructs a minimax
optimal estimate for J# based on its occluded, noisy measurement Y (as defined
in (3.2))). Though we believe that the results obtained in this paper would hold in a
qualitatively similar way if we used USVT applied to matrix Y prior to embedding,
analyzing the behavior of the USVT estimate of .# under the graph Laplacian is
theoretically challenging, and we do not pursue it further here. In empirical com-
parisons, we found our method and Chatterjee’s USVT performed nearly identically
across our data sets. We do note that USVT requires an expensive SVD computation,
and yields a dense matrix as an estimate of %", instead of the sparse Y, which may

be computationally intractable for large n.

3.2.3 DMatrix Concentration

Recent years have seen a flurry of results proving concentration results for sums

of random matrices (Oliviera|[2010; Tropp|2012; Chaudhuri et al.[2012; Amini et al.

64

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

2013; Joseph and Yu| 2014} |Qin and Rohe 2013; Le et al.|[2016; [Tropp 2015), in

the spirit of their well-established scalar analogues (Chung and Lul [2006). Many

existing concentration results require assumptions about the density of the underlying

graphs (Rohe et al.|2011a; |Olivieral2010). For example, many such results hold only

in the dense regime and require a lower bound on the average degree (i.e., a lower
bound on the row sums of the expected value of the random matrix). It is well known

that the high variance associated with small average degree precludes concentration

of the Laplacian for general weighted graphs (Chung et al.|2003; |Le et al.|2016; Klopp|

2015]). This is an issue for the problem considered in the present work, especially
when we observe only a small fraction of the matrix entries.

Existing empirical and theoretical results show that regularization yields the de-

sired concentration of the graph Laplacian for sparse graphs (see (Chaudhuri et al.|

2012; Amini et al.|2013; Joseph and Yu 2014; |Qin and Rohe|2013; [Le et al. 2016,

and references therein). This regularization typically takes the form of either adding

a small number to each entry of the adjacency matrix, as in |[Le et al. (2016)), or by

adding to the degree matrix directly, as in Qin and Rohe| (2013)). Our result draws

on this line of work by investigating the behavior of the Laplacian eigenmaps em-

beddings when regularization is applied. In this sense, the current work is a natural

outgrowth of |Rohe et al| (2011a)) and Le et al|(2016]) in that the former considers

concentration of the Laplacian eigenmaps embeddings under the Frobenius norm, and

the latter considers concentration of the regularized graph Laplacian under the spec-

65

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

tral norm. We follow the former of these two works and consider concentration under
the Frobenius norm, rather than spectral norm. This differs from the bounds estab-
lished in |Olivieral (2010)); Tropp| (2012); |Le et al.| (2016)), which show concentration of
the adjacency matrix and graph Laplacian under the spectral norm. We prefer the
Frobenius norm formulation of Theorem [I} as the Frobenius norm between the (suit-
ably rotated) eigenspaces has a natural interpretation as the Procrustes alignment

error of the two different embeddings.

3.3 Main Results

Our goal is to theoretically and empirically understand the impact of observa-
tion error on the embedding obtained via Laplacian eigenmaps. That is, how much
does the embedding obtained using matrix Y degrade with respect to that obtained
using matrix £ 7 We prove that Laplacian eigenmaps is indeed robust to certain
amounts of both occlusion and noise by first proving that (a suitably regularized
version of) Z?(Y’) concentrates about (a regularized version of) £?(p.#"), where Y
and p are defined as in Equation . Combining this result with the Davis-Kahan
theorem (Davis and Kahan||1970), we obtain in Theorem [l| a guarantee that the em-
bedding learned from the occluded noisy kernel matrix is similar (up to rotation) to
that learned from the regularized clean kernel matrix. We provide relevant details

below and in Section [3.6]

66

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Let G = (V, E) be an undirected, loop-free, weighted graph on n vertices with

edge weights w;; > 0. We represent G by its adjacency matrix A € R"*", with entries

Aij = Ajz' =

0 if{i,j} ¢ E.

Given A, we define its normalized graph Laplacian by

ZL(A) = 9(A)V2A9(A)~V2,

where Z(A) € R™", the degree matrix, is diagonal with Z(A); = 37| Aj; and

inverse square root defined as

1A if D(A) £0
(2(4)77)

i

0 otherwise.

We note that the graph Laplacian as we have defined it differs from the more com-
monly used [— 2(A)"Y2A2(A)~1/2 (e.g., in |Chung [1997). We will be interested in
the eigenspace of Z(A), and one can easily check that both our .Z(A) and the more
commonly used definition have the same eigenspaces.

In general, neither the adjacency matrix nor the graph Laplacian of sparse ran-

dom graphs concentrate about their means owing to high variance in degree distri-

67

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

butions (Chung et al.2003; |[Feige and Ofek 2005} Le et al.2016). This suggests that
we should not expect that Z(Y") will concentrate for arbitrary kernel matrices, and
hence we turn to regularization. Let J € R™" denote the matrix of all ones. Our
main result will require us to bound || .Z*(Y + rJ) — ZL*(p# + rJ)||r, where Y is
the sparse, noisy version of J# as specified in , and r > 0 is a regularization
parameter. We deal with the squared Laplacians for reasons discussed in Rohe et al.
(2011a, Section 2). Namely, we require that £ (Y + rJ) converge to £ (p# + rJ)
in Frobenius norm. To ensure convergence for a suitably broad class of matrices,
we must instead consider the squared Laplacians in combination with the following
Lemma, proved in |[Rohe et al. (2011a), which ensures that if certain eigenvectors of

LY +rJ) converge, then so do the relevant eigenvectors of Z(Y + r.J).
Lemma 1 (Rohe et al.||2011a, Lemma 2.1). Let B € R"*" be symmetric.
1. A% is an eigenvalue of B? if and only if either X or —\ is an eigenvalue of B.
2. If Bx = \w, then B%xr = \%x.

3. If B2z = N2z, then x can be written as a linear combination of eigenvectors of

B with corresponding eigenvalues \ or —\.

Our main theorem, Theorem [1] shows that the span of the eigenvectors corre-
sponding to the largest eigenvalues of the Laplacian of J# and the Laplacian of

the sparse noisy kernel matrix Y are close. As a consequence, subsequent inference

68

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

performed on the Laplacian eigenmaps embeddings will be robust to the errors in-
troduced in Y, since the embeddings will be (nearly) isometric to one another. In
the statement of the theorem, we include subscript or superscript n on all quantities
that depend on n, though we will drop these subscripts in the sequel for notational
convenience. Recall that for B € R™*", A\(B) denotes the multi-set of eigenvalues of

B and for S C R, we define A\g(B) = A\(B) N S.

Theorem 1. Under the model described in (3.2), for an open interval S, C R, define

6p = inf{|0 — s| : 0 € Age (L?(pH +10J)), 5 € Su}, (3.4)

8 =inf{|l —s|: 0 € \s, (L*(pH +1,J)),s € S}, and
Sl ={l:0*cS,}.

Let k, = A, (LY +1,0))| be the cardinality of Ag: (L (Y™ + r,J)) (counting
multiplicities), and let X,, € R™*n be the matriz whose columns form an orthonormal
basis for the subspace spanned by the eigenvectors of L(Y "™ 4-r,J) with corresponding
eigenvalues in Ag; (L(Y™ +r,J)). Let kn = [Ag, (L (pX ™ +1,J))| and let X, be
the analogue of X,, for L (pA# ™ +r,J).

—-1/2

Let 1, depend on n in such a way that r, min{d,,d.} > n logn for suitably

large n. There exist constants C,c > 0 and a positive integer N such that n > N

implies that k, = k,,, and there exists orthonormal rotation matrixz O,, such that with

69

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

probability at least 1 —n~¢

)

l 1/2

Sprpnt/?

Proof. By reasoning analogous to that in Rohe et al,| (2011a) Theorem 2.3, the as-

sumption on the growth rates of r,,d,, and 9§/

5, in combination with Theorem , is

sufficient to ensure that k, = k, for suitably large n. For all such n, combining

Theorems 2| and [3] yields the result. O

Figure 3.1: Points sampled from a 3-dimensional swiss roll.

Remark 3. A key difference between the main theorem in Rohe et al| (2011a)

and our result is that we do not require a restriction on the degrees of p.# directly.
Rather, we use regularization to ensure that no row sum is too small. We note that
letting p = 1 and making minor adjustments to the arguments in our concentration

inequalities (namely, lower bounds on the entries of the degree matrix 2), we recover

70

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the main result of Rohe et al.|(2011a)), with a slightly better convergence rate. Namely,
if we define 7 =n=! min,epn %, our result has 771 controlling to rate of convergence

2

of the eigenspaces rather than 772 as in Rohe et al. (2011a) (with dependence on n

and § unchanged)

Remark 4. We note the somewhat surprising fact that the bound in [1| does not
depend explicitly on p. This is a result of the presence of regularization parameter
r, which prevents p.# + r from becoming too sparse. We note that if one imposes
stronger assumptions on the growth of p (namely, restricting the speed with which p
can approach 0), our proofs can be adapted to dispense with r altogether, in which

case p appears in the bounds instead.

Our main tool for proving Theorem [l is the Davis-Kahan theorem (Davis and
Kahan| 1970), which we use in the form presented in Rohe et al| (2011a)). We here
index all quantities by n to reiterate that all quantities are allowed to depend on n,
but remind the reader that we will drop this indexing in much of the sequel for ease

of notation.

Theorem 2. Let S, C R be an interval and let X, be a matriz with orthonor-
mal columns that span the same subspace as that spanned by the eigenvectors of

L% (pat ™) with corresponding eigenvalues in

)\SH(ZQ(pW%/(") +r,J)) =5, N A($2(pn%(”) +7rpJ)).

71

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Define X,, analogously for (Y™ +r,J). Let 6, be defined for L*(p, ™ +r,J)
as in (3.4).
If X, and X, are of the same dimension, then there exists orthonormal matriz

O,,, which depends on X,, and X,,, such that

1
§||Xn - XnOnH%7

< |L2(Y™ + 1, J) — LHpp ™ + 1, 0)||%
—_ 5?[/ .

To apply Theorem [toward Theorem [1, we need a concentration bound for
L2(Y + rJ) about Z*(p# + rJ). We note that Y, ¢, J and r all implicitly
depend on n, a fact that we do not generally make explicit in the sequel for ease of
notation, but which we highlight here for clarity. For each n = 1,2, ..., let # ™ be a
weighted adjacency matrix for a graph on n points in & as defined in . Similarly,

let Y™ be the corresponding sparse noisy kernel matrix as defined in (3.2)).

Theorem 3. Assume that regularization parameter r grows with n in such a way that

r =w(n tlogn). There erist constants C,c > 0 such that for suitably large n,

1 1/2
LAY +1J) — L2pH +r])|r <O

rnt/2

[

with probability at least 1 — n=°.
Proof. This theorem is proven in Section [3.6] [

Remark 5. A number of results exist concerning concentration of the adjacency

72

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

re-03- [N NNNNEEENNEEENNNER
HNEENNENEREENEEEENN
o R
re-00- [N HENNEEENNRREREEER
ENEERNNNEENENEEEENN

o (log scale)

HNEERNENENENNEEEENN
re-0s- [HHNNNNEENNNERRNNEER
HNEENNNNEENENEREENN
INEENNNNENNNNEEEENN

0.00 0.25 0.50 0.75 1.00
p

Figure 3.2: Relative error (RelErr) in recovering the clean embedding of the high-
dimensional swiss roll as a function of noise and occlusion. Each tile reflects the mean
of 50 independent trials. We see that recovery is possible with low relative error except
in the extreme case of simultaneous high-noise and heavy occlusion, suggesting that
the embeddings are robust to both noise and occlusion of the kernel matrix.

matrix and the graph Laplacian of random graphs (see, for example, Feige and Ofek

2005} |Oliviera||2010; Rohe et al.[2011a; Tropp |2012; Le et al.[2016). In general, these

results show that the graph Laplacian concentrates in spectral norm about its mean
when the quantity d = nmax;<;<j<y pi; is of size Q(logn) (here p;; is the probability
of an edge appearing between nodes ¢ and j in the random graph). Our result differs
from most of these, in that we are concerned with concentration under the Frobenius
norm, rather than the spectral norm. We obtain results in a similar regime, as

captured by our lower bound requirements on the regularization term r.

A key quantity in Theorem [2]is the spectral gap d,, as defined in (3.4)). 4, measures
how well the eigenvalues in Ag(-Z?(p# (™)) are isolated from the rest of the spectrum.

73

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

0, must grow in such a way that for suitably large n, the eigenvalues falling in S,
correspond to the eigenvectors of interest, and the rate of this growth is one of the

factors controlling the convergence in Theorem [I} The existence of this eigengap is

crucial for the application of the Davis-Kahan Theorem (Davis and Kahan|1970; Rohe,

2011a)). The eigengap depends on the matrix p.# (™ (i.e., on the topology of

the graph this matrix encodes). As discussed in jvon Luxburg (2007), the existence

of such a gap is a reasonable assumption when, for example, the data set (viewed

through similarity function) has a cluster structure.

|
o e
R | ||

1.0

0.5

0.00 0.25 0.50 0.75 1.00
Y

Variance (log scale)
?
o
n

Figure 3.3: Relative error in recovering the Laplacian eigenmaps embedding of
the high-dimensional swiss roll as a function of occlusion and variance v? in the
multiplicative error model described in Equation (3.5). Each tile is the mean of 50
independent trials. We see that Laplacian eigenmaps is robust to moderate amounts of
multiplicative noise, with reasonably good recovery at all values of p provided v? < 1
(which we recall is five times the kernel bandwidth o = 0.2), but performance degrades
sharply when uncertainty on the distance measure becomes too large (v* > 10).

74

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

b =-0.01

1e+03+
— RelErr — RelErr
= B 16400
© < 1e+004
@ 1.0 2 1.0
[=2] [=2]
S 05 g 05
® 1e-03- 0.0 S 1e-03 00

0.00

1e+03+
— RelErr — RelErr
® ® 16400
5 @ 1e+00-
? 1.0 3 1.0
[@2] (=)

S 05 S 05
8 1e-03- 0.0 3 1e-03- 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
p p
(c) (d)

Figure 3.4: Relative error (RelErr) in recovering the clean embedding of the high-
dimensional swiss roll as a function of occlusion and noise level for different levels
of bias b. Each tile is the mean of 50 independent trials. We see that Laplacian
eigenmaps embedding is quite robust to negative bias, but that even a small amount
of positive bias in the errors causes a marked decrease in performance at all noise and
occlusion levels.

Typically, computing the Laplacian eigenmaps embedding of a data set is not an
end in itself, but rather a processing step performed prior to subsequent inference,
classification, or data exploration. Such tasks depend entirely upon the geometry
of the embedded data points produced by Laplacian eigenmaps. If the geometry of
the points produced from the inexpensive embedding based on Y is approximately
equal (up to rotation) to that of the embedding based on %', then we can expect

comparable performance on downstream tasks that are invariant under rotations of

75

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the data (e.g., clustering). Thus, our results show that we can obtain performance
comparable to that obtained when using the dense, computationally intensive %

while avoiding the expense of working with J#~ directly.

3.4 Experiments

In this section, we present simulation and real-world data to complement our

theoretical results in Section [3.3]

3.4.1 Data Sets

We consider three data sets, one synthetic, one from connectomics, and one from

the speech processing literature.

Synthetic Data (Fig. (3.1}, (3.2}, [3.6}, 3.3}, |3.4)).

We consider a high-dimensional analogue of the 3-dimensional swiss roll manifold
(see Fig. . We sample n points uniformly at random from the d*-dimensional unit
cube and embed those points into (d* + 1)-dimensional space by applying the swiss

roll transform

(z,y) + (cxcos(cx),y, crsin(cr)), z€R,yecRY !

where ¢ controls the curvature of the manifold. In all experiments we use n = 5000,

76

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

d* = 6 and ¢ = 5. We chose this higher-dimensional version of the well-understood,
simple swiss roll manifold to examine the effect of both under- and over-estimating the
dimension d*. We obtain a kernel matrix .2 from these points by applying a Gaussian
kernel with bandwidth o. Results are fairly stable for a wide range of values of 0. We
use 0 = 0.2 in all experiments, while stressing that the task of selecting parameters
in dimensionality reduction techniques warrants much additional study.

C. elegans Connectome (Fig. [3.8]).

We consider the task of clustering the 253 non-isolated neurons in the C. elegans,
a nematode commonly used as a simple biological model (see |Chen et al.|2016| and
citations therein). These neurons are categorized according to their function: sensory
neurons, interneurons and motor neurons, which make up 27.96%, 29.75% and 42.29%
of the connectome, respectively. Our data consists of the symmetric binary adjacency
matrix corresponding to the C. elegans brain graph, in which each node corresponds
to an individual neuron, with an edge between two neurons if they share a synapse.
As discussed in |Chen et al| (2016), this brain graph can be constructed in multiple
ways. Here we consider the subgraph of the chemical connectome induced by the
non-isolated vertices of the electrical gap junction connectome. Our goal is to embed
the nodes of this graph via Laplacian eigenmaps so that clustering (e.g., by k-means)
recovers the three neuron categories enumerated above. We assess the quality of
these embeddings using adjusted Rand index (ARI; Hubert and Arabie|1985), which

measures how well two partitions agree, adjusted for chance.

7

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Speech Data (Fig. 3.5, |3.7] and [3.9)).

We consider the same word discrimination task as in Chapter [2 using a set of
10, 383 spoken word examples, representing 5, 539 distinct word types. Using DTW
alignment cost, we define a radial basis kernel on the word examples to obtain a
10, 383 x 10, 383 kernel matrix that serves as our starting point for constructing em-
beddings. Recall that this evaluation, developed in |Carlin et al.| (2011, assesses how
well a representation distinguishes word types as measured by average precision (AP),
which runs between 0 and 1, with 1 representing perfect performance. Performance
on this task for this data set varies depends on many factors, e.g., choice of acoustic
features, and better performance than reported here has been obtained, for example
by changing the features in Chapter[2| The aim of this experiment is not to best that
performance, but rather to examine how noise and occlusion influence performance

for a given set of observations.

3.4.2 Noise Conditions

We consider the effects of additive noise and occlusion both in isolation and in
tandem on the quality of Laplacian eigenmaps embeddings.

Additive Noise. Given a kernel matrix £ € [0, 1]"*", we produce a random
symmetric matrix K € [0, 1]"*™ where K;; = 0 for all i € [n], and {Kj; }1<i<j<n are
independent with K;; beta-distributed with EK;; = J%;;. We constrain the expected

value of beta-distributed Kj;; in this way by fixing one of the two shape parameters

78

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

0.154

o

N

o
1

Average precision
o
o
(&)}
1

0.00-

10 100 1000
Target dimension (log scale)

Figure 3.5: Performance on the speech task, measured by average precision, as
a function of embedding dimension. We see that performance peaks at an embed-

ding dimension of d = 500, with a severe degradation in the case where embedding
dimension is chosen too small.

of the beta distribution, and varying the other to change the variance of the Kj;;. In
particular, K;; ~ Beta(o;, n;;) with a;; > 0 and n;; > 0. fixing n;; = «;(1—4;) /5
ensures that EK;; = J7; with
Var K;; = —%/132(1 — %/iﬂ,
oG + i

so that we can vary our level of uncertainty on the Kj;; variables by varying ay;.
We select a single global value o > 0, and take K;; ~ Beta(a, a(1 — J%;)/%;). In
the limit o — 0, the K;; are simply Bernoulli random variables with probability of
success p;; = ;. In the limit & — oo, we have K;; = J7; almost surely. Thus,
we can think of our parameter a as a measure of the accuracy of our measurements

of . We note also that our parameterization implies that the K;; variables do not

79

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

all have the same variance. Rather, variances are smaller for .J%;; nearer to 0 and
1. As discussed in Section [3.1] this is a good model for applications in which the
cases #;; ~ 0 and J; ~ 1 are comparatively easy to handle from an estimation or

computation standpoint, and the trouble arises from the cases where J7;; ~ 1/2.

06- |
= 0.6
i=] K]

2 2

9] o 9] P
E04 1e-04 Eoul 04
© o

5 0.1 5 #05
k=3 100 k=3 0.9
§0.2- §0'2_
| I

0.0- v W 0.0+

i 2 3 4 5 6 7 8 9 10 11 12 i 2 3 4 5 6 7 8 9 10 11 12
Target dimension Target dimension
(a) (b)

Figure 3.6: Relative error in recovering the Laplacian eigenmaps embedding of
the high-dimensional swiss roll as a function of dimension at (a) different values of
fidelity parameter a and (b) different expected fractions of observed entries p. The
true underlying dimension of the data is highlighted in red. Each data point is the
mean of 50 independent trials, with error bars indicating one standard error. We
see a pattern typical of model selection problems, in which the expressiveness of the
model (i.e., higher embedding dimension) comes at the cost of increased variance (i.e.,
higher relative error in recovering the clean embedding).

Occlusion. We observe an occluded version of £, where entries above the diag-
onal are observed independently with probability p. We proceed with our embedding
using this sparse kernel matrix, with zeros in the unobserved entries.

Additive Noise with Occlusion. This condition combines the preceding two.
We observe an occluded, noisy version of matrix .#". That is, we generate noisy matrix

K from J# with entries drawn independently from suitably chosen beta-distributions,

then occlude K by independently observing entries with probability p.

80

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Multiplicative and Biased Errors with Occlusion. Rather than the unbiased
additive noise considered above, we consider how more complicated multiplicative and
biased errors influence the quality of Laplacian eigenmaps embeddings. As discussed
in Section [3.1] provided these errors are sufficiently well-behaved, we can adapt the
results presented in this paper to make similar statements about this more general

error model.

3.4.3 Effect of Noise and Occlusion on Embed-

dings

Our main theoretical result suggests that Laplacian eigenmaps embeddings should
be robust to noise and occlusion. Fig. shows how noise and occlusion influence
the error in recovering the clean Laplacian eigenmaps embedding. Here, the target
dimension is fixed at d = d* = 6, while the noise and occlusion vary on the two axes.
Each tile is the relative error averaged over 50 independent trials. We see that the
clean Laplacian eigenmaps embedding is recovered with low error over a wide range of
noise levels and occlusion rates, with performance degrading only when the fraction
of observed entries goes below 0.25 in high-noise conditions.

Fig. further illuminates the results seen in the synthetic data. Rather than
looking at the relative error in recovering the clean embedding, we examine how noise

and occlusion in the kernel matrix influence the down-stream speech task of distin-

81

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

guishing word types. The plot shows average precision as a function of both noise
level and occlusion for three different embedding dimensions. We see that perfor-
mance decays similarly in all three embedding dimensions, but that choice of embed-
ding dimension has a large effect on overall performance. For example, comparing
the d = 100 case with the d = 500 case, we see that both exhibit similar deterioration
patterns with respect to noise level and expected fraction of observed entries, but the
500-dimensional embeddings out-perform the 100-dimensional ones when noise and

occlusion are not so severe as to drown out the signal in the kernel matrix.

0.00 025 050 0.75 1.00 000 025 050 0.75 1.00 0.00 025 050 0.75 1.00
p P p

Figure 3.7: Average precision (AP) on the speech data set as a function of occlusion
and noise level for different embedding dimensions d. Each tile is the mean of ten
independent trials. We see that performance degrades similarly for all three target
dimensions in the presence of noise and occlusion.

3.4.4 Effect of Multiplicative Error and Bias

Our theoretical results are for the case of unbiased noise, EK;; = .%;;, and it is
natural to ask whether similar results hold for a broader class of error models. As
mentioned in Section , our results can be extended to biased errors (EK;; # J7;;),

provided those errors are suitably well-behaved. Fig. and lend experimental

support to this point.

82

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Using the same synthetic high-dimensional swiss roll setup as in Fig. |3.2] we con-
sider biased noise, with K;; beta distributed, but with EK;; = J; + b, where b € R
is a bias, clipping .#;; + b to lie in [0, 1] in the event that the bias b pushes .%; out
of its allowed range. Note that this corresponds to making K;; either identically 0O
or identically 1, according to whether J;; + b is less than O or greater than 1, re-
spectively. We again vary the parameter o as described above, but now the errors
are biased away from ;. Fig. [3.4] shows relative error in recovering the clean em-
beddings, again as a function of the parameters p and «, for four different levels of
bias b = —0.1,—0.01, —0.001,0.001. The first thing we notice is that performance
is far more sensitive positive bias than it is to negative bias, with negative bias as
large as —0.1 (a full one tenth of the dynamic range of the similarity measure) having
comparatively little effect while a positive bias of just 0.001 results in notably worse
relative error at all levels of noise and occlusion when compared to the unbiased er-
rors in Fig. [3.2] This performance makes sense. Positive bias in our estimation of ¢
results in us embedding a graph that looks highly connected, and the signal present
in the comparatively sparse % is swamped. On the other hand, negative bias in our
estimates only serves to further accentuate the few high-weighted observed entries,
since only those entries for which J#;; is suitably far from 0 survive the bias. We have
observed empirically that a similarly-motivated technique, in which small entries of
the kernel matrix are clipped to 0, yields slight performance improvements in speech

applications.

83

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

We further explore how general errors influence the quality of Laplacian eigenmaps

embeddings by considering an error model in which

K” = eXp{—D?j/O'Z}, (35)

where D;; = d(z;,x;)+ Z;j, and Z;; is a one-dimensional normal random variable with

2. Thus, we have a distance measure corrupted by unbiased

mean 0 and variance v
noise, corresponding to the common scenario in which the kernel function k(z,y)
is a function of the distance between objects x and y and uncertainty lies in the
measurement of that distance. The result, in the case of a nonlinear kernel function, is
(typically) non-additive, biased, error, so that EK;; # J#;; = k(z;, z;). We again use
the same high-dimensional swiss roll as described above. We generate noisy versions
of the kernel matrix ", using the same Gaussian kernel with bandwidth o = 0.2, but
now noise takes the form described in Equation[3.5] Fig.[3.3|shows relative error in our
recovery of the clean embeddings, as a function of the fraction of observed entries p and
the variance v of the noise term Z;;. We see that Laplacian eigenmaps embeddings
are robust to fairly large amounts of uncertainty in the distance measurement. Indeed,
we see that relative error is near zero for variance v?> < 1, with the exception of
particularly small values of p, when nearly all of the kernel matrix is occluded. This

performance is impressive in light of the fact that ©?> = 1 corresponds to a standard

deviation a full five times larger than the kernel bandwidth in these experiments.

84

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

3.4.5 Model Misspecification

Selecting the target dimension is of the utmost importance for good embeddings.
Fig. shows how embedding dimension interacts with noise and occlusion on the
synthetic data. The two plots show that relative error in recovering the clean embed-
ding is smaller at lower target dimensionalities, and this pattern holds over a wide
range of noise levels and occlusion rates. In particular, we note that relative error
in the presence of high noise and high occlusion remains comparable to the relative
error in low noise and low occlusion conditions. Of course, this only tells part of
the story. Fig. shows average precision on the speech data set under clean con-
ditions, as a function of embedding dimension. While a low-dimensional embedding
performed under noise or occlusion might very closely resemble the corresponding
clean embedding as in Fig. Fig. suggests that such an embedding would not
yield satisfactory performance on downstream tasks such as classification. Indeed,
we see here a pattern typical of model selection tasks: one must balance estimation
error of model parameters against error in fitting the observed data (Shibatal|1986}
Fraley and Raftery|[2002; Raftery and Dean/2006)). The noisy embedding can only be

as good as the clean embedding we are attempting to recover.

85

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

3.4.6 Effect of regularization

In the setting of the current work, when p is too small, we are in the sparse graph
setting (Chaudhuri et al.|2012; Amini et al|[2013; Joseph and Yu 2014; Qin and
Rohe 2013; |Le et al. 2016)), and it is natural to consider whether applying regular-
ization might ease the deterioration of embedding quality in this regime. We follow
the regularization procedure described in |Le et al.| (2016), in which a regularization
parameter r is added to each entry of the observed matrix. That is, letting Y denote
the occluded version of the noisy matrix K, we apply Laplacian eigenmaps to the
matrix [Y;; + 7] rather than Y itself. Our main theoretical results suggest that under
suitable conditions, such an approach will be beneficial. The C. elegans brain graph
is extremely sparse, and occlusion makes this sparsity still more dramatic. Fig.
shows how regularization influences downstream performance on the C. elegans data
under different levels of occlusion. We see that when r is chosen too small, regular-
ization is not enough to significantly change the learned embedding. Similarly, when
r is chosen too large, regularization overpowers the signal present in the occluded
matrix. However, with the C. elegans data, we see that there exists a level (r ~ 0.01)
at which regularization greatly improves ARI, even when only half of the edges of the
graph are known. We note that embeddings produced by the regularization procedure
described in |Qin and Rohe (2013) resulted in nearly identical performance.

The performance seen here is especially exciting from the neuroscience standpoint—

these results suggest that we can recover structural and functional information in

86

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

p=0.5 p=0.75 p=1

0.20 0.20- 0.20
_ 015 r 0 _0.15- r 0 _0.15 - r 0
o [ia T
To.10 /\ =001 Zodo- /\ s001 Zoo \\ >001

0.05 X 1 0.05- 1 0.05 1

b) =S —_—
0.00 - 0.00- ~o— 0.00
i 10, 100 i 10, 100 i 10, i
Target dimension Target dimension Target dimension

Figure 3.8: Adjusted Rand index (ARI) on the C. elegans data set for different
levels of regularization as a function of dimension at different values of p, the expected
fraction of observed entries. Each data point is the mean of 50 independent trials.
We see that regularization enables us to accurately cluster the neurons even when
much of the structure of the brain graph is occluded, with performance consistently
superior to that obtained without regularization.

connectome data even when accurate assessment of all possible neural connections
is impossible. We note the similarity of this phenomenon to that explored in |[Priebe
et al. (2014), where the authors considered graph inference in the setting where one
can trade the accuracy of edge assessment against the number of edges assessed. Of
course, the usefulness of this result requires that can determine an appropriate value
for r for a given data set, a problem that we leave for future work.

We close by illustrating conditions under which regularization does not appear to
be a benefit. One would think, initially, and especially given the improvement seen
in the C. elegans data, that regularization would yield similar gains in our speech
task. Fig. 3.9 shows how regularization influences downstream performance on the
speech task. We see that regularization does not appear to confer the benefit seen
in the C. elegans data. Crucially, however, moderate amounts of regularization do
not appear have any adverse effects on average precision. One possible explanation

for this phenomenon comes from the fact that the kernel bandwidth used in Levin

et al.| (2013]) was chosen so as to give the best possible average precision on precisely

87

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the task we are using for evaluation. That is, since the kernel bandwidth has already
been tuned so as to yield high-quality embeddings, regularization can do little to
improve the embeddings. But this explanation does not account for the fact that
regularization does not appear to confer any protection against occlusion and noise
in the kernel matrix. It is possible that the speech data set is such that the kernel
matrix is sparse enough that regularization does nothing to pull us toward a better

embedding. We leave further exploration of this phenomenon to future work.

Average precision
g pO o
o —_ —_
(@)] o [6)]
-
o
ge precision
o =]
(@) —_ —_
. o Q il
-
o

~1e-06 ~1e-06
~1e-04 ~1e-04
0.01 3o. 0.01
9
0.00+ : ; , <0.00 i ,
10 100 1000 10 100 1000
Target dimension Target dimension
(a) (b)

o
—_
(6)]

Average precision
1ge pre
(@] —_
(6)] o
-
o

é;e precision

=] =]

(@) — —

. o ot ol
-
o

~1e-06 ~1e-06
~1e-04 ~1e-04
0.01 0. 0.01
2
0.00- - ; : <0.00 , :
10 100 1000 10 100 1000
Target dimension Target dimension
() (d)

Figure 3.9: Average precision on the speech data set as a function of embedding
dimension for different levels of regularization under varying amounts of noise and
occlusion: (a) a = 10,p = 0.7, (b) @« = 10,p = 1.0, (¢) « = 100,p = 0.7, (d)
a = 100,p = 1.0. Each data point is the mean of 10 independent trials. We see that
while regularization does not provide the stunning improvement that it does on the
C. elegans graph, moderate regularization at least does not noticeably harm average
precision.

88

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

3.5 Discussion

We have presented an analysis of the concentration of the graph Laplacian of
certain kernel matrices under occlusion and noise. Crucial to our bound was the
presence of a certain structure in the kernel matrix that ensures concentration of the
row-sums. Experiments on both synthetic and real data show that a concentration
phenomenon similar to that predicted by the theory is present, and has effects both
on performance in downstream tasks and on the model selection problem. We close

by briefly mentioning some directions for future work.

3.5.1 Adaptive Techniques

The regularization used here was applied uniformly to every vertex of the graph,
but regularization is only required to control the high variance associated with small-
degree nodes. In light of this, one might consider regularization techniques that apply
only to nodes that require it. It is unclear a priori whether such an approach would be
advantageous, since regularization does little to change the behavior of high-degree
nodes. However, it stands to reason that a well-designed adaptive technique might
enable convergence of the regularized estimate to the true expected graph, rather than
to its regularized counterpart as in the current work. For example, if only a small
fraction of the nodes in a given graph require regularization, then the Frobenius error

between the regularized and non-regularized Laplacians can still go to zero even if r

89

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

goes to zero slowly.
In a similar vein, it stands to reason that a technique that evaluates entries of the
kernel matrix adaptively rather than the edge-independent occlusion model considered

here might achieve more accurate recovery of the clean embeddings.

3.5.2 Other Error Models

The noise model we have considered is additive, unbiased and entry-wise inde-
pendent. As discussed in Section , our results can be (approximately) extended
to multiplicative, biased noise models, at least for certain kernels. However, the con-
centration bounds we have used require a certain independence structure. As such,
it seems likely that novel techniques will be required to handle entry-wise dependent
noise and occlusion in the kernel matrix. For example, the techniques in |O’Rourke
et al.| (2016b)) might be brought to bear, except that they require structural assump-

tions on % that seem unlikely to hold for a non-linear kernel function.

3.5.3 Graph Construction

We have largely ignored the problem of constructing the k-NN or e-graph, the
first step in Laplacian eigenmaps and spectral clustering. Rather than using either
of these constructions, we have relied on the fact that the kernel matrix can be made

to resemble these graphs by using, for example, a Gaussian kernel. We believe that

90

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the our analysis can be extended to many of these constructions simply by taking

advantage of this resemblance. We leave this extension for future work.

3.5.4 Other Dimensionality Reduction Techniques

To what extent are different embedding techniques robust to uncertainty in simi-
larity measures (as opposed to errors on the observations themselves)? To the best of
our knowledge, MDS and Laplacian eigenmaps remain the only techniques for which
such questions have been explored. We believe that analyses similar to that pursued
in the current work should apply to other dimensionality reduction techniques. In-
deed, given the results in [Yan et al.| (2007)), it would be a surprise to learn that no
such general result is possible.

As alluded to in Section [3.2] a natural approach to the problem considered in this
paper would be to apply Chatterjee’s universal singular value thresholding (USVT;
Chatterjee 2015)) to the occluded, noisy kernel matrix Y (or, in the case where k(z,y)
is a function of d(z, y), to transform Y into an occluded matrix of distances D, impute
the missing entries of D using USVT, and reapply the kernel function to obtain an
estimate of #). Applying USVT in this manner to the speech task considered in
Section yields results essentially identical to those reported using Y alone at
all noise and occlusion rates. Indeed, USVT performed remarkably similarly to our
method on all three data sets, a fact that warrants further exploration.

Some well-known dimensionality reduction techniques can be adapted fairly easily

91

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

to the model in Equation by using Chatterjee’s USVT to impute the missing
entries of Y and proceeding apace. In an experimental setup identical to the synthetic
high-dimensional swiss roll experiments presented in Section we explored the
effect of noise and occlusion on both MDS and kernel PCA (KPCA). We found
that neither of these methods compared favorably to the results seen for Laplacian
eigenmaps. While direct comparison of the relative errors for these three different
methods is not possible (e.g., embeddings produced by MDS are not constrained in the
same way that Laplacian eigenmaps embeddings are), from a qualitative standpoint,
MDS and KPCA both degraded much more severely in the presence of noise and
occlusion when compared with Fig. . While a direct comparison (experimental or
otherwise) of Laplacian eigenmaps with other dimensionality reduction techniques is
not the focus of this paper, a more thorough exploration of how different methods
fare in the presence of noise and occlusion (and how those methods might be adapted

to lessen the impact of uncertainty) warrants additional work in the future.

3.6 Proof details

In what follows, we suppress dependence on n for ease of notation. We remind
the reader that all quantities involved, including the parameters r and p all implicitly
depend on n. We let Y =Y +rJ denote the regularized version of matrix Y, and

define D to be the corresponding degree matrix, so that lA)“ =nr+ 2?21 Yi;. Denote

92

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the regularized version of p. %" by H = pX +rJ, with 9 the corresponding degree
matrix, .@“ =nr+ 2?21 ;.

Throughout, C' > 0 denotes a constant (independent of n), which may change
from line to line or from one lemma to another. [and 7 denote quantities (both
depending on n) that will control convergence of the node degrees and the Frobenius
norm in Theorem [3], respectively. We will see that the constraints on /5 and v required
for our concentration bounds are such that when we plug in v = C'n=1/?p~1 logl/ ’n
and 8 = C"n~Y/2r=1/210g"/% i for suitably chosen constants C’,C” > 0, we obtain
the bound claimed in Theorem 3, We will require that 5 — 0 as n — oo, i.e., that
r=w(n logn).

We first establish that with high probability, the row sums of Y concentrate about

their expected value.

Lemma 2. Suppose that there exists constant c; > 0 such that for all suitably large

n we have

B%r - logn

1+5 ~ n (3.6)

Then for all suitably large n, with probability at least n'=“, it holds for all i € [n]

that |ij — @ZZ| < ﬁ@u

Proof. Fix i € [n]|. By definition,

ﬁii—-@ii:Z(Y;j‘i‘T) (pti; +1) = ZK; P,

j=1

93

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and EY;; = p.%;;. By a standard Chernoff-style bound (Chung and Lu [2006),

- ~ 38292
Pr ||D;; — 2y Zﬁ@u‘] < QGXP{%}a
+ i

where V' = 37" | EY;;. Since

V= zn:pEKfj szn:%j < Du,
=1

Jj=1

we have

—~ —~ —~ — 2 ~
Pr [‘Du — Dyl > B-@u] < 2exp {%@n} ,

where C' > 0 is a constant. Since Z;; > nr by virtue of regularization, our assumption

in (3.6)) ensures that

Pr |ﬁu — §M| > Bém] <n .
Applying the union bound over all i € [n] yields the result. O

Lemma 3. Suppose that v depends on n in such a way that there exist constants

C",C" > 0 so that for suitably large n,

16 16
2
C/'y Z n2r3 ﬁ (37)
and
log'/?n
v>C" —ja (3.8)

94

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Then there exists a constant co > 0 such that with probability at least 1 — n=%, we

have

Sy TE AR

22 52
i=1 k=1 ‘@ii‘@kk

where C' > 0 is a constant.

Proof. For ease of notation, define

~ —~\ 2
(V2 -2

)

Xik - /\2 A2

We will bound Pr [sz Xik =B, Xiw > 72} and show E)", | Xj < C'+*, imply-
ing that Pr [sz Xip > C'yz] .

A standard Chernoff-style bound lets us write

_374
P X >4+ R Xip| < —————— (s
flzk; B2 Zk: ’“] _eXp{6V+272M}

where A
B R gt
" s

ik

and M = max {1/(.@5.@,@6) i,k € [n}} :

Bounding V < n~ %% and M < (nr)™,

—3(ynr)?
P Xip > LR Xl < ,
r[zk: e Zk: k]_eXp{W?r—H?vQ

95

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and using our assumption in (3.8)) to lower bound the denominator inside the exponent

by Q(nv?), we can guarantee the existence of a constant ¢, > 0 such that

Pr ZXik > 5 +EZXik] <n-
ik ik

It remains for us to show that EZM X, < C'y2. We have

Z '2% (3.9)

where we have used the fact that (a +b)? < 2a? 4 2b? for all a,b € R. Since @” >nr

for all i € [n], we have

1 1
25 < an Zl S (3.10)

Noting that EK}, < EKj, = J and applying (3.10]), we have

EK} = 1
ZZ PERik Z Sontrs = <=3 (3.11)

272
zlkl‘@‘@

Recalling that Hy = p K-+ by definition and applying the definition of 7, (3.10)

96

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

implies

272
n2r

=1 ” i=1 k=1
8p? 8
23 T 2
n2r n

Combining this with (3.9)) and (3.11)) and applying (3.7)) completes the proof. O]

Lemma 4. Under the same conditions as Lemma [, and assuming there exists a

constant C' > 0 such that
2
b (3.12)

Cy* > —,
nr

with probability at least n*=°', we have

S35 TG
i1 D2 Dk D N

Proof. Observing that }Aﬁk + L}Zf; <1l+p+2r

(Vi — D) (Vi — A7)
ZZZ -@ngk-@ze

i=1 k=1 (=1
Ji/g)

1—|—p+2r ZZZ @

2,2
nsr
1=1 k=1 (=1

)

By Lemma |2, with probability at least 1 — n'~¢ it holds for all i € [n] that

n

> Vi — Ha

k=1

< 5@%,

97

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and hence, since p,r € [0, 1] and D, > nr,

~ (Vi —) (Vi) — Hi})

2
_ 168

@%@kkéa
Our assumption in (3.12)) yields the desired result.

Lemma 5.

Z p Ji/k%/k%/é%e
Qngj]-@kkgfﬁ

i,5,k,0

Proof. Using the following facts:

(i) Dy > rnfor all i € [n],

(i) A € [0,1] for all 4,5 € [n],
(iii) S, pHix < Dy for all i € [n],

we have
Z p %k%k%/e%e
@'L'L-@]j-@kk@M

| /\

1,7,k,0 1,5,k

| /\

Lemma 6. For ease of notation, let

s Yo = A) (Y
ijkt =

2 Z P2 K,
W= 5.5 e

p L 2 A
TZTZ

<
gk @zz-@kk

— nr?’

Z

=

p
.

}//\;‘Z — K Hj)

2:9; D D

98

(3.13)

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

and define T = {(i,j,k,) : i,7,k, ¢ € [n] distinct.}. There exists a constant C > 0

such that

(Z7]7k7€)6T

Proof. Since i, j, k, ¢ are distinct for each (i,7,k,¢) € T,

Val"Xijkg =]EXz?jké

2

A~ A~ —~ —~2 S S yrayre
= d; [ijk - ji/zk%k} E [Yijé - %N@] 7

where d;jre = .@ii.@jj.@kk.@w. Expanding }A/;k =Y +r and Jz/,\k = p K, + r and using
linearity of expectation, we have
~ o~ 72
E |k — Han)
=E|[YiYj — p° Hin K

+r (Y — pHig) + (Y, — p%k)f

= Var Y. Y,

+ r(r + 2p#) Var Vi, + r(r + 2p2,) Var Y.

For ease of notation, define
Qijie = P* Hig Ky, +1(r + 2p)pHig +1(r + 2p)p K.

The Bhatia-Davis inequality (Bhatia and Davis 2000) states that if a random variable

99

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Z satisfies Prim < Z < M| =1, then Var Z < (EZ —m)(M —EZ). Since J;, € [0, 1]

for all i, k € [n], we have Var Y, Y}, < p® ¥ %), and Var Yy, < p#, and hence
~ ~ 12
E [Y;ky}k — K K| < Qiji-
Combining this with (3.13]), we have
Var X < d;jngiijijé-

Summing, we have

Z Var Xijre < Z di_jizQiijijf

(4,5,k,€) €T (i,4,k£) €T
= N A A K
(i,3,k,L)€T
+4 Z d;jiﬁr(r + 2p)p3,}i/ikj£§k,)£§4
(3,9,k)T
+2 Z d;jierz(r + 2p)*p* Hip K
(1,4, 0)ET
+2) dgrt(r + 2p) 0P A A
(i’j»kl)ET
D (r 4+ 2p) (r + 2p)?
< A +4 A +4 A

where we have used .@n > nr along with Lemma |5 to bound the first sum after the

equality, and the other sums are bounded using reasoning nearly identical to that in

100

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

the proof of Lemma 5| The result then follows from r,p € [0, 1]. O

Lemma 7. There exists a constant C > 0 such that

C
Z Cov (Xijke, Xirwjror) < A
{(i,g.he,0), (0057 k) ()

Proof. Recall that

(f/m?gk — %kt%/]k)(ﬁé?;é — Ky H)
29D Dk D

Xijre =

Consider first the situation where (a, b, ¢, d) is a permutation of (i, j, k, ¢). Call this
permutation ¢ € S4. o is not the identity permutation, but ¢ may be such that
Xijke = Xapea @s happens when, for example, i = a,j = b,k = d,{ = c. By symmetry,
it suffices to consider three cases. Case 1: {i,j} = {a,b}. In this case, we can

assume without loss of generality (by symmetry) that i =b, j =a, k =d and ¢ = ¢,

so that L PR P
E |(YieYjr — K i) (YieYje — %@%z)z]
EXijreXaped = e
2:9; %%
_ Var ?zk?}k Var ﬁe?}e < (14 r)* K K HonH e
;95 %0%, D393 P iy

where the last inequality follows from the Bhatia-Davis inequality and the fact that
0< Vi <147

Case 2: {i,j} = {a,c}. Without loss of generality, assume that i = a, j = ¢,

101

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

k=0band ¢ =d. We have

%%%@@ Var }Afjk Var ?Z-g
2:9:24. %,
(1 + 12 Ko Koy Ko Ko
DED?. D DY,

2 27

]EXijkéXabcd =

<

where the inequality follows from the Bhatia-Davis inequality and the fact that J@ <
147
Case 3: {i,j} = {c¢,d}. Without loss of generality, assume that i = ¢, j = d,

k=aand ¢ =b. Then

EXijkEXabcd
_ Eﬁk%f(i}]k + 2‘5)2 — Hp Ho(Kk + Hip)?
D395 P40
%%@ (Var }/;;k + Var }/;;g>

Letting (¢, j,k,¢) ~ (a,b,c,d) denote the fact that (a,b,c,d) is a permutation of

102

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

(1,7, k,), we can bound the sum of the covariances under consideration by

Z Z Cov (Xz'jke, Xabcd)

(27.]7167[) ET (a?b’c’d)N(z’y’k’Z)

<20(1 4+ Y Lt sy
“= D252 2 2
i,5,k,0 W57 k/k\ g/g\ N (314)
+ 20(1 + T) Z %
wiwoer ZiZii%m i

C(1+r)°+2C(0 +r)
n4ro

<

Y

Now, consider the situation where (i, 7, k,) is not a permutation of (a,b,c,d).
Clearly, if {7, 7, k, €}N{a, b, ¢, d} = 0, then Cov(X;jke, Xavea) = 0. Indeed, Cov(Xijke, Xaped) F
0 requires that each term of the form (ﬁk?jk - L%//;Q%//j\k) be dependent on one of the
other three such terms in Xj;uXgpeq, since otherwise a term of the form]E(?;k)//\;k —
j/;cj/]\k) factors out and the covariance is zero. Indeed, only one other choice (up
to permutations of the indices) of (i,7,k,¢) and (a,b,c,d) gives rise to a non-zero
covariance, namely EX;;i Xipre. By symmetry, to handle the terms of this form, it

will suffice for us to bound

Z Z Cov(Xijre, Xivke)-

(/[’7.].7k77£)€T bg{ih]?k?‘e}

Using the fact that Var 2k < Ji//z; by the Bhatia-Davis inequality, and applying

103

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

reasoning similar to that in Lemma [5]

Z Z Cov(Xijke, Xivke)

(i,j,k,0)ET b {ij ke, 0}

Z Z Jf/k bk%e%evar?ikvarﬁz

202 52 ..
(4,5,k,0) €T b{i,j,k,l} ‘@ ‘@ ‘@%‘@jj‘@bb

Z Z H 1ok K 0 K0 K Kot
= 2252 2.
(i,5,k,0)€T b {i,j,k,0} i D125 Db

_ (g 3 K _ (1L+7)*

- 4 S22 = 3.4
nr n3r
() i,4,k€[n] distinct 9 kk

Combining this with (3.14) and noting that » > n~! implies (n3r%)~!

we have our result.

2 (n47“5)_1

Y

[]

Lemma 8. Let T' = {(i,j,k,0) : i,j,k, ¢ € [n] distinct.}. For each (i,j,k,0) € T

define variable

YirYie — Hnn) (YieY %M@

Xijke =
’ gzzgjjgkkgﬁ

There exist constants C,C, > 0 such that with probability at least 1 — C,(

5 (V¥ %ﬁm Yie — HieHr)
@ =

(3,5,k,£)ET '@

Proof. By Chebyshev’s inequality,

Pr Z Xijke > Cy*| <

Vary i ner Xijhe

02,}/4

(Z7j7k7£)€T

104

v

(3.15)

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

We have

Var Z Xijke

(Z7j7k7[)€T

= Z Var XijM

(3,5,kL)ET

-+ Z Cov (Xijkﬁa Xi’k’j’ﬁ’) .
{(i7j7k7e)7(i/7j/7k/’£l)}€(’12_v)

Lemma [6] bounds the first of these two sums by

!

C
Var X,y < ——,
Z ikt = 4.5

(3,7,k L) ET

where C’ > 0 is a constant, and Lemma [7| ensures that

C//
Z Cov (Xije, X) < i
{(iﬂj’k’e)’(/[:,’j,’k/7€/)}€(72—‘)

for some constant C” > 0. Since (n?r®)~! < (n®r*)~! for r > 1/n, we have

C/ + C’//
2
Pr Z Xijre > Cy| < W'
(3,,k)T
Choosing C,, = (C" 4+ C")/C yields the result. O

Lemma 9. Under the conditions of the above lemmata, there exist constants c¢,C' > 0

C

such that for all suitably large n, with probability at least 1 — 3n~¢, we have

ILL — (72Y §72)2||p < C.

105

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Proof. Expanding the sum and recalling our earlier definition of T' = {(i,j, k,{) :

i,7,k, 0 € [n] distinct.}, we have

|LZL — (77V2Y 912)2|I2
(VY = Ko Hp) VieVy = Han)

ijkz @n@jj@kkgﬂf
i=1 k#i ‘@292
(V2 — A (V3 — A7)
" (A Z 1.
zzl kzﬂ ;Z -@29%.%@
i Z Yie — %ka%?k)(yw?jﬁ — Jz/z\ea%//]\z)
(i, J k)T 2:iDj Dok Due

Each of these three summations is bounded (with high probability) by Cv? by Lem-
mata [3, [4 and [§] respectively. Let constants ¢y, ca > 0 be as defined in Lemma [2] and
Lemma [3| respectively, and choose ¢3 > 0 so that C.(y*n®r?)™t < n=% for suitably
large n, where C, is as defined in Lemma . By the union bound, with probability

at least 1 — (n'~ +n~%2 4 n~) all three sums are bounded at once, and the result

follows by taking ¢ = min{c; — 1, ¢3, 3}, O

Lemma 10. Suppose that 8 — 0 as n — oco. Under the conditions of Lemma [3,

C1

there exists a constant C' > 0 such that with probability at least 1 — n'=,

ILL — (27V*Y 27V2?||p < e’

ri/e’

106

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

Proof. Under the conditions of Lemma , with probability at least 1 — n'= it holds
for all i € [n] that \.@“ — > ﬁk\ < 5.@“ It follows that for a suitably chosen

constant C" > 0, for all 7, j, k € [n] we have

: ! os (3.16)
DD D 99 o0 |~ 95 o '

To see why this is the case (here we are following the argument motivating Equation

A.6 in Rohe et al| (2011a)), note that when |Z;; — Py Yir| < BDy; for all i € [n],

we have
92D~ D*D}*Du ~ 2> Do,

and Equation follows, since — 0 as n — oo, and thus

- 5_2_1 _5_1_1 "
A+B)"2 e =g 219
(1-p)72= 1+5_12_1+ (5_11_ e <1+C"B.

Using (3.16)), we have

~

Y YieYieYie

ILL — (27V2Y g 22|12 < orp? N S
it Li2ii Dk D

Under the same event, we have »), Yi, < (1+ 6)_@“ for all ¢ € [n], and making

107

CHAPTER 3. LAPLACIAN EIGENMAPS UNDER NOISE AND OCCLUSION

~

repeated use of this and the facts that Y, < (1+r), and @u > nr, it follows that

A~

BN VY YV,
ZZW@ oy

_ BN+

o T
The result follows since r and § are bounded above by 1. m

To obtain our result in Theorem, take v = C'n Y2 log? nand 8 = C"n /22 10g % n
for suitably large constants C’, C” > 0. Note first that these choices of v and 3 satisfy
all of the constraints of the lemmata required for Lemma@ solongasr = w(n~tlogn).
Further, note that 8/r'/? = Cy for some constant C' > 0, and hence Lemma [10] im-
plies that | LL—(2~Y2Y 2-1/2)2||p < Cy with high probability. Combining Lemma@

and Lemma [I0] and applying the triangle inequality then yields Theorem [3|

108

Chapter 4

Vertex Nomination

In this chapter, we consider a different approach to search problems of the type
discussed in Chapter [2. We have seen that the search collection can be represented as
a complete weighted graph G = (V| E) with weights given by similarity scores x(z,y)
for all x,y € V. In standard approaches to search, given a query ¢, we simply wish
to find the elements z € V for which the similarity x(q,z) is largest. However, this
approach fails to take into account all of the information present in graph GG. Rather
than looking merely at x(q, z) for all z € V', we wish to perform a search that takes
into account all similarities {x(z,y) : x,y € VU{q}}. This task of finding the vertices
that are topologically most similar to q is the vertex nomination problem.

Given a graph in which a few vertices are deemed interesting a priori, the vertex
nomination task (Coppersmith/2014)) is to order the remaining vertices into a nomi-

nation list such that there is a concentration of interesting vertices at the top of the

109

CHAPTER 4. VERTEX NOMINATION

list (see Appendix [E] for a review of the literature on the vertex nomination prob-
lem and related work). Below, we prove that maximum-likelihood (ML)-based vertex
nomination is consistent in the sense that the performance of the ML-based scheme
asymptotically matches that of the Bayes optimal scheme. We prove theorems of this
form both when model parameters are known and when they are unknown. Addition-
ally, we introduce and prove consistency of a related, more scalable restricted-focus
ML vertex nomination scheme. Finally, we incorporate vertex and edge features into
ML-based vertex nomination and briefly explore the empirical effectiveness of this
approach.

This chapter considers the vertex nomination problem as applied to random simple
graphs. In Chapter 5], we will see how to generalize the results to a problem that arises
in the context of similarity search and reranking problems. The material presented

in this chapter appeared originally in slightly altered form in |Lyzinski et al.| (2016b).

4.1 Introduction and Background

Graphs are a common data modality, useful for modeling complex relationships
between objects, with applications spanning fields as varied as biology (Jeong et al.
2001; Bullmore and Sporns|2009)), sociology (Wasserman and Faust||1994), and com-
puter vision (Foggia et al.2014; [Kandel et al. 2007)), to name a few. For example,

in neuroscience, vertices may be neurons and edges adjoin pairs of neurons that

110

CHAPTER 4. VERTEX NOMINATION

share a synapse (Bullmore and Sporns [2009); in social networks, vertices may cor-
respond to people and edges to friendships between them (Carrington et al.[2005;
Yang and Leskovec|2015)); in computer vision, vertices may represent pixels in an im-
age and edges may represent spatial proximity or multi-resolution mappings (Kandel
et al.[[2007). In many useful networks, vertices with similar attributes form densely-
connected communities compared to vertices with highly disparate attributes, and
uncovering these communities is an important step in understanding the structure of
the network. There is an extensive literature devoted to uncovering this community
structure in network data, including methods based on maximum modularity (New-
man and Girvan|2004; Newman|2006b)), spectral partitioning algorithms (von Luxburg
2007; [Rohe et al.[2011bj [Sussman et al.||2012; [Lyzinski et al|[2014b), and likelihood-
based methods (Bickel and Chen 2009), among others.

In the setting of vertex nomination, one community in the network is of particular
interest, and the inference task is to order the vertices into a nomination list with
those vertices from the community of interest concentrating at the top of the list. Re-
fer to Appendix [E] for a more thorough discussion of the vertex nomination problem.
Vertex nomination is a semi-supervised inference task, with example vertices from
the community of interest—and, ideally, also examples not from the community of
interest—being leveraged in order to create a nomination list. In this way, the vertex
nomination problem is similar to the problem faced by personalized recommender

systems (see, for example, Resnick and Varian/|1997}; Ricci et al. 2011)), where, given

111

CHAPTER 4. VERTEX NOMINATION

a training list of objects of interest, the goal is to arrange the remaining objects into
a recommendation list with “interesting” objects concentrated at the top of the list.
The main difference between the two inference tasks is that in vertex nomination the
features of the data are encoded into the topology of a network, rather than being
observed directly as features (though see Section |4.5|for the case where vertices are an-
notated with additional information in the form of features). A more thorough review
of the vertex nomination literature and related work can be found in Appendix [E]

In this chapter, we prove that the maximume-likelihood vertex nomination scheme
of [Fishkind et al.| (2015)) is consistent (see Definition [2) under mild model assumptions
on the underlying stochastic block model (Theorem . In the process, we propose a
new, efficiently exactly solvable likelihood-based nomination scheme, the restricted-
focus maximum-likelihood vertex-nomination scheme, LY and prove the analogous
consistency result (Theorem [5)). In addition, under mild model assumptions, we
prove that both schemes maintain their consistency when the stochastic block model
parameters are unknown and are estimated using the seed vertices (Theorems |§| and
. In both cases, we show that consistency is possible even when the seeds are an
asymptotically vanishing portion of the graph. Lastly, we show how both schemes can
be easily modified to incorporate edge weights and vertex features (Section, before
demonstrating the practical effect of our theoretical results on real and synthetic data
(Section and closing with a brief discussion (Section [4.7).

Before proceeding, we establish notation for this chapter and its sequel, in which

112

CHAPTER 4. VERTEX NOMINATION

we will use many of the ideas developed here. We say that a sequence of random

variables (X,,)2°; converges almost surely to random variable X, written X,, — X

oo

o0, occurs almost

a.s., if Pllim, ., X,, = X] = 1. We say a sequence of events (A,,)

always almost surely (abbreviated a.a.a.s.) if with probability 1, AS occurs for at

[e's)
n=1

most finitely many n. By the Borel-Cantelli lemma, Y >° | P[AS] < oo implies (A,,)
a.a.a.s. We write G, to denote the set of all (possibly weighted) graphs on n vertices.
Throughout, without loss of generality, we will assume that the vertex set is given by
V =1{1,2,...,n}. For a positive integer K, we will often use [K] to denote the set
{1,2,...,K}. For aset V, we will use (‘2/) to denote the set of all pairs of distinct
elements of V. That is, (‘2/) = {{u,v} : u,v € V,u # v}. For a function f with

domain V', we write f},, to denote the restriction of f to the set U C V.

4.1.1 Background

Stochastic block model (SBM; Holland et al.||1983) random graphs offer a theoret-
ically tractable model for graphs with latent community structure (Rohe et al.|2011b;
Sussman et al.[|2012; Bickel and Chenl2009), and have been widely used in the litera-
ture to model community structure in real networks (Airoldi et al.|[2008; Karrer and
Newman|[2011)). While stochastic block models can be too simplistic to capture the

eccentricities of many real graphs, they have proven to be a useful, tractable surrogate

for more complicated networks (Airoldi et al.|[2013; |Olhede and Wolfe 2014)).

Definition 1. Let K and n be positive integers and let i = (ny,ny,...,ng) €

113

CHAPTER 4. VERTEX NOMINATION

REX be a vector of positive integers with >, n, = n. Let b : [n] = [K] and let
A € [0, 115K be symmetric. A G,-valued random graph G is an instantiation of a

(K, i, b,\) conditional Stochastic Block Model, written G ~ SBM(K,7,b,A), if

i. The vertex set V' is partitioned into K blocks, Vi, Vs, ..., Vi of cardinalities

Vil =ng fork=1,2,... K;

ii. The block membership function b : V. — [K] is such that for each v € V,

v e %(v) ;

iti. The symmetric block communication matriz A € [0, 1]5*E is such that for each
{v,u} € (‘2/), there is an edge between vertices u and v with probability Ape)),

independently of all other edges.

Without loss of generality, let V; be the block of interest for vertex nomination.
For each k € [K], we further decompose Vj, into Vi, = S, UUy (with | S| = my), where
the vertices in S := U.S, have their block membership observed a priori. We call the
vertices in S seed vertices, and let m = |S|. We will denote the set of nonseed vertices
by U = UgUy, and for all k € [K], let ug := ng — my, = |Ux| and n —m = u = |U]|.
Throughout this chapter, we assume that the seed vertices S are chosen uniformly
at random from all possible subsets of V' of size m. The task in vertex nomination
is to leverage the information contained in the seed vertices to produce a nomination
list £L:U — [u] (i.e., an ordering of the vertices in U) such that the vertices in U;

concentrate at the top of the list. We note that, strictly speaking, a nomination list

114

CHAPTER 4. VERTEX NOMINATION

Z is also a function of the observed graph G, a fact that we suppress for ease of

notation. We measure the efficacy of a nomination scheme via average precision

251

ap(e) = L 3n DML G €U}

- Z (4.1)

i=1

AP ranges from 0 to 1, with a higher value indicating a more effective nomination
scheme: indeed, AP(L) = 1 indicates that the first u; vertices in the nomination
list are all from the block of interest, and AP(.Z) = 0 indicates that none of the uy
top-ranked vertices are from the block of interest. Letting Hy = Z?Zl 1/j denote the
k-th harmonic number, with the convention that Hy = 0, we can rearrange (4.1)) as

ap(e) = e oy ey,

u
i=1 1

from which we see that the average precision is simply a convex combination of the
indicators of correctness in the rank list, in which correctly placing an interesting
vertex higher in the nomination list (i.e., with rank close to 1) is rewarded more than
correctly placing an interesting vertex lower in the nomination list.

In |Fishkind et al.| (2015)), three vertex nomination schemes were presented in the
context of stochastic block model random graphs: the canonical vertex nomination
scheme, L€, which is suitable for small graphs (tens of vertices); the maximum-
likelihood vertex-nomination scheme, £ME| which is suitable for small to medium

graphs (up to thousands of vertices); and the spectral partitioning vertex nomination

115

CHAPTER 4. VERTEX NOMINATION

scheme, £5F, which is suitable for medium to very large graphs (up to tens of millions
of vertices). In the stochastic block model setting, the canonical vertex nomination
scheme is provably optimal: under mild model assumptions, E AP(L®) > EAP(L)
for any vertex nomination scheme £ (Fishkind et al.|2015), where the expectation is
with respect to a G, ,-valued random graph GG and the selection of the seed vertices.
Thus, the canonical method is the vertex nomination analogue of the Bayes classifier,

and this motivates the following definition:

Definition 2. Let G ~ SBM(K, 1, b, A). With notation as above, a vertex nomination

scheme L is consistent if

lim |[EAP(LY) —EAP(L)| = 0.

n—o0

In our proofs below, where we establish the consistency of two nomination schemes,
we prove a stronger fact, namely that AP(.Z) = 1 a.a.a.s. We prefer the definition of
consistency given in Definition [2| since it allows us to speak about the best possible
nomination scheme even when the model is such that lim,,_,. E AP(EC) < 1.

In Fishkind et al| (2015), it was proven that under mild assumptions on the
stochastic block model underlying G, we have

lim EAP(L) =1,

n—0o0

from which the consistency of £57 follows immediately. The spectral nomination

116

CHAPTER 4. VERTEX NOMINATION

scheme £57 proceeds by first K-means clustering the adjacency spectral embedding
(Sussman et al|[2012) of G, and then nominating vertices based on their distance
to the cluster of interest. Consistency of £5F is an immediate consequence of the
fact that, under mild model assumptions on the underlying stochastic block model,
K-means clustering of the adjacency spectral embedding of G perfectly clusters the
vertices of G a.a.a.s. (Lyzinski et al.[2014b)).

Bickel and Chen (2009) proved that maximum-likelihood estimation provides con-
sistent estimates of the model parameters in a more common variant of the conditional
stochastic block model of Definition [I} namely, in the stochastic block model with

random block assignments:

Definition 3. Let K,n and A be as above. Let T = m,mo, ..., 7)) € AKX be a
probability vector over K outcomes and let T : V. — [K] be a random function. A
Gy -valued random graph G is an instantiation of a (K, 7, T, \) Stochastic Block Model

with random block assignments, written G ~ SBM(K, 7,1, A), if

i. For each vertex v € V and block k € [K], independently of all other vertices,
the block assignment function 7 : V — [K] assigns v to block k with probability

T (i.e., Pt(v) = k| = m);

KxK s such that, condi-

ii. The symmetric block communication matriz A € [0, 1]
tioned on T, for each {v,u} € (‘2/) there is an edge between vertices u and v with

probability ;)), independently of all other edges.

117

CHAPTER 4. VERTEX NOMINATION

A consequence of the result of Bickel and Chen (2009) is that the ML estimate of
the block assignment function perfectly clusters the vertices a.a.a.s. in the setting
where G ~ SBM(K, 7, 7,A). This bears noting, as our maximum-likelihood vertex-
nomination schemes LMY and LYV (defined below in Section proceed by first
constructing a maximume-likelihood estimate of the block membership function b,
then ranking vertices based on a measure of model misspecification. Extending the
results from Bickel and Chen| (2009) to our present framework—where we consider A
and 77 to be known (or errorfully estimated via seeded vertices) rather than parameters
to be optimized over in the likelihood function as done in Bickel and Chen| (2009)—is
not immediate.

We note the recent result by [Newman| (2016]), which shows the equivalence of
maximum-likelihood and maximum-modularity methods in a special case of the stochas-
tic block model when A is known. Our results, along with this recent result, immedi-
ately imply a consistent maximum-modularity-based vertex-nomination scheme under

that special-case model.

4.2 Graph Matching and Maximum Like-

lihood Estimation

Consider G ~ SBM(K, 7, b, A) with associated adjacency matrix A, and, as above,

denote the set of seed vertices by S = UpSk. Define the set of feasible block assignment

118

CHAPTER 4. VERTEX NOMINATION

functions

B = B(#,b, S)

={¢:V — [K] s.t. for all k € [K], |¢"' (k)| = ng, and ¢(i) = b(i) for all i € S}.

The ML estimator of b € B is any member of the set of functions

b= AL —A =i
b=argmax [A%, 50)60))

igte(y)

Ay
Z Az] log (1 _bAld)(j))

(i,5)eSxU

(4.2)

where the second equality follows from independence of the edges and splitting the
edges in the sum according to whether or not they are incident to a seed vertex. We
can reformulate (4.2)) as a graph matching problem by identifying ¢ with a permuta-

tion matrix P:

Definition 4. Let G and G5 be two n-vertex graphs with respective adjacency ma-

trices A and B. The Graph Matching Problem for aligning G1 and G4 is

min ||[AP — PB]||r,
Pell,

119

CHAPTER 4. VERTEX NOMINATION

where 11, is defined to be the set of all n x n permutation matrices.

The graph matching problem and its relation to vertex nomination is discussed

in Appendix [E] and we refer the reader there for further details. Incorporating seed

vertices (i.e., vertices whose correspondence across G and G is known a priori) into

the graph matching problem is immediate (Fishkind et al. 2012)). Letting the seed

vertices be (without loss of generality) S = {1,2,...,m} in both graphs, the seeded

graph matching (SGM) problem is

min [|A(Ty, ® P) = (In ® P)Bl|.,

where

I, O
I, ®P =

0 P

Setting B € R™" to be the log-odds matrix

As(i)b(5)
Bi, = log [——t@)
I (1 = Mogiy i)

(4.4)

observe that the optimization problem in Equation (4.2)) is equivalent to that in (4.3)

if we view B as encoding a weighted graph. Hence, we can apply known graph

matching algorithms to approximately find b.

120

CHAPTER 4. VERTEX NOMINATION

Decomposing A and B as

m u m u
a4 | pan a2
A: B:
| oA ge2) . | Ben pe2

and using the fact that P € II,, is unitary, the seeded graph matching problem is

equivalent (i.e., has the same minimizer) to

min — tr (A2 P(B®?)TPT) — tr (AM)TBEAPT) — tr (ACD(BED)TPT) .

Pelly,

Thus, we can recast (4.2)) as a seeded graph matching problem so that finding

; Aoo).0
oy 3 st (RET) ¢

{ighe(3)

- Meiye)

1,j)€ESXU

is equivalent to finding

~ 1
P = arg min —3 tr (A(Z’Q)P(B@’Z))TPT) —tr ((A(l’Q))TB(l’Q)PT) , (4.5)

Pelly,

as we shall explain below.

With B defined as in (4.4]), we define

Q={Qelst (I,®Q)B(l,®Q) =B}.

121

CHAPTER 4. VERTEX NOMINATION

Define an equivalence relation ~ on I, via P; ~ P, iff there exists a () € Q such that

Pl = PQQ, i.e.,

(In & P)B(1y ® P1)" = (In & PQ)B(I;y ® P2Q)" = (In & P2)B(1,, & Py) "

Let P / ~ denote the set of equivalence classes of P under equivalence relation ~.
Solving is equivalent to solving in that there is a one-to-one correspondence
between b and P/ ~: for each ¢ € b there is a unique P € P/ ~ (with associated
permutation o) such that ¢, = b, oo; and for each P €]5/ ~ (with the permutation

associated with 1, @ P given by o), it holds that bo o € b.

4.2.1 The LM Vertex Nomination Scheme

The maximum-likelihood vertex-nomination scheme proceeds as follows. First, the
SGM algorithm (Fishkind et al.|2012; |Lyzinski et al.|2014a) is used to approximately
find an element of P, which we shall denote by P. Let the corresponding element of

b be denoted by ¢. For any 4, j € V such that ¢(i) # ¢(j), define ¢,,; € B as

(

o) ifv=j,

Gieri(V) = { () ifv =1,

o(v) ifv#4,j;

\

122

CHAPTER 4. VERTEX NOMINATION

i.e., ¢i,; agrees with ¢ except that ¢ and j have their block memberships from ¢

switched in ¢;.,;. For i € U such that ¢(i) = 1, define

_1
u—uq

N g(ﬁbw—m’aG)
n(i) = |]I 0.G) :

Jj€eU s.t.
o(5)#1

where, for each ¢ € B, the likelihood ¢ is given by
AL i 7Ai . A,‘ﬂ 1 *Ai .
(.G =TT Moiwn = Mswwe)™™ 0 TT MoGwp (T — M)
{Z,]}E(g) (i,7)€SXU

A low/high value of 7(7) is a measure of our confidence that ¢ is/is not in the block

of interest. For i € U such that ¢(i) # 1, define

S\ L g((biﬁj?G)

j€eU s.t.
?(j)=1

A low/high value of £(i) is a measure of our confidence that 7 is/is not in the block

of interest. We are now ready to define the maximum-likelihood nomination scheme

123

CHAPTER 4. VERTEX NOMINATION

LML

(CML)f1 (1) € argmin{n(v) : ¢p(v) = 1}

(EML)_l (2) € argmin {n(v) : v € U\ {(LM) (1)}, 0(v) =1}

(EML)_l (u1) € argmin {77(1)) cvelU\ {(EML)’l(z')}l;;l ,o(v) = 1}
(EML)_I (ug + 1) € argmax {{(v) : ¢(v) # 1}

(L) (w1 +2) € argmax {£(v) s v € U\ {(LM) 7w + 1)}, 0(0) # 1}

(ﬁML)_l (u) € argmax {f(v) velU)\ {(LML)_I(Z')};:LH ,o(v) # 1}

Note that in the event that an argmin (or argmax) above contains more than one ele-
ment, the order in which these elements is nominated should be taken to be uniformly

random.

Remark 6. In the event that A is unknown a priori, we can use the block member-
ships of the seeds S (assumed to be chosen uniformly at random from V') to estimate

the edge probability matrix A as

Ry — [{{i,j} € Est. i€ Sy, je S} f

rk#L,

Mgy

124

CHAPTER 4. VERTEX NOMINATION

and

~ {{i,j} € E st. i€ Sk, j € S}
Apr = (mk) '
2

The plug-in estimate B of B, given by

~ A S
Bi,j = log <—b/(\)7b(J)) 5
1 = Ao p5)

can then be used in place of B in Eq. (4.5)). If, in addition, 7 is unknown, we can

estimate the block sizes n; as

for each k € [K], and these estimates can be used to determine the block sizes in B.

4.2.2 The £%L Vertex Nomination Scheme

Graph matching is a computationally difficult problem, and there are no known
polynomial time algorithms for solving the general graph matching problem for simple
graphs. Furthermore, if the graphs are allowed to be weighted, directed, and loopy,
then graph matching is equivalent to the NP-hard quadratic assignment problem.
While there are numerous efficient, approximate graph matching algorithms (see,
for example, [Vogelstein et al.|[2015; [Fishkind et al. 2012} |Zaslavskiy et al. 2009Db)
Fiori et al.[2013, and the references therein), these algorithms often lack performance

guarantees.

125

CHAPTER 4. VERTEX NOMINATION

Inspired by the restricted-focus seeded graph matching problem considered in
Lyzinski et al. (2014a), we now define the computationally tractable restricted-focus
maximum-likelihood nomination scheme LYY Rather than attempting to quickly
approximate a solution to the full graph matching problem as in [Vogelstein et al.
(2015); |Fishkind et al| (2012); Zaslavskiy et al.| (2009b); |[Fiori et al. (2013)), this
approach simplifies the problem by ignoring the edges between unseeded vertices. An
analogous restriction for matching simple graphs was introduced in Lyzinski et al.
(2014a)). We begin by considering the graph matching problem in Eq. . The

objective function
1 2,2 22N\T pT ' 1L2NT »(1,2) pT

consists of two terms: —% tr (A(Q’Z)P(B(Z’Q))TPT) , which seeks to align the induced
subgraphs of the nonseed vertices; and — tr ((A"?)T B2 PT) which seeks to align
the induced bipartite subgraphs between the seed and nonseed vertices. While the
graph matching objective function, Eq. , is quadratic in P, restricting our focus

to the second term in Eq. (4.5)) yields the following linear assignment problem

P = arg min — tr ((A(l’z))TB(l’z)PT) , (4.6)

Pelly,

which can be efficiently and exactly solved in O(u?) time with the Hungarian algo-

rithm (Kuhn/|1955} |Jonker and Volgenant| 1987). We note that, exactly as was the

126

CHAPTER 4. VERTEX NOMINATION

case of P and ZA), finding P is equivalent to finding

z Ay, 00)
oy 3 ().

(1,J)eSxXU

in that there is a one-to-one correspondence between b and P/ ~.

The LYY scheme proceeds as follows. First, the linear assignment problem,
Eq. , is exactly solved using, for example, the Hungarian algorithm (Kuhn/[1955))
or the path augmenting algorithm of |Jonker and Volgenant| (1987), yielding P € P.
Let the corresponding element of b be denoted by ¢. For i € U such that ¢(i) =

define

1
u—uq

o (r(Piesj, G)
(i) = jelU_[S.t. “n(0.C) 7
() #1

where, for each ¢ € B, the restricted likelihood ¢y is defined via

r(,G) =] Al]w(; — Ay i) A

(3,7)€SXU

As with LMY a low/high value of 7j(4) is a measure of our confidence that ¢ is/is not

in the block of interest. For i € U such that ¢(i) # 1, define

Sre L KR(QSiHjaG)
(i) == jelU_[s't. 6.0

é(j)=1

127

CHAPTER 4. VERTEX NOMINATION

As before, a low/high value of £(i) is a measure of our confidence that i is/is not in

the block of interest. We are now ready to define £}

(£45)7 (1) € argminii(v) : 6(v) = 1}

(LY (2) € argmin {7i(v) s v € U\ {(LY) (1)}, p(v) = 1)

(L3 ™" () € argmin {ﬁ(v) o e UN{(LM) @Y dv) = 1}
(E%L)_l (u3 + 1) € arg max {é(v) co(v) # 1}

(357" (wr +2) € argmax {€(v) s v € U\ {(L}) aw + D}, o(0) £ 1}

(£} (W) € argmax {€(v) v € U\ {(LH) 1D}, 0l0) £ 1}

Note that, as before, in the event that the argmin (or argmax) in the definition of
LY contains more than one element above, the order in which these elements are
nominated should be taken to be uniformly random.

Unlike LMY the restricted focus scheme LY is feasible even for comparatively
large graphs (up to thousands of nodes, in our experience). However, we will see
in Section that the extra information available to £LMF—the adjacency structure
among the nonseed vertices—leads to superior precision in the LMY nomination lists

as compared to L}, We next turn our attention to proving the consistency of the

LMY and LMY schemes.

128

CHAPTER 4. VERTEX NOMINATION

4.3 Consistency of LM and LY

In this section, we state theorems ensuring the consistency of the vertex nomi-
nation schemes LMY (Theorem {4)) and £ (Theorem . For the sake of expository
continuity, proofs are given in Section 4.8, We note here that in these Theorems,
the parameters of the underlying block model are assumed to be known a priori. In
Section , we prove the consistency of LMY and £)* in the setting where the model
parameters are unknown and must be estimated, as in Remark [6]

Let G ~ SBM(K, 7, b, A) with associated adjacency matrix A, and let B be defined

as in (4.4). For each P € II, (with associated permutation o) and k, ¢ € [K], define
€pp = Ek’z(P) = |{U € Uy s.t. O'(U) S Ug}‘

to be the number of vertices in Uy, mapped to U, by I,, @ P, and for each k € [K]

define

€ro(P) = €re = Z €k t-

£k
Before stating and proving the consistency of LMV, we first establish some necessary
notation. Note that in the definitions and theorems presented next, all values im-

plicitly depend on n, as A = A,, is allowed to vary in n. Let L be the set of distinct

129

CHAPTER 4. VERTEX NOMINATION

entries of A, and define

= pin e = Al B= min B = Biel o= max|Bi; = Brel
(47)
v minle ol =iy fos () <o (()] @

Theorem 4. Let G ~ SBM(K,,b,A) and assume that

i. K=o0(y/n);

. A €[0,1]5*K is such that for all k, ¢ € [K] with k # €, A # Apg;

iii. For each k € [K], u, = w(y/n), and my, = w(loguy);

w. ;5= =O(1).
Then it holds that lim, ., EAP(LMY) = 1, and LMV is a consistent nomination
scheme.

A proof of Theorem [is given in Section [4.§|

Remark 7. There are numerous assumptions akin to those in Theorem 4| under
which we can show that LMV is consistent. Essentially, we need to ensure that if we
define P’ = {P € Il, : €14(P) = O(wy)}, then P(3 P € P’ s.t. Xp <0) is summably
small, from which it follows that €, » = o(u;) with high probability, which is enough

to ensure the desired consistency of LML,

130

CHAPTER 4. VERTEX NOMINATION

Consistency of LY holds under similar assumptions.
Theorem 5. Let G ~ SBM(K,7i,b,A). Under the following assumptions
i. K =0(1);
. A €[0,1]5*K is such that for all k, ¢ € [K| with k # €, A # Apy;
iii. For each k € [K], up = w(y/n), and my = w(logug);
>

. —4— =0(1);

afky

it holds that lim,,_, EAP(ﬁML) =1, and LMV is a consistent nomination scheme.

A proof of this Theorem can be found in Section [4.8|

4.4 Consistency of LM and LY When the

Model Parameters are Unknown

If A is unknown a priori, then the seeds can be used to estimate A as K, and
n; as n for each ¢ € [K]. In this section, we will prove analogues of the consistency
Theorems [4] and [f]in the case where A and 7 are estimated using seeds. In Theorems|0]
and |7 below, we prove that under mild model assumptions, both LMY and LM are
consistent vertex nomination schemes, even when the seed vertices form a vanishing

fraction of the graph.

131

CHAPTER 4. VERTEX NOMINATION

We now state the consistency result analogous to Theorem [this time for the

case where we estimate A and 7. The proof can be found in Section [4.8
Theorem 6. Let A € REXE be q fized, symmetric, block probability matriz satisfying
i. K is fived in n;
. A € [0, 1]5%K 4s such that for all k,¢ € [K]| with k # €, Apx # Mis;
iii. For each k € [K], ny = O(n) and my, = w(n*?log(n));
w. « and vy defined as in and are fized in n.

Suppose that the model parameters of G ~ (K, i, b, \) are estimated as in Remark@
yielding log-odds matriz estimate B and estimated block sizes i = (N1, Noy ...)T
If LMY 4s run on A and B using the block sizes given by n, then under the above
assumptions it holds that lim,, .. EAP(LMY) = 1, and LMY is a consistent nomination

scheme.

We now state the analogous consistency result to Theorem [5| when we estimate A

and 7. The proof is given in Section

Theorem 7. Let A € REXE be q fized, symmetric, block probability matriz satisfying
i. K is fived in n;
. A € [0, 1)5%K 4s such that for all k,{ € [K]| with k # €, Apx # Mis;

iii. For each k € [K] s.t. k # 1, nj, = ©(n) and my, = w(n*?log(n));

132

CHAPTER 4. VERTEX NOMINATION
. ny = O(n) and m; = w(n*?);

v. a and vy defined at and (@ are fized in n.

Suppose that the model parameters of G ~ (K,1i,b,) are estimated as in Remark
@ yielding B and estimated block sizes i = (N, Moy i)t If LMY s run on A
and B using block sizes given by n, then under the above assumptions it holds that

lim,, o EAP(LMY) =1 and LMY is a consistent nomination scheme.

The two preceding theorems imply that vertex nomination is possible even when
the number of seeds is a vanishing fraction of the vertices in the graph. Indeed, we
find that in practice, accurate nomination is possible even with just a handful of seed

vertices. See the experiments presented in Section

4.5 Model Generalizations

Network data rarely appears in isolation. In the vast majority of use cases, the
observed graph is richly annotated with information about the vertices and edges
of the network. For example, in a social network, in addition to information about
which users are friends, we may have vertex-level information in the form of age,
education level, hobbies, etc. Similarly, in many networks, not all edges are created
equal. Edge weights may encode the strength of a relation, such as the volume of
trade between two countries. In this section, we sketch how the LM* and L} vertex
nomination schemes can be extended to such annotated networks by incorporating

133

CHAPTER 4. VERTEX NOMINATION

edge weights and vertex features. To wit, all of the theorems proven above translate
mutatis mutandis to the setting in which G is a drawn from a bounded canonical
exponential family stochastic block model. Consider a single parameter exponential

family of distributions whose density can be expressed in canonical form as

f(x|0) = h(x)eT(x)B—A(o)‘

We will further assume that h(x) has bounded support. We define

—

Definition 5. A G,-valued random graph G is an instantiation of a (K,7i,b,©)

bounded, canonical exponential family stochastic block model, written G ~ ExpSBM(K, 7, b, ©),

of
i. The vertex set V' is partitioned into K blocks, Vi, Vs, ..., Vi with sizes |Vi| = ny
fork=1,2,... . K;
ii. The block membership function b : V. — [K] is such that for each v € V,
S %(v);
ii. The symmetric block parameter matriz © = [0y, € RE*E s such that the

{i,j} € (‘2/), A, ; (= A;,) are independent, distributed according to the density

£ 00) = Bl 030~ A1),

Note that the exponential family density is usually written as h(z)e™*=4® where

134

CHAPTER 4. VERTEX NOMINATION

A(-) is the log-normalization function. We have made the notational substitution to
avoid confusion with the adjacency matrix A. If G ~ ExpSBM(K, 7, b, ©), analogues
to Theorems 6] and [7] follow mutatis mutandis if we use seeded graph matching
to match A = [Z”] = [T'(Aij)] to B = [Bij| == [0su)p(j); i-e., under analogous
model assumptions, LM and L£}* are both consistent vertex nomination schemes
when the model parameters are known or estimated via seeds. The key property
being exploited here is that E(7'(X)) is a nondecreasing function of . We expect
that results analogous to Theorems [6] and [7] can be shown to hold for more
general weight distributions as well, but we do not pursue this further here.
Incorporating vertex features into £M* and £¥* is immediate. Suppose that each
vertex v € V is accompanied by a d-dimensional feature vector X, € R? The
features could encode additional information about the community structure of the
underlying network; for example, if b(v) = k then perhaps X, ~ Norm(uy, X) where
the parameters of the normal distribution vary across blocks and are constant within
blocks. This setup, in which vertices are “annotated” or “attributed” with additional
information, is quite common. Indeed, in almost all use cases, some auxiliary infor-
mation about the graph is available, and methods that can leverage this auxiliary
information are crucial. See, for example, Yang et al.| (2013); [Zhang et al. (2015);
Newman and Clauset| (2016); [Franke and Wolfe| (2016) and citations therein. We
model vertex features as follows. Conditioning on b(v) = k, the feature associated to

v is drawn, independently of A and of all other features X, from a distribution with

135

CHAPTER 4. VERTEX NOMINATION

density fy). Define the feature matrix X via

d
m | X m

X = ,
u X (W)

where X (™ represents the features of the seed vertices in S, and X® the features
of the nonseed vertices in U. For each block k € [K], let fi be an estimate of the

density f;, and create matrix F € R™™ given by

A ~ ~

wo | A(X) (X)) - fi(X)

~ ~ A

w o | fo(X1) fo(X2) oo fo(X0)

~ ~ ~

ue | fe(Xh) fe(Xe) - fr(Xu)

Then we can incorporate the feature density into the seeded graph matching problem

in (4.5) by adding a linear factor to the quadratic assignment problem:

~ 1
P = arg min —5 tr (AP P(BENTPT) — 1 (A)TBEAPT) — Xtr FPT. (4.9)

Pelly

The factor A € Rt allows us to weight the features encapsulated in X versus the

information encoded into the network topology of G.

136

CHAPTER 4. VERTEX NOMINATION

Vertex nomination proceeds as follows. First, the SGM algorithm of |Fishkind
et al. (2012)); [Lyzinski et al.| (2014a) is used to approximately find an element of
P in Eq. , which we shall denote by P. Let the block membership function
corresponding to P be denoted ¢. For i € U such that ¢(i) = 1, define

u—ug

EF 147 G
H (¢)

me(i) = lp(6,G) 7

j€U s.t.
B(j)#1

where, for each ¢ € B, the likelihood ¢ is given by

Aij —Aij
lr(¥,G) = H Aw(i),w(j)(l - Awm,w(j))l ’

1e(?)
Ai, i I_AL . A
’ H Ab(i){l/j(j)(1 o Ab(i),w(j)) 7 H fb(i) (X3),
(i,5)eSxU =10

where, for k € [K], fi(-) is the estimated density of the k-th block features. Note that
here we assume that the feature densities must be estimated, even when the matrix
A is known. A low/high value of ng(7) is a measure of our confidence that i is/is not

in the block of interest. For i € U such that ¢(i) # 1, define

Er(i) = jelU_[S.t. 6.0

o(4)=1

A low /high value of £¢ (i) is a measure of our confidence that ¢ is/is not in the block

137

CHAPTER 4. VERTEX NOMINATION

of interest. The nomination list produced by £ is then realized via:

(37 (1) € argmin{np(v) : 6(v) = 1}

(E%L)_l (2) € argmin {nF(v) v eU\ {(ﬁl}ﬁ)_l(l)} ,o(v) = 1}

(£3) ™" (w) € argmin {ne(v) 1 v e U\ (L DN o) =1
(ﬁl\F/[L)_l (ug + 1) € argmax {{p(v) : Pp(v) # 1}

(EI\F/IL)f1 (u; + 2) € argmax {51:‘(1}) velU\ {(E%L)_l(ul + 1)} ,o(v) # 1}

(LI}/IL)_l (1) € arg max {fp(v) veU)\ {(E%L)_l(i)}zjﬁl ,o(v) # 1}

Note that, once again, in the event that the argmin (or argmax) contains more than
one element above, the order in which these elements is nominated should be taken
to be uniformly random.

We leave for future work a more thorough investigation of how best to choose
the parameter A\. We found that choosing A approximately equal to the number of
nonseed vertices yielded reliably good results, but in general the best choice of A is
likely to be dependent on both the structure of the graph and the available features
(e.g., how well the features actually predict block membership). We note also that in
the case where the feature densities are not easily estimated or where we would like

to relax our distributional assumptions, we might consider other terms to use in lieu

138

CHAPTER 4. VERTEX NOMINATION

of tr FPT. For example, let ji = o >

"} veS X, be the empirical estimate of py, the

average feature vector for the seeds in block k, and create let Y be defined via

d
ux IEL1®I
ug [Lg@f
Y =
UK ﬂk@f

Incorporating these features into the seeded graph matching problem similarly to (4.9)),

we have

~ 1
P =arg min —= tr (ABPP(BEY)TPT) — tr (A2 TBEDPT) — A gr(XWYTPT).

Pell,

(4.10)

We leave further exploration of this and related approaches, as well as how to deal

with categorical data (e.g., as in Newman and Clauset| (2016)), for future work.

4.6 Experiments

To compare the performance of maximum-likelihood vertex nomination against
other methods, we performed experiments on five data sets, one synthetic, the others

from linguistics, sociology, political science and ecology.

139

CHAPTER 4. VERTEX NOMINATION

In all our data sets, we consider vertex nomination both when the edge probability
matrix A is known and when it must be estimated. When model parameters are
unknown, m < n seed vertices are selected at random and the edge probability matrix
is estimated based on the subgraph induced by the seeds, with entries of the edge
probability matrix estimated via add-one smoothing. In the case of synthetic data,
the known-parameter case simply corresponds to the algorithm having access to the
parameters used to generate the data. We consider a 3-block stochastic block model
(see below), so the known-parameter case corresponds to the true edge probability
matrix being given. In the case of our real-world data sets, the notion of a “true” A
is more hazy. Here, knowing the model parameters corresponds to using the entire
graph, along with the true block memberships, to estimate A, again using add-one
smoothing. This is, in some sense, the best access we can hope to have to the model

parameters, to the extent that such parameters even exist in the first place.

4.6.1 Simulations

We consider graphs generated from stochastic block models at two different scales.
Following the experiments in |[Fishkind et al.| (2015, we consider 3-block models, where
block sizes are given by @ = ¢ - (4,3,3)" for ¢ = 1,50, which we term the small and
medium cases, respectively. In Fishkind et al.| (2015]), a third case, with ¢ = 1000, was
also considered, but since ML vertex nomination is not practical at this scale, we do

not include such experiments here, though we note that £X' can be run successfully

140

CHAPTER 4. VERTEX NOMINATION

on such a graph. We use an edge probability matrix given by

0.5 0.3 0.4 05 0.5 0.5
At)=t103 08 06| +(1—=1%) |05 05 0.5 (4.11)
04 0.6 0.3 05 05 0.5

for ¢ = 1,0.3 respectively in the small and medium cases, so that the amount of
signal present in the graph is smaller as the number of vertices increases. We consider
m = 4,20 seeds in the small and medium scales, respectively. For a given choice of
i, m, t, we generate a single draw of an SBM with edge probability matrix A(¢) and
block sizes given by 7. A set of m vertices is chosen uniformly at random from the
first block to be seeds. Note that this means that the only model parameter that can
be estimated is the intra-block probability for the first block. For all model parameter
estimation in the ML methods (i.e., for the unknown case of LM* and £¥), we use
add-1 smoothing to prevent inaccurate estimates. We note that in all conditions, the
block of interest (the first block) is not the densest block of the graph.

Recall that all of the methods under consideration return a list of the nonseed
vertices, which we call a nomination list, with the vertices sorted according to how
likely they are to be in the block of interest. Thus, vertices appearing early in the
nomination list are the best candidates to be vertices of interest. Figure compares
the performance of canonical, spectral, maximum-likelihood and restricted-focus ML

vertex nomination by looking at (estimates of) their average nomination lists. The

141

CHAPTER 4. VERTEX NOMINATION

plot shows, for each of the methods under consideration, an estimate (each based on
200 Monte Carlo replicates) of the average nomination list. Each curve describes the
empirical probability that the kth-ranked vertex was indeed a vertex of interest. A
perfect method, which on every input correctly places the ny vertices of interest in the
first n; entries of the nomination list, would produce a curve in Figure 4.1 resembling
a step function, with a step from 1 to 0 at the (n; + 1)th rank. Conversely, a method
operating purely at random would yield an average nomination list that is constant
ny/n. Canonical vertex nomination is shown in gold, ML in blue, restricted-focus ML
in red, and spectral vertex nomination is shown in purple and green. These two colors
correspond, respectively, to spectral VN in which vertex embeddings are projected
to the unit sphere prior to nomination and in which the embeddings are used as-is.
In sparse networks, the adjacency spectral embedding places all vertices near to the
origin. In such settings, projection to the sphere often makes cluster structure in the
embeddings more easily recoverable. Dark colors correspond to the known-parameter
case, and light colors correspond to unknown parameters. Note that spectral VN
does not make such a distinction.

Examining the plots, we see that in the small case, maximum-likelihood nomina-
tion is quite competitive with the canonical method, and restricted-focus ML nomi-
nation is not much worse. Somewhat surprising is that these methods perform well
seemingly irrespective of whether or not the model parameters are known, though

this phenomenon is accounted for by the fact that the smoothed estimates are au-

142

CHAPTER 4. VERTEX NOMINATION

tomatically close to the truth, since A is approximately equal to the matrix with all
entries 1/2. Meanwhile, the small number of nodes is such that there is little signal
available to spectral vertex nomination. We see that spectral vertex nomination per-
forms approximately at-chance regardless of whether or not we project the spectral
embeddings to the sphere. 10 nodes are not enough to reveal eigenvalue structure
that spectral methods attempt to recover. In the medium case, where there are 500
vertices, enough signal is present that reasonable performance is obtained by spectral
vertex nomination, with performance with (purple) and without (green) projection
to the sphere again indistinguishable. The comparative density of the SBM in ques-
tion ensures that projection to the sphere is not necessary, and that doing so does
no appreciable harm to nomination. However, in the medium case, ML-based ver-
tex nomination still appears to best spectral methods, with the known and unknown
cases being nearly indistinguishable. We note that in both the small and medium
cases all of the methods appear to intersect at an empirical probability of 0.4. These
intersection points correspond to the transition from the block of interest to the non-
interesting vertices: these vertices, about which we are least confident, tend to be
nominated correctly at or near chance, which is 40% in both the small and large
cases.

A more quantitative assessment of the vertex nomination methods is contained in
Tables and [4.2] which compare the performance of the methods as assessed by,

respectively, average precision (AP) and adjusted Rand index (ARI). As defined in

143

CHAPTER 4. VERTEX NOMINATION

1.00 1.004

Method

== can.kn

o
5
a
o
o
a

Method
X = ml.kn
== ml.kn == ml.un
== ml.un = res.kn
o= res.kn = res.un

= res.un w—SD.p2S

Probability of First Block
g

Probability of First Block
8

= Sp.p2s w—SP.NOPI|

o
N
a
o
N
a

"= sp.noprj

0.00 0.004

25 50 75 100 0 100 200 300 400 500
Rank Rank

(a) Small scale simulation results (b) Medium scale simulation results

Figure 4.1: The mean nomination lists for the (a) small and (b) medium stochastic
block model experiments for the different vertex nomination techniques in both the
known (dark colors) and unknown (light colors). Plot (a) shows performance for the
canonical (gold), maximum likelihood (blue), restricted-focus maximum likelihood
(red) and spectral (green and purple) methods. Spectral VN both with and without
projection to the sphere is shown in purple and green, respectively. Plot (b) does not
include canonical vertex nomination due to runtime constraints.

Equation (4.1]), AP is a value between 0 and 1, where a value of 1 indicates perfect

performance. ARI Hubert and Arabie (1985) measures how well a given partition

of a set recovers some ground truth partition. Here a value of 1 indicates perfect
recovery, while randomly partitioning a data set yields ARI approximately 0 (note
that negative ARI is possible). We include ARI as an evaluation to highlight the fact
that spectral and maximum-likelihood nomination do not merely classify vertices
as interesting or not. Rather, they return a partition of the vertices into clusters.
Canonical vertex nomination, on the other hand, makes no attempt to recover the full
cluster structure of the graph, instead only attempting to classify vertices according
to whether or not they are of interest. As such, we do not include ARI numbers
for canonical vertex nomination. Turning first to performance in the small graph

condition in Table , we see that £€ is the best method, so long as the graph in

144

CHAPTER 4. VERTEX NOMINATION

question is small enough that the canonical method is tractable, but LMY, regardless
of whether or not model parameters are known, nearly matches canonical VN, and,
unlike its canonical counterpart, scales to graphs with more than a few nodes. The
numbers for £ bear out our observation above, that the small graphs contain too
little information for spectral VN to act upon, and £5F performs approximately at
chance, as a result. It is worth noting that while £} does not match the performance
of LMY presumably owing to the fact that the restricted-focus algorithm does not use
all of the information present in the graph, it still outperforms spectral nomination,
and lags LMV by less than 0.1 AP.

Turning our attention to the medium case, we see again that £M* and £} remain
largely impervious to whether model parameters are known or not, presumably a
consequence of the use of smoothing—we’ll see in the sequel that estimation can be
the difference between near-perfect performance and near-chance. With more vertices,
we see that spectral improves above chance, leaving restricted ML slightly worse, but
spectral still fails to match the performance of MLL VN, even when model parameters
are unknown.

In sum, these results suggest that different size graphs (and different modeling
assumptions) call for different vertex nomination methods. In small graphs, regard-
less of whether or not model parameters are known, canonical vertex nomination is
both tractable and quite effective. In medium graphs, maximum-likelihood vertex

nomination remains tractable and achieves impressively good nomination. Of course,

145

CHAPTER 4. VERTEX NOMINATION

Known Unknown
ML | RES SP | CAN | ML | RES SP | CAN
small | 0.670 | 0.588 | 0.388 | 0.700 | 0.680 | 0.606 | 0.415 | 0.710
medium | 0.954 | 0.545 | 0.738 — 0.954 | 0.537 | 0.735 —

Table 4.1: Empirical estimates of mean average precision on the two stochastic block
model data sets for the four methods under consideration. Each data point is the
mean of 200 independent trials.

Known Unknown
ML | RES SP | CAN | ML | RES SP | CAN
small | 0.338 | 0.259 | 0.011 — 0.338 | 0.259 | 0.011 —
medium | 0.572 | 0.039 | 0.268 — 0.572 | 0.037 | 0.271 -

Table 4.2: ARI on the different sized data sets for the ML, restricted ML, and
spectral methods. Each data point is the mean of 200 independent trials. Performance
of canonical vertex nomination is knot included, since canonical vertex nomination
makes no attempt to recover all three blocks, and thus ARI is not a sensible measure.

for graphs with thousands of vertices, LM becomes computationally expensive, leav-
ing only £5F and LM as options. We have observed that £} tends to lag £5F in
such large graphs, though increasing the number of seeds (and hence the amount of
information available to £¥%) closes this gap considerably. We leave for future work
a more thorough exploration of under what circumstances we might expect LY to

be competitive with £5F in graphs on thousands of vertices.

4.6.2 Word Co-occurrences

We consider a linguistic data set consisting of co-occurrences of 54 nouns and
58 adjectives in Charles Dickens’ novel David Copperfield Newman| (2006a). We

construct a graph in which each node corresponds to a word, and an edge connects

146

CHAPTER 4. VERTEX NOMINATION

i K = Ve R

ey " T A ——
] L

L . o= ?-I-':E-I.-". "

1 l-”:bll Hi "'-:"ll-.-r'.-"'.--I
- - U I
LooTaots et

LI LI [Lt s

i o [
| Lo -
- T

H I . [T T L

LTl - et - .

- -1 =cn el

Ll 4550 2 o

Tt L |

AT

I.:.. . - H

N I e T

o IR .

.l .- L] IIII .

Figure 4.2: Adjacency matrix of the linguistic data set, arranged to highlight the
graph’s structure. The grey shading indicates the two blocks, with adjectives in the
upper left and nouns in the lower right. Note the disassortative block structure.

two nodes if the two corresponding words occurred adjacent to one another in the
text. The adjacency matrix of this graph is shown in Figure Visual inspection
reveals a clear block structure, and that this block structure is clearly not assortative
(i.e., inter-block edges are more frequent than intra-block edges). This runs contrary
to many commonly-studied data sets and model assumptions. Figure [4.3 shows the
performance of spectral and maximum-likelihood vertex nomination, measured by (a)
average precision and adjusted Rand index (ARI) at various numbers of seeds. Each
data point is the average over 1000 trials. In each trial, a set of m seeds was chosen
uniformly at random from the 112 nodes, with the restriction that at least one noun
and one adjective be included in the seed set. Performance was then measured as the
mean average precision in identifying the adjective block.

Figure 4.3 shows the performance of the VN schemes under consideration, as a

147

CHAPTER 4. VERTEX NOMINATION

function of the number of seed vertices, using both known (dark colors) and estimated
(light colors) model parameters. Looking first at AP in Figure (a), we see that
ML in the known-parameter case (dark blue) does consistently well, even with only
a handful of seeds, and attains near-perfect performance for m > 20. When model
parameters must be estimated (light blue), ML is less dominant, thought it still per-
forms nearly perfectly for m > 20. We note the dip in unknown-parameters ML as
m increases from 2 to 5 to 10, a phenomenon we attribute to the bias-variance trade-
off. Namely, with more seeds available, variance in the estimated model parameters
increases, but for m < 20, this increase in variance is not offset by an appreciable
improvement in estimation, possibly attributable to our use of add-one smoothing.
Somewhat surprisingly, restricted-focus ML performs quite well, consistently improv-
ing on spectral VN in the known parameter case for m > 2, and in the unknown
parameter case once m > 10. Finally, we turn our attention to spectral VN, shown
in green for the variant in which we project embeddings to the sphere and in purple
for the variant in which we do not. In contrast to our simulations, the sparsity of
this network makes projection to the sphere a critical requirement for successful re-
trieval of the first block. Without projection to the sphere, spectral VN fails to rise

appreciably above chance performance.

148

CHAPTER 4. VERTEX NOMINATION

Method Method
== mlkn == ml.kn
== ml.un == mlun

== reskn E 0.50 == res.kn

o= res.un o= res.un

== sp.Noprj === sp.NOpPrj

025 = sp.p2s 025l = - sp.p2s

2 5 10 20 50 100 2 5 10 20 50 100
Number of seeds (log scale) Number of seeds (log scale)

(a) (b)
Figure 4.3: Performance on the linguistic data set as measured by (a) AP and
(b) ARI as a function of the number of seeds for the ML vertex nomination (blue),
restricted-focus ML (red), and spectral vertex nomination with (green) and without
projection to the sphere (violet), when model parameters are known (light colors)
and unknown (dark colors). Each data point is the mean of 1000 Monte Carlo trials,
and shaded regions indicate two standard deviations of the mean.

4.6.3 Zachary’s Karate Club

We consider the classic sociological data set, Zachary’s karate club network Zachary
(1977). The graph, visualized in Figure , consists of 34 nodes, each corresponding
to a member of a college karate club, with edges joining pairs of club members accord-
ing to whether or not those members were observed to interact consistently outside
of the club. Over the course of Zachary’s observation of the group, a conflict emerged
that led to the formation of two factions, led by the individuals numbered 1 and 34
in Figure [1.4] and these two factions constitute the two blocks in this experiment.
Zachary’s karate data set is particularly well-suited for spectral methods. Indeed, the
flow-based model originally proposed by Zachary recovers factions nearly perfectly,
and visual inspection of the graph (Figure suggests a natural cut separating the

two factions. As such, we expect ML-based vertex nomination to lose out against

149

CHAPTER 4. VERTEX NOMINATION

Zachary's Karate Club Network

@
.. [@%
@ @
@
@&

Figure 4.4: Visualization of the graph corresponding to Zachary’s karate club data
set. The vertices are colored according to which of the two clubs each member chose
to join after the schism. Our block of interest is in red.

the spectral-based method. Figure shows performance of the two algorithms as
measured by ARI and average precision. We see, as expected, that spectral perfor-
mance performs nearly perfectly, irrespective of the number of seeds. Surprisingly,
maximum-likelihood nomination is largely competitive with spectral VN, but only
provided that the model parameters are already known. Interesting to note that here
again we see the phenomenon discussed previously in which ML performance with
an unknown edge probability matrix degrades when going from s = 2 seeds to s =5

before improving again, with AP comparable to the known case for s > 20.

4.6.4 Political Blogs

We consider a network of American political blogs in the lead-up to the 2004
election Adamic and Glance] (2005), where an edge joins two blogs if one links to

the other, with blogs classified according to political leaning (liberal vs conservative).

150

CHAPTER 4. VERTEX NOMINATION

1.00 1.004
0.75 % Method 0754 Method

== ml.kn == mlkn

== ml.un == ml.un
20501 _ o e e e e e e = res.kn E B e n
== res.un 0.50+ == res.un
== sp.noprj == sp.noprj
"= sp.p2s o= sp.p2s

5 10 20 30 2 5 10 20 30
Number of seeds (log scale) Number of seeds (log scale)

(a) (b)
Figure 4.5: Performance on the karate data set as a function of the number of
seeds for the ML vertex nomination (blue), restricted-focus ML nomination (red),
and spectral vertex nomination with (green) and without projection to the sphere
(violet), when model parameters are known (light colors) and unknown (dark colors),
as measured by (a) AP and (b) ARI. The black dashed line indicates chance perfor-
mance. Each observation is the mean of 1000 independent trials, with the shaded
bars indicating two standard errors of the mean in either direction.

From an initial 1490 vertices, we removed all isolated vertices to obtain a network
of 1224 vertices and 16718 edges. Figure shows the performance of the spectral-
and ML-based methods in recovering the liberal block. We observe first and foremost
that the sparsity of this network results in exceptionally poor performance in both AP
and ARI for spectral VN unless the embeddings are projected to the sphere, but that
spectral vertex nomination is otherwise quite effective at recovering the liberal block,
with performance nearly perfect for m > 10. Unsurprisingly, ML and its restricted
counterpart both perform approximately at-chance when m < 10. We see that in
both the known and unknown cases, ML VN is competitive with spectral VN for
suitably large m (m > 50 for known, m > 500 for unknown). As expected in such
a sparse network, restricted-focus ML lags ML VN in the known-parameter case,

but surprisingly, in the unknown-parameter case, restricted ML achieves remarkably

151

CHAPTER 4. VERTEX NOMINATION

0.754
0.75 Method Method

== mlkn == mlkn
== ml.un == ml.un

a @ 0504
Z 050 o= res.kn E == res.kn

o= res.un o= res.un

== sp.Noprj o= sp.noprj

o \ o= Sp.p2s 0.254 o= Sp.p2s

2 5 10 20 50 100 200 500 1000 2 5 10 20 50 100 200 500 1000
Number of seeds (log scale) Number of seeds (log scale)

(a) (b)
Figure 4.6: Performance on the political blogs data set as a function of the number
of seeds for the ML vertex nomination (blue), restricted-focus ML (red), and spectral
vertex nomination with (green) and without projection to the sphere (violet), when
model parameters are known (light colors) and unknown (dark colors), as measured

by (a) AP and (b) ARL

better AP than does ML, a fact we are unable to account for, though it is worth
noting that looking at ARI in Figure (b), no such gap appears between ML and

its restricted-focus counterpart in the unknown-parameter case.

4.6.5 Ecological Network

We consider a trophic network, consisting of 125 nodes and 1907 edges, in which

nodes correspond to (groups of) organisms in the Florida Bay ecosystem

et al| (1997)); Nooy et al.|(2011), and an edge joins a pair of organisms if one feeds on

the other. Our features are the (log) mass of organisms. We take our community of
interest to be the 16 different types of birds in the ecosystem. This choice makes for
an interesting task for several reasons. Firstly, unlike the other data sets we consider,

our community of interest is a comparatively small fraction of the network—it consists

152

CHAPTER 4. VERTEX NOMINATION

of a mere 16 nodes of 125 in total. Further, our block of interest is comparatively
heterogeneous in the sense that the roles of the different types of birds in the Florida
Bay ecosystem is quite diverse. For example, the block of interest includes both
raptors and shorebirds, which feed on quite different collections of organisms. Finally,
it stands to reason that the mass of the organisms in question might be a crucial piece
of information for disambiguating, say, a raptor from a shark. Thus, we expect that
using node features will be crucial for retrieving the block of interest.

The topology of the Florida Bay network is shown in Figure|4.7|(a). Note that the
block of interest, indicated in red, has a strongly disassortative structure. Indeed, all
intra-block edges in the red block are incident to the node corresponding to raptors.
Figure (b) summarizes vertex nomination performance for several methods. The
plot shows performance, as measured by mean average precision (AP), as a function of
the number of seeds for several different nomination schemes. As in earlier plots, dark
colors correspond to model parameters being known, while light colors correspond to
model parameters being estimated using the seed vertices. We see immediately that
spectral nomination (green and purple) and ML VN (blue) fail to improve appreciably
upon chance performance except when the vast majority of the vertices’ labels are
observed. Like in the linguistic data set presented above, the disassortative structure
of the data appears to cause problems for spectral nomination. The failure of ML
suggests that no useful information is encoded in the graph itself, but turning our

attention to the curves corresponding to LY (red) and using only features (gold), we

153

CHAPTER 4. VERTEX NOMINATION

1.004

= Method
r= - 0.754 == fe.kn

L

~
1 IFEn

fe.un
== ml+fe.kn
% 0.504 == ml+fe.un
== ml.kn
== ml.un

- 0.25 4 == sp.noprj

== Sp.p2s

0.00 1

4 8 16 32 64 100
Number of seeds (log scale)

(a) (b)

Figure 4.7: (a) The adjacency matrix of the Florida Bay trophic network. Nodes
correspond to classes of plants and animals (e.g., sharks, rays, shorebirds, zooplank-
ton, phytoplankton). An edge joins two nodes if the corresponding organisms are in
a predator-prey relation. The sixteen types of birds in the network are highlighted in
the red block. Note the disassortative structure of the bird block (the edges within the
red block are all incident to the node that corresponds to raptors). (b) Average pre-
cision in identifying the bird nodes as a function of the number of seed vertices for ML
vertex nomination (blue), restricted-focus ML (red), and spectral vertex nomination
with (green) and without projection to the sphere (violet), when model parameters
are known (light colors) and unknown (dark colors). The black dashed line indicates
chance performance.

see that this is not the case. Indeed, we see that while using features alone achieves
a marked improvement over both spectral and ML-based nomination, using both
features and graph matching in the form of £} yields an additional improvement of
some 0.1 AP in the range of m = 8,16, 32. This result suggests that there may be
cases where the only reliable way to retrieve vertices of interest is to leverage both

features and graph topology jointly.

154

CHAPTER 4. VERTEX NOMINATION

4.7 Discussion and Future Work

Network data has become ubiquitous in the sciences, giving rise to a vast array of
computational and statistical problems that are only beginning to be explored. In this
chapter, we have explored one such problem that arises when working with network
data, namely the task of performing vertex nomination. This task, in some sense the
graph analogue of the classic information retrieval problem, is fundamental to ex-
ploratory data analysis on graphs as well as to machine learning applications. Above,
we established the consistency of two methods of vertex nomination: a maximum-

LME and its restricted-focus variant £XV, in which we obtain a

likelihood scheme
feasibly exactly-solvable optimization problem at the expense of using less than the
full information available in the graph. Additionally, we have introduced a maximum-
likelihood nomination scheme for the case where vertices are endowed with features
and when (possibly weighted) edges are drawn from a canonical exponential family.
The key to all of these methods is the ability to quickly approximate a solution to
the seeded graph matching problem.

We have presented experimental comparisons of these methods against each other
and against several other benchmark methods, where we see that the best choice of
method depends highly on graph size and structure. The major tradeoff appears to
be that large graphs (tens of thousands of vertices) are not tractable for LM but in

smaller and medium-sized graphs, LM can detect signal where spectral methods fail

to do so. It is worth noting that LM and, to a lesser extent, LM is quite competitive

155

CHAPTER 4. VERTEX NOMINATION

with £57, and even manages to best £57 when the structure of the graph is ill-suited
to the typical assumptions of spectral methods, as in the case of our linguistic data
set. All told, our experimental results mirror those in |Fishkind et al.| (2015)) and point
toward a theory of which methods are best-suited to which graphs, a direction that
warrants further exploration.

In the next chapter, we will see that the vertex nomination technique developed

here can be brought to bear on the reranking problem in similarity search.

4.8 Proof details

Before proving Theorem |4l we first state a useful lemma.

Lemma 11. Let Z = (21,7, .., 1) be a vector with distinct entries in R*. Let f(-)
be a strictly increasing real valued function (with the abuse of notation, f(Z), denoting

f(-) applied entry-wise to Z). Let the order statistics of T be denoted

(1) < Z(2) < - <K (ks

and define o = minjegos. xy |6 — Te-n)|, and B = miniegas . 1y |f(26) — fl2a-1))].

If o is the cyclic permutation

CHAPTER 4. VERTEX NOMINATION

then

(@, f(7)) = (7, [(o(Z))) = (k = D)ap.

Proof. We will induct on k. To establish the base case, k = 2, let x1 = x(;) without

loss of generality and observe that

(@, f(7)) = (7, f(o(7))) = (22 — 21)(f(22) — [(21))

= (z@ —zw)(f(r@) — f(zw)) = ab.

For general k, again, without loss of generality let 71 = (1), and define the permuta-

tion

Then

and the result follows from the inductive hypothesis. m

Remark 8. It follows immediately that in Lemma/[11] if there exists an index i € [k]

such that a; = minj, [x;) — 2| > 0, and §; = minj; | f(ze) — f(@)| > 0, then

157

CHAPTER 4. VERTEX NOMINATION

(@, f(2)) — (@, f(o(T))) = oif3;
We are now ready to prove Theorem [4]

Proof of Theorem[{] Define

Xp = tr(AB") — tr(A(I,, ® P)B(I,, & P)")

and define P = {P € 11, : €1 (P) > 0}. We will show that

P(3PePst Xp<0)=0(1/n?),

from which the desired consistency of LML follows by the Borel-Cantelli Lemma, since
this probability is summable in n. Fix P € P, and let op € S,, be the permutation
associated with I, P. The action of shuffling B via I,,,® P is equivalent to permuting

the [n?] elements of vec(B) via a permutation 7p, in that

tr(A(I, ® P)B(I,, ® P)") = (vec(A), 7p(vec(B))).

(1)
P

Moreover, 7p can be chosen so that, in the cyclic decomposition of 7p = 7 1(32) R

T T,
each (disjoint) cycle is acting on a set of distinct real numbers. Note that Lemma
implies that the contribution of each cycle Tl(f) to E(Xp) is nonnegative, and
the assumptions of Theorem [{| imply that for each i,5 € [K]| such that i # j, the
contribution of each (nontrivial) cycle permuting a A; ; entry to a A; ; entry contributes

158

CHAPTER 4. VERTEX NOMINATION

at least af to E(Xp). It follows immediately that

E(Xp) = E (tr(AB) — tr(APBP"))

= E ({vec(A), vee(B)) — (vec(A), 7p(vec(B)))

> 208 Z (% Z Z € j€ik T mi@,.)

J k#j

(Uz‘ - Gi,.)ez‘,.
5 + Mi€ie | -

Let n(P) be the total number of distinct entries of vec(B) permuted by 7p, and note

that an application of Lemma [11] yields

E(Xp) =E (tr(AB) — tr(APBP"))

E ({(vec(A), vec(B)) — (vec(A), 7p(vec(B)))

The assumptions in the Theorem also immediately yield that

n(P) > zk: ((uk;;')ek' + mkekv.) :

We next note that Xp is a sum of n(P) independent random variables, each bounded

159

CHAPTER 4. VERTEX NOMINATION

in [—c¢,c|]. An application of Hoeffding’s inequality then yields

P(Xp <0) <P(|Xp—EXp| >EXp) <2 2B Xp
- exp 4 —
p=R = AP pl=BRar) = 28P T an(p)

EXp|ky afky Uk — €ko)Ehe
SQeXp{—|TP2|}§2€Xp{— 102 Z((b ;)k —|—mk6k,o>}-
k

Next, note that

{PePst Xp<0}=0iff|[{PeP/~ st Xp<0} =0.

Given {ego}f,—, satisfying wy = >, exe = >, €ox for all k € [K], the number of

elements P € P/ ~ with €, ¢(P) = €, for all k, ¢ € [K] is at most

ulz:éyél fl,éug:e;sz €2, ‘ugz#(€KL _ u1111—61,1u1212—62,2 . u’vll;(_fK,K
— ek (ue—er k) log(ug) (4‘12)

The number of ways to choose such a set (i.e. the {Ek,f}i(,e) is bounded above by

[T (e + E)F = st oo lostutie) (4.13)

ks.t. €,e7#0

160

CHAPTER 4. VERTEX NOMINATION

Applying the union bound over all P € P/ ~, we then have

< exp{ _ abry (b ek Jes + mkekﬁ.) (4.14)

2c2

+ Z(uk — Gk,k) IOg Uz + Z KlOg(le + K)} (415)

k kst eg o0

It remains for us to establish that the expression inside the exponent goes to —oo fast

enough to ensure our desired bound. For each k, the contribution to the exponent in

(T.14) is

_ afky ((uk — Ek,.)Ek,.

5. 5 + mkek,-) + (up — €xr) logug + Hep o # 0} K log(uy + K)

afky <€k,k€k,.

9¢2 5 + mkek,.) + €ke 10g u; + H{Gk, 75 O}K log(uk -+ K) (416)

If uk/2 < €k < U, then

Up€r 0 Urk€he

= w(K log(uw, + K7)),

€k, kCh,o =

= w(ij. IOg uk), and €k.k€k,0 >

and the contribution to the exponent in (4.14]) from k, Eq. (4.16)), is clearly bounded

above by —2log(n) for sufficiently large n. If € < u;/2 then €6 > 1;/2, and

Mo = W(epologuy), and myey o > m,;uk = w(K log(uy + K)),

161

CHAPTER 4. VERTEX NOMINATION

and the contribution to the exponent in (4.14]) from k, Eq. (4.16)), is clearly bounded
above by —2log(n) for sufficiently large n. If €, = uy, then all terms in the exponent

(4.16)) are equal to 0. For sufficiently large n, Eq. (4.14) is then bounded above by

expd — 3 2log(n) p < exp {~2log(n)}.
ks.t. €,e7#0

and the result follows. O

Consistency of L¥ as claimed in Theorem [5| follows similarly to that of LM* and

we next briefly sketch the details of the proof.

Proof of Theorem [(Sketch). Analogously to the proof of Theorem [4] define
Xp = tr ((A0?)TBO2) _ g ((A02)TBO2PT

The proof follows mutatis mutandis to the proof of Theorem [d], with the key difference

being that in this case,

E(Xp) =E (tr (A"?)TBI2) —tr (AT2)T L2 pTY)

> 2a Z M€k -
k

Details are omitted for brevity. O]

Before proving Theorem [6] we establish some preliminary concentration results for

162

CHAPTER 4. VERTEX NOMINATION

our estimates /A\, and ny, k € [K]. An application of Hoeffding’s inequality yields that

for k, ¢ € [K] such that k # ¢,

S vnlogn

P (‘KH — AH‘ >) < 2exp{—2nlogn},
mpmy

and for k € [K],

vnlogn
(")

P (’Kk,k — Ak,k’ >) < 2€Xp {—271 lOg n} s

and

—2mt?
P(|ﬁk—nk|2t)§2€xp{ 7721 }>
n

With ~ defined as in 1} define the events & and &2 via

(4.17)

(4.18)

(4.19)

K ~ ~
57(11) = {V {k,g} S ([2]), s.t |Ak,k — Ak,@‘ >, it holds that ‘A]“k — A]@g’ > %} >

62 = {¥ k€ [K], i —mil < n2*}.

Combining (4.17)—(4.19)), we see that if for each k € [K], ny = O(n), ming my =

w(y/ny log(ng)), then for sufficiently large n,

P ((5721) U 57(12))6) S e—210gn‘

163

(4.20)

CHAPTER 4. VERTEX NOMINATION

We are now ready to prove Theorem @, proving the consistency of LM when the

model parameters are unknown.

Proof of Theorem [Let B be our estimate of B using the seed vertices; i.e., there
are fi vertices from block k for each k € [K], and for each k, ¢ € [K], the entry of B

between a block k vertex and a block ¢ vertex is

Let L be the set of distinct entries of /A\, and define

= min Rex—Rel f— min [Bux—Bul ¢—max|By - B
“ {H}ngltn k#| ok wel 8 {M}ng}gl k7£€| kik kel € ?}?ﬂ J wels
(4.21)
A . ~ . €T y
4= min |z —y|, k= min|log|—|—log|——]]|. (4.22)
zyel zyel 1—2z 1-— Y

Note that conditioning on g ueP and assumption 7. ensures that each of &, B ,
¢, 7y, and & is bounded away from 0 by an absolute constant for sufficiently large n.

For each k € [K], define

e = |k — k| = [l —ugl, e= Zek, N = min(ng, ng), 1= Zmﬁ (4.23)
k k

and note that conditioning on &" U £ ensures that ¢, = O(ni/ %) for all k € [K].
An immediate result of this is that, conditioning on eMu &(12), we have that n, =

164

CHAPTER 4. VERTEX NOMINATION

O(ng) = O(n) for all k € [K].

Define P := {P € Il, : €1..(P) > n*3logn}, and for P € Il,, define

Xp :=tr(AB") — tr(A(I,, ® P)B(I,, ® P)").

We will show that

P(3PePst Xp<0)=0(1/n?),

and the desired consistency of LMV follows immediately. To this end, decompose A

and B as
n ¢ n [
n | Al Alee) n | B9 Blee
A — B —= ,
e | Ao Alee) . | B9 Blee

where A (resp., B(®9)) is an 1 x n submatrix of A (resp., B)—which contains
the seed vertices in A—with exactly 7, vertices (resp., labels) from block k for each
k € [K]. We view A9 as the “core” matrix of A (with A and A being the
“errorful” part of A), as A is a submatrix of A that we could potentially cluster

perfectly along block assignments. Note that similarly decomposing P as

n | P@o) plee

. | pleo plee

165

CHAPTER 4. VERTEX NOMINATION

we see that there exists a principal permutation submatrix of P(“) of size (n — 2¢) x
(n— 2¢), which we denote P (with associated permutation &). This matrix represents
a subgraph of the core vertices of A mapped to a subgraph of the core vertices in B.

We can then write P = P @ @, where Q € Il,. For each k. { € [K], let

g]ag = €k7g(P) = |{U € Uy, s.t. 5(1)) € Uk}|
Consider now
Xp = (Al 58 Q)B(L, 5 & Q) — (AP S QBIP & Q). (424)

Letting {i, denote the number of vertices from the k-th block acted on by P, our

assumptions yield

E(Xp) > 240y ((“‘% n mkek,.) — O(ne) - 6(e).
k

Let i(P) be the total number of distinct entries of vec(B(“9)) permuted by P, and

note that another application of Lemma [11] yields

166

CHAPTER 4. VERTEX NOMINATION

The assumptions in the Theorem also immediately yield that

U, — €
Z(k ke +mkek.).

k

We then have that there exists a constants ¢; > 0 and ¢ > 0 such that

P(IPePst. Xp<0[EPUEP)=P(IPe P/~ st. Xp<0|EPN UED)

A

< exp { apry Z (M + mkgk,.) + O(ne) + O(e?)

2¢2 2
k
+ Z(ﬁk — & x) log iy + Z K log(uy, + K) 4+ O(elog e)}
k k s.t. Ek,.750

— exp { —a)y (M + mkék,) (4.25)

k

+Zek.loguk+ Z K log uk+K)+@(ne)}

k s.t. €k.7$0

< exp{—can*logn}. (4.26)

Unconditioning Equation (4.25) combined with Equation (4.20]) yields the desired

result. O

Proof of Theorem @ (Sketch). The proof of Theorem [7is a straightforward combina-

tion of the proofs of Theorems [f] and [6] once we have defined

P:={Pcll,: e P)>n"Togn}.

167

CHAPTER 4. VERTEX NOMINATION

Details are omitted for the sake of brevity.

168

Chapter 5

Query Reranking Using Vertex

Nomination

In the previous chapter, we established the statistical soundness of a maximum-
likelihood approach to vertex nomination. We turn now to applying this technique to
the problem of rescoring query results under the search framework discussed in earlier
chapters. We recall our basic framework: we have a search collection §, a multiset
of objects from some set of possible observations X'. X is endowed with a similarity
measure 0 : X x X — [0, 1] that captures our ideal notion of similarity for the task at
hand, but this oracle similarity is intractable due to computational constraints. We
use in place of o, then, a more tractable ersatz similarity function x : X x X — [0, 1],
and embed S in R? according to some mapping f : S — R? given by, for example,

Laplacian eigenmaps (see Appendix . In Chapter , we showed that in the case of

169

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

Laplacian eigenmaps embeddings, only small error is incurred in the embeddings by
replacing o by a noisy, possibly biased estimate x.

A second source of error in our search pipeline, not addressed by the results in
Chapter [3] arises at query time as a result of using an out-of-sample extension and
near-neighbor retrieval. Recall that having constructed embeddings Es = {f(x) :
r € 8} C R4, we build a near-neighbor index Z (see Appendix [C| for an overview of
near-neighbor retrieval) that allows us to quickly find points in Es near a given query
vector z € R%. Having built index Z, let ¢ € X be a new query observation. In order
to retrieve candidate matches to ¢, we must first embed it in R? according to the same
embedding that was applied to §. The query is embedded as f (q) € RY, where f is an
out-of-sample extension of embedding f. In most cases, this out-of-sample extension
is based on the Nystrém method (see Appendix for further discussion). As such, f
is only an approximation to an ideal embedding f* : X x X — R?, which we would
work with if it were feasible to apply our embedding technique to all of X'. Indeed,
in the audio search system presented in Chapter [2] it was infeasible to even embed
the search collection directly, and we settled for an out-of-sample extension based on
a reference set of 10,383 observations. Thus, we incur error when we retrieve near-
neighbors of f(¢) rather than near-neighbors of f*(¢), arising from the discrepancy
between the two embedding functions.

In addition to this out-of-sample extension error, the near neighbor retrieval index

is a source of error, in that retrieval is approximate. When we query Z for the near

170

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

neighbors of f (g), we obtain a set of candidate matches R, C S whose embeddings
corresponding to the near-neighbor points to f(g). The points {f(z) : = € R,} are
the near neighbors of f(q) retrieved from I. As such, they are not necessarily the
true nearest points to f (¢) in Es. That is to say, error is introduced in the fact that
we must perform approzximate, rather than exact, near neighbor retrieval.

To recapitulate, we have discussed at various points in this thesis four related

sources of error:

1. Error in approximating the oracle similarity o with an ersatz similarity &, arising

from model misspecification or computational constraints.

2. Error arising from further approximation of x and occlusion of the pairwise

similarities {k(z,y) : =,y € S}.

3. Approximation error due to using the out-of-sample extension f of embedding

f rather than an embedding computed for all of X.

4. FError in retrieval due to the inherently approximate nature of fast near neighbor

algorithms.

In Chapter[3| we proved that the first two of these sources of error could be controlled,
in the sense that under suitable conditions on the set S and the similarity functions
o and k the error introduced by the embedding process becomes arbitrarily small as

the number of observations in S increases. In this chapter, we will apply the vertex

171

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

nomination tools presented in the previous chapter to mitigate the latter two sources

of error.

5.1 Reranking: The basic problem

Given a set of query results for a query ¢ € X, it is typical that we wish to order
them by relevance. That is, order them so that the results appearing early in the list
are those that we believe to be the best matches to the query ¢. The sources of error
discussed above suggest that this ordering may not be the best one if our ultimate
goal is to rank the query results according to their similarity to ¢ as measured by
t (let alone o), since (a) the embedding f(g) is an out-of-sample approximation to
some more faithful embedding f*(q), (b) by the nature of near neighbor retrieval, the
ranking of the results in R, is with respect to an approximation of the appropriate
notion of nearness to f(¢) in R?, and (c) nearness in R? only approximately reflects
the similarity measure . In light of these sources of error, how can we reorder the
query results R, to better reflect s, the similarity with respect to which they were
initially embedded? This is an example of a rescoring or reranking problem.

Rescoring is a core component of the typical pipeline in speech processing (Rastrow
et al.2011; Peng et al.|2013; Soto et al.|2014; |Pham et al.[|2016]), machine translation
(Paul et al. 2004; Duh|[2009; Blackwood|[2010), and image processing (Russakovsky

et al.|2015; Malik et al.[2016]), to name just a few domains. In typical applications,

172

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

we have a slow, expensive, but comparatively trustworthy measure of similarity or
quality, but evaluating this measure on many pairs of objects is expensive. Instead, an
inexpensive but less accurate method is used to quickly search over a large collection
of objects. This yields a more manageable set of candidate matches, which is then
reassessed using the expensive, more accurate measure. In some applications, most
prominently in document retrieval, rescoring may take into account an assessment
of result quality, provided either by a user or by a classifier, typically referred to as
relevance feedback (Ruthaven and Lalmas 2003; [Manning et al.|2008; |Carpineto and
Romano|2012).

In the case of our search framework, the fast, inaccurate method corresponds to
retrieving near neighbors N, C f(S) of the query embedding f(q) from index Z. This

first, inexpensive step, yields query results

R,={z: f(z) e N} CS.

The rescoring problem becomes a question of how best to order the elements of R,.
In particular, the goal is to order the elements of R, so that “correct” query results
tend to appear higher in the list.

As an illustrative example, consider the S-RAILS system presented in Chapter [2]
There, the index Z operated by assigning each segment embedding to a bit signature

according to its position relative to a set of hyperplanes. Retrieval then consisted

173

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

of comparing a query signature against those in the index and retrieving those that
shared prefixes (and repeating this comparison under several permutations of the bit
signatures). These bit signatures allowed an approximation of the cosine similarity
between pairs of vectors, and the results were ordered according to this approximate
similarity to the query.

Much of the work related to reranking in machine learning has focused on learning
to rank, in which the goal is to learn a (partial) ordering on observations that reflects
some notion of goodness (e.g., quality of transcriptions in the case of speech processing
or of parses in the case of natural language processing). Often, this ranking must be
learned from a collection of labeled examples, and it is typical that we find ourselves
in the semi-supervised setting, in which there are many available observations, but
supervisory information is available for only a few pairs of these observations or for
only a few lists of query results (Duh/2009). Many approaches to the semi-supervised
learning to rank problem apply ideas from representation learning (see Appendix
to learn an embedding or kernel function that reflects a suitable notion of goodness
(Duh and Kirchhotf|2008; McFee and Lanckriet/[2010). Others have cast the problem
as one of ordinal regression (Herbrich et al.|2000; |[Shashua and Levin|2003)) or one of
data imputation to recover unobserved pairwise similarities (Zhou et al.|2004; |Wang
et al.|[2005).

The low-resource search task addressed by the S-RAILS system in Chapter

belongs to this semi-supervised setting. We have a collection of millions of audio

174

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

segments, but pairwise information in the form of word type labels is available for
only a few thousand segments. Our word similarity experiments in Chapter [2| suggest
that a learning to rank algorithm such as MLR (McFee and Lanckriet 2010) might
be effective in reranking our query results, provided that MLR can correct the errors
introduced by the embedding process. Rather than applying a reranking procedure,
we consider here an altogether different approach based on vertex nomination, as
presented in Chapter [4]

A natural approach to rescoring in the context of Chapter [2] would have been
to rerank the results according to their similarity to the query, i.e., ascending in
DTW distance to the query. In the notation of our framework, this corresponds to
reranking R, according to (g, x) for all z € R,. This rescores R, according to the
intended measure of similarity, and thus we expect that it should result in a better
ranking of the results. However, this approach does not make use all of the available
information. Given our query ¢ and results R,, we in fact have a graph of similarities
{k(z,y) : x,y € {¢} U R,}. Ideally, we should use all of the information available in
these pairwise similarity measurements to perform our reranking. Indeed, if we believe
that each k(z,y) is an estimate of the oracle similarity o(z,y), then we might hope
that jointly using all the available pairwise similarities would improve our ranking.
Vertex nomination, as discussed in the previous chapter, provides one possible way

to exploit this structure.

175

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

5.2 Reranking using Vertex Nomination

We let G, = (V,, E,) be a weighted undirected graph on r, = |R,| + 1 vertices.
These vertices correspond to the results in R, and the query ¢ itself, with weights
given by w,, = k(z,y) € [0,1]. We would like to devise a reranking scheme that
uses all of the available information in this weighted graph. If we think of the result
set I?; as containing “correct” and “incorrect” results, then it is natural to expect
that a corresponding block structure will manifest in matrix G,, with one block
corresponding to the correct results and others corresponding to the incorrect results.
We will suppose that in IR, there are n; < r, correct matches, and these n; segments
will comprise the block of interest that we wish to recover. Of course, it is possible
that the remaining elements of R, have block structure of their own. Thus, we will
model G, as an exponential family SBM, which we introduced in Definition [5| in
Chapter . In particular, we will assume that G, ~ ExpSBM(K, 7, b, ©), in which
the first block corresponds to the correct matches to the query, and we will perform
vertex nomination with precisely one seed vertex, namely the query itself. Three
concerns arise immediately from this formulation, and we will briefly address them
in turn.

Vertex nomination as considered in most of Chapter [4] matches an unweighted
graph to a weighted graph in such a way that the resulting optimization problem is
equivalent to a maximum likelihood alignment of the vertices of GG, with the vertices

of the matrix encoded by B. In the present setting, G, is weighted, and it isn’t

176

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

necessarily the case that matching G; with B corresponds to a maximum likelihood
solution. As sketched in Section 1.5 the exponential family SBM allows us to extend
the vertex nomination to the case where G, ~ ExpSBM(K,1i,b,0), in which the
edge weights w, , are distributed independently according to a model parameterized
by Op(z),b(y)- This leaves open the question of what distribution to choose for the edge
weights and how to parameterize it, a choice that depends on the problem domain.

In Chapter 4, we performed vertex nomination by aligning a matrix to a block-
structured matrix B, the entries of which were a function of a block communication
matrix A € [0, 1]5*K (or, in the case of the exponential family SBM, a parameter
matrix © € RE*K). The entries of A were estimated based on the seed vertices. In
the present case, we have only one seed vertex, and hence have no way, a priori, to
estimate the entries of the parameter matrix © € Rf*X_ As such, we need some
other way to estimate the model parameters.

A third concern pertains to estimating the block sizes. In Chapter [, our model
assumed that we knew the correct block sizes n; for £ = 1,2,..., K, or that we
had seed vertices from each block with which to estimate the block sizes. In the
present setting, it is not clear how we should choose 7, since we have only one seed
vertex with which to perform estimation. While we might attempt to estimate block
structure by examining the weight matrix of G, or decide on block sizes based on
domain knowledge, it is not clear a priori how to proceed.

How we deal with the above concerns will, in general, depend on domain-specific

177

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

factors. In the remainder of this chapter, we will consider query reranking in the
context of the S-RAILS audio search system presented in Chapter 2 Our goal is to
explore whether or not VN-based reranking of the query results returned by S-RAILS
improves upon the evaluation scores presented in that chapter. In the next section,
we will describe a basic system for reranking in the S-RAILS system based on vertex
nomination. In the sequel, we will explore the effects of modifying these approaches

in various ways.

5.3 VN-based reranking for audio search

Recall that in the setting of Chapter [2| the set X of possible observations cor-
responded to the set of all possible utterances of length between 500 and 1,000 ms,
represented by their feature vector time series, so that any x € X could be written as
r = T1,T9,...,T, for some number m, where z; € RP for all 1 < i < m. Our ersatz

similarity took the form of a Gaussian kernel

c(5,4) = exp {_[maxm,DTQv;/Q(a;,y) —)] }

where n > 0,0 > 0 are parameters and DTW (z,y) denotes the cost of dynamic
time warping (DTW; see Appendix [A| for a discussion) alignment between x and y.
Thus, the vertices of our results graph G, = (V,, E,) correspond to audio segments.

Under the assumption that the query results contain audio segments corresponding

178

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

to only a few different words or phrases, we expect G, to exhibit an approximate
block structure in which the blocks correspond to these word types. Thus, we will

model G, as being distributed as G, ~ ExpSBM(XK, 7, b, ©).

5.3.1 Modeling edge weights

Following a similar approach to that taken to the error model in the synthetic
experiments in Chapter , we will model the weights w,, € [0, 1] as being distributed
according to a one-dimensional subfamily of the beta distribution. In particular, we
will take the approach in which the beta distribution Beta(a, 8) is reparameterized
in terms of its mean u = /(o +) and “sample size” v = a + 5. To obtain a one-
parameter subfamily, we will assume that the sample size parameter v is the same
across all blocks. That is, we will make the assumption that the distribution of w,,
has the same v value regardless of the block memberships b(z), b(y), so that only the
expected value of w, , varies by block. This decision is consistent with an assumption
that the edge weights differ in expectation based on the block memberships of the
audio segments (e.g., based on whether or not the audio segments correspond to the
same word), but that the variance of w, , about its mean does not depend on the
block memberships.

Fixing for now some global value for v = a + 3 that we will specify later, and

179

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

letting C' > 0 denote a normalization constant, w, , has density

flwla,B) =Cu* (1 —w)”,

and has log-likelihood

log f(w | 0y, Bay) = ((wy — 1) logwey + (Boy — 1) log(l — wyy) + log C

Wz y

= (agyy —1)log + (Bay + gy — 2)log(1l — wy,) +log C

1 —wyy

= (Yzyv — 1) log # + (v —2)log(1 — wy,) +log C,
j— wx7y

where we have used the fact that under this reparameterization we have v = a + 3
and p = a/v. Following the framework outlined in Section , we find that we will

want to align the matrix

A=[A,,] = {log M}

1 —wyy

to the matrix

B = [Byy] = [s@ypemr — 1]

where the block assignment function b : V' — [K] is chosen to reflect our choice of

block sizes (see Section [5.3.3)).

180

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

5.3.2 Parameter Estimation

In the search task considered in Chapter 2] we had access to a set of approximately
ten thousand isolated, labeled word examples. We will use those word examples to
estimate the entries of the block parameter matrix ©. In Chapter [d we estimated a
new block communication matrix A for each graph we considered. Such an approach
is less feasible here. Instead, we will estimate one matrix of parameters ©, and use
it for all queries. In particular, we are interested in two parameters, p; and o, the
mean similarity between same-word and different-word segments, respectively. Our

parameter matrix © will then have

p ifi=j
@z’]:

o otherwise,

reflecting the fact that we assume that each block of our SBM corresponds to a
different word type.

Denoting our collection of labeled word examples by M, let ¢ : M x M — {0,1} be
such that c¢(x,y) = 1 if x and y have the same word label and ¢(x,y) = 0 otherwise.

Define the sets

My = {{z,y} - e(w,y) =1}, Mo = {{z,y} : ¢(z,y) = 0}.

181

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

Using these labeled examples, we can estimate the block probability parameters by

Of course, more complicated approaches to estimating these parameters are possible,
for example by trying to separately estimate /A\Lg and K272 to better capture block
structure that may be present in the non-matching results, but in the present setting,
only the sets M, and M, are sensible ones to ask about.

Applying this estimation to the reference set of 10,383 word examples used in
Chapter [2] we obtain estimates fi; = 0.6332, iy = 0.2671. Alternate estimates can be
obtained based on a plug-in estimate, using the fact that p = a/(a+ /), where o and
[are the shape parameters of the Beta distribution. Maximum likelihood estimation
of the shape parameters applied separately to the sets {z,y} € M; and {z,y} € M,

yields estimates

Gy = 4.5227, [y = 2.6344
Go = 4.0492, B, = 11.0714,

from which we obtain plug-in estimates for the corresponding p and v parameters

fiy = 0.6319, 17, = 7.1570

fio = 0.2678, 0y = 15.1206,

182

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

which we will use below. We choose as our global, fixed value of v the inter-match
parameter estimate 7 = Iy = 15.126. Empirically, we found little to no difference in

performance between using = iy and v = 7.

5.3.3 Choosing block sizes

It remains to address how we will choose the sizes of the blocks when performing
VN reranking. There are a number of possible block structures to attempt to capture.
For the time being, we will sketch one, which we will call the flat structure. We assume
only two blocks, one corresponding to the segments that are correct matches and one
corresponding to the segments that are not correct matches (“non-matches”). Rather
than attempting to estimate the sizes of these two blocks in G, we will take advantage
of the LM ranking function, defined in Roughly speaking, £M* ranks the non-
seed vertices according to how much the likelihood improves when each given vertex
is added to the interesting block. Thus, we take the interesting block to have size

u; = 1, and take the other block to be of size uy = r, — 1.

5.4 Experiments

We turn now to assessing whether or not VN reranking can improve the query
results in the S-RAILS system presented in Chapter [2l For each of the 2756 unique

queries in the development set, we will rerank the results returned by the S-RAILS

183

CHAPTER 5. QUERY RERANKING USING VERTEX NOMINATION

system presented in Chapter [2l In Chapter [2, we considered the effect of beamwidth
B on system performance. In the present setting, the computational costs of the
maximum likelihood VN procedure make it infeasible to rerank more than the top
1,000 results. In light of this, we limit ourselves to the case of beamwidth B = 1, 000.
Baseline results are summarized in Table for various settings of the signature
length and number of of permutations. All experiments use the signature threshold
Tinresh = 0.06, as in Chapter 2] We refer the reader to Chapter [2] for a discussion of

the three evaluation metrics FOM, OTWYV and P@10.

Table 5.1: Baseline S-RAILS performance on the development search collection,
averaged over all query types as a function of signature length S and number of
permutations P for beamwidth B = 1,000 and using signature threshold Tipesn =
0.06. All scores are percentages.

Median Example Best Example
S| P|FOM | OTWYV | P@Q10 | FOM | OTWV | P@10
64 | 4 19.6 13.6 16.0 43.2 31.0 52.3
64 | 8 24.1 16.4 17.3 48.3 33.2 54.1
128 | 4 21.6 14.4 19.0 44.5 31.8 57.4
128 | 8 27.3 16.9 19.9 52.4 37.1 62.1
256 | 4 25.0 174 27.0 46.4 35.1 60.2
256 | 8 31.7 20.2 28.0 52.7 38.6 63.0
512 | 4 21.7 15.5 22.8 45.9 34.0 59.3
512 | 8 28.2 19.0 24.3 52.7 38.4 64.1
1024 | 4 22.0 16.6 24.4 45.9 34.3 58.7
1024 | 8 29.5 19.3 25.3 52.7 38.9 62.9

We recall that using beamwidth