
STATS507: Data Analysis in Python 1

Homework 1: Data Types, Functions and Conditionals

Due September 19, 11:59 pm

Worth 20 points

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

2. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

3. Be careful to follow directions! Remember that Python is case sensitive. If we
ask you to define a function called my_function and you define a function called
My_Function, you will not receive full credit. You may want to copy-paste the
function names below to make sure that the functions in your notebook match what
we are expecting.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Fall2019/STATS507/hw_template.ipynb. You will submit, via Canvas, a .zip file called
yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand in a
file for this, homework 1, it would be called klevin_hw1.zip. .zip is the file extension
for files compressed using the zip program; see https://en.wikipedia.org/wiki/Zip_

(file_format). You can make .zip files using the program zip or gzip in UNIX-style
operating systems (e.g., Linux and Mac OS), and can also be run in the Windows pro-
gram cygwin, which emulates a UNIX command line. Alternatively, many graphical user
interfaces (GUIs) exist for creating zip archives. Contact the instructor or your GSI if
you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able to
extract your archived file and run your notebook file on my own machine. Please include
all of your code for all problems in the homework in a single Python notebook unless
instructed otherwise, and please include in your notebook file a list of any and all people

http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_template.ipynb
https://en.wikipedia.org/wiki/Zip_(file_format)
https://en.wikipedia.org/wiki/Zip_(file_format)


STATS507: Data Analysis in Python 2

with whom you discussed this homework assignment. Please also include an estimate of
how many hours you spent on each of the sections of this homework assignment.

These instructions can also be found on the course web page at http://www-personal.
umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html. Please di-
rect any questions to either the instructor or your GSI.

1 Warm up: Defining Simple Functions (4 points)

In this problem, you will get practice defining simple functions in Python.

1. Define a function called say_hi, which takes no arguments and prints the string
Hello, world! when called.

2. Define a function called goat_pad, which takes a string as its only argument, and
prints that string, prepended and appended with the string goat. So, goat_pad(’bird’)
should produce the output

goatbirdgoat

goat_pad(’_’) should produce the output

goat_goat

and so on. You may assume that the input is a string, so there is no need to perform
any error checking in your function.

3. Define a function called print_n, which takes two arguments, a string s and an
integer n (in that order), and prints the string n times, each on a separate line. You
may assume that s is a string and that the integer n is non-negative.

2 Euclid’s algorithm (3 points)

Euclid’s algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm) is a method
for finding the greatest common divisor (GCD) of two numbers. Recall that the GCD of
two numbers m and n is the largest number that divides both m and n.

1. The Wikipedia page above includes several pseudocode implementations of Euclid’s
algorithm. Choose one of these, and use it to implement a function gcd, which takes
two integers as its arguments and returns their GCD. You may assume that both
inputs are integers, so there is no need to include any error checking in your function.
Note: this is one of the rare occasions where you have my explicit permission to
look up your answer. Unless otherwise stated (e.g., as in this problem), looking up
solutions on Wikipedia or in any other non-class resource will be considered cheating!

2. Use your function to evaluate the GCDs of the following pairs of numbers:

(a) 2019, 2020

(b) 1600, 400

(c) 5040, 60

3. What does your function do if one or both of its arguments are negative? Does this
behavior make sense?

http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html
https://en.wikipedia.org/wiki/Euclidean_algorithm


STATS507: Data Analysis in Python 3

3 Approximating Euler’s number e (8 points)

The base of the natural logarithm, e, is typically defined as the infinite sum

e =
∞∑
k=0

1

k!
= 1 + 1 +

1

2
+

1

6
+

1

24
+ . . . , (1)

where k! denotes the factorial of k,

k! = k · (k − 1) · (k − 2) · · · · · 3 · 2 · 1,

where we define 0! = 1 by convention. For more on Euler’s number, see https://en.

wikipedia.org/wiki/E_(mathematical_constant). In this problem, we will explore
different approaches to approximating this number.

1. An early characterization of Euler’s number, due to Jacob Bernoulli, was as the limit
of (

1 +
1

x

)x

(2)

as x → ∞. Define a function called euler_limit that takes as an argument an
integer n, and returns a float that approximates e by taking x = n in Equation (2).
You may assume that the input to your function will be a positive integer (of course,
your function will still run just fine if n is, say, a positive float, but we will only use
integer values in what follows).

2. What happens when you call euler_limit(n) for really huge values of n (say, 1016

or 1018)? Why does this happen? Hint: the answer has to do with floating point
arithmetic. Think about how 1/n is represented on your computer when n is big.

3. Define a function called euler_sum that takes a single non-negative integer argument
n, and returns an approximation to e based on the first n terms of the sum in
Equation (1). Your function should return a float. You may assume that the input
will be a non-negative integer, so you do not need to include error checking in your
function. As an example, euler_sum(4) should return the sum of the first four
terms in Equation 1, so that euler_sum(4) returns 1 + 1 + 1/2 + 1/6 ≈ 2.667.
Note: the sum in Equation 1 starts counting with k = 0 (i.e., it is “0-indexed”),
while our function starts counting with n = 1 (i.e., it is “1-indexed”). euler_sum(1)
should use one term from Equation (1), so that euler_sum(1) returns 1. Similarly,
euler_sum(0) should return 0, since by convention an empty sum is equal to zero.
Note: you may use the math.factorial function to compute k!, but I recommend,
for the sake of practice, implementing the factorial function yourself, as it is a nice
example of a problem that is easily solved with recursion.

4. Define a function called euler_approx that takes a single argument, a positive float
epsilon, and uses the sum in (1) to obtain an approximation of e that is within
epsilon of the true value of e. Hint: use a while-loop. Note: you can use the
Python math module to get the true value of e (up to floating point accuracy):
math.exp(1).

5. Define functions called print_euler_sum_table and print_euler_lim_table that
each takes a single positive integer n as an argument and prints the error between

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)


STATS507: Data Analysis in Python 4

the approximation given by, respectively, euler_sum(k) or euler_limit(k) and the
true value of e as k ranges from 1 to n, one per line. That is, the functions should
print a table of the the approximation error for different choices of k.

6. Which of these two approximations is better?

4 Testing Properties of an Integer (5 points)

In this problem, you’ll get a bit more practice working with conditionals, and a first
exposure to the kind of thinking that is required in a typical “coding interview” question.
A positive integer n is a power of 2 if n = 2p for some integer p ≥ 0.

1. Write a function is_power_of_2 that takes a positive integer as its only argument
and returns a Boolean indicating whether or not the input is a power of 2. You
may assume that the input is a positive integer. You may not use the built-in
math.sqrt function in your solution. You should need only the division and modulus
(%) operations. Hint: the simplest solution to this problem makes use of recursion,
though recursion is not necessary.

2. Generalize your previous solution to a function is_power that takes two positive inte-
gers as its arguments, b and n, in that order, and returns a Boolean. is_power(b,n)
should return True if n is a power of b and False otherwise.


	Warm up: Defining Simple Functions (4 points)
	Euclid's algorithm (3 points)
	Approximating Euler's number e (8 points)
	Testing Properties of an Integer (5 points)

