
STATS507: Data Analysis in Python 1

Homework 10: Google TensorFlow

Due December December 20, 10:00 am

Worth 30 points

Warning: Three things to bring to your attention:

• Owing to the grade submission deadline, you may not use late days to extend the
deadline for this homework or any other homework beyond December 20th. Any
work turned in after 10:00:am on December 20th will be considered late and will
receive a grade of 0. Note the non-standard deadline time!

• The last problem of this homework will ask you to do a few simple things in Tensor-
Flow on Google’s computing service, Google Cloud Platform (GCP). This part of
the assignment is meant to challenge you to learn a new tool from scratch by reading
documentation and following its tutorials. This is tough, by design. Start early so
that you have plenty of time to grapple with the material.

• As discussed in lecture, Google TensorFlow is now on version 2.0, while Google
Cloud Platform (GCP) is still largely built around TensorFlow version 1.X. Thus,
we are in the unfortunate situation of having to choose between learning the latest
version of TensorFlow but being unable to run it on GCP or running a slightly older
version of TensorFlow on GCP. It is my opinion that the latter is preferable, since
getting more experience with distributed and cloud-based computing is much more
useful for your careers than learning a particular version of TensorFlow (which is
bound to change yet again in a couple of years, anyway). The upshot for you is
that you should take care when reading the TensorFlow documentation that you are
reading the docs for TF version 1, not version 2.

Instructions on writing and submitting your homework can be found at http://www-
personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html.
Failure to follow these instructions will result in lost points. Please direct any questions
to either the instructor or your GSI.

1 Warmup: Constructing a 3-tensor (2 points)

You may have noticed that the TensorFlow logo, seen in Figure 1 below, is a 2-dimensional
depiction of a 3-dimensional orange structure, which casts shadows shaped like a “T” and
an “F”, depending on the direction of the light. The structure is five “cells” tall, four
wide and three deep.

Create a TensorFlow constant tensor tflogo with shape 5-by-4-by-3. This tensor will
represent the 5-by-4-by-3 volume that contains the orange structure depicted in the logo
(said another way, the orange structure is inscribed in this 5-by-4-by-3 volume). Each cell

http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html


STATS507: Data Analysis in Python 2

Figure 1: The TensorFlow logo.

of your tensor should correspond to one cell in this volume. Each entry of your tensor
should be 1 if and only if the corresponding cell is part of the orange structure, and should
be 0 otherwise. Looking at the logo, we see that the orange structure can be broken into
11 cubic cells, so your tensor tflogo should have precisely 11 non-zero entries. For the
sake of consistency, the (0, 3, 2)-entry of your tensor (using 0-indexing) should correspond
to the top rear corner of the structure where the cross of the “T” meets the top of the
“F”. Note: if you look carefully, the shadows in the logo do not correctly reflect the
orange structure—the shadow of the “T” is incorrectly drawn. Do not let this fool you!

Hint: you may find it easier to create a Numpy array representing the structure first,
then turn that Numpy array into a TensorFlow constant. Second hint: as a sanity
check, try printing your tensor. You should see a series of 4-by-3 matrices, as though you
were looking at one horizontal slice of the tensor at a time, working your way from top
to bottom.

2 Building and training simple models (10 points)

In this problem, you’ll use TensorFlow to build the loss functions for a pair of commonly-
used statistical models. In all cases, your answer should include placeholder variables x

and ytrue, which will serve as the predictor (independent variable) and response (de-
pendent variable), respectively. Please use W to denote a parameter that multiplies the
predictor, and b to denote a bias parameter (i.e., a parameter that is added).

1. Logistic regression with a negative log-likelihood loss. In this model, which
we discussed briefly in class, the binary variable Y is distributed as a Bernoulli
random variable with success parameter σ(W TX+b), where σ(z) = (1+exp(−z))−1

is the logistic function, and X ∈ R6 is the predictor random variable, and W ∈
R6, b ∈ R are the model parameters. Derive the log-likelihood of Y , and write the
TensorFlow code that represents the negative log-likelihood loss function. Hint: the
loss should be a negative log-likelihood term, summed over all the observations.

2. Estimating parameters in logistic regression. The zip file at http://www-

personal.umich.edu/~klevin/teaching/Fall2019/STATS507/HW10_logistic.zip

http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/HW10_logistic.zip
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/HW10_logistic.zip


STATS507: Data Analysis in Python 3

contains four Numpy .npy files that contain train and test data generated from a
logistic model:

• logistic xtest.npy : contains a 500-by-6 matrix whose rows are the indepen-
dent variables (predictors) from the test set.

• logistic xtrain.npy : contains a 2000-by-6 matrix whose rows are the inde-
pendent variables (predictors) from the train set.

• logistic ytest.npy : contains a binary 500-dimensional vector of dependent
variables (responses) from the test set.

• logistic ytrain.npy : contains a binary 2000-dimensional vector of depen-
dent variables (responses) from the train set.

The i-th row of the matrix in logistic xtrain.npy is the predictor for the response
in the i-th entry of the vector in logistic ytrain.npy, and analogously for the two
test set files. Please include these files in your submission so that we can run your
code without downloading them again. Note: we didn’t discuss reading numpy data
from files. To load the files, you can simply call xtrain = np.load(’xtrain.npy’)

to read the data into the variable xtrain. xtrain will be a Numpy array.

Load the training data and use it to obtain estimates of W and b by minimizing
the negative log-likelihood via gradient descent. Another note: you’ll have to play
around with the learning rate and the number of steps. Two good ways to check if
optimization is finding a good minimizer:

• Try printing the training data loss before and after optimization.

• Use the test data to validate your estimated parameters.

3. Evaluating logistic regression on test data. Load the test data. What is the
negative log-likelihood of your model on this test data? That is, what is the negative
log-likelihood when you use your estimated parameters with the previously unseen
test data?

4. Evaluating the estimated logistic parameters. The data was, in reality, gen-
erated with

W = (1, 1, 2, 3, 5, 8), b = −1.

Write TensorFlow expressions to compute the squared error between your estimated
parameters and their true values. Evaluate the error in recovering W and b sep-
arately. What are the squared errors of these estimates? Note: you need only
evaluate the error of your final estimates, not at every step.

5. For ease of grading, please make the variables from the above problems available
in a dictionary called results_logistic. The dictionary should have keys ’W’,

’Wsqerr’, ’b’, ’bsqerr’, ’log_lik_test’ , with respective values sess.run(x)
where x ranges over the corresponding quantities. For example, if my squared error
for W is stored in a TF variable called W_squared_error, then the key ’Wsqerr’

should have value sess.run(W_squared_error).

6. Classification of normally distributed data. The .zip file at http://www-

personal.umich.edu/~klevin/teaching/Fall2019/STATS507/HW10_normal.zip con-
tains four Numpy .npy files that contain train and test data generated from K = 3

http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/HW10_normal.zip
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/HW10_normal.zip


STATS507: Data Analysis in Python 4

different classes. Each class k ∈ {1, 2, 3} has an associated mean µk ∈ R and vari-
ance σ2

k ∈ R, and all observations from a given class are i.i.d. N (µk, σ
2
k). The four

files are:

• normal_xtest.npy : contains a 500-vector whose entries are the independent
variables (predictors) from the test set.

• normal_xtrain.npy : contains a 2000-vector whose entries are the independent
variables (predictors) from the train set.

• normal_ytest.npy : contains a 500-by-3 dimensional matrix whose rows are
one-hot encodings of the class labels for the test set.

• normal_ytrain.npy : contains a 2000-by-3 dimensional matrix whose rows are
one-hot encodings of the class labels for the train set.

The i-th entry of the vector in normal_xtrain.npy is the observed random variable
from class with label given by the i-th row of the matrix in normal_ytrain.npy, and
analogously for the two test set files. Please include these files in your submission
so that we can run your code without downloading them again.

Load the training data and use it to obtain estimates of the vector of class means
µ = (µ0, µ1, µ2) and variances σ2 = (σ2

0, σ
2
1, σ

2
2) by minimizing the cross-entropy

between the estimated normals and the one-hot encodings of the class labels (as
we did in our softmax regression example in class). Please name the corresponding
variables mu and sigma2. This time, instead of using gradient descent, use Ada-
grad, supplied by TensorFlow as the function tf.train.AdagradOptimizer. Ada-
grad is a stochastic gradient descent algorithm, popular in machine learning. You
can call this just like the gradient descent optimizer we used in class—just supply
a learning rate. Documentation for the TF implementation of Adagrad can be
found here: https://www.tensorflow.org/versions/r1.15/api_docs/python/

tf/train/AdagradOptimizer. See https://en.wikipedia.org/wiki/Stochastic_
gradient_descent for more information about stochastic gradient descent and the
Adagrad algorithm.

Note: you’ll no longer be able to use the built-in logit cross-entropy that we used for
training our models in lecture. Your cross-entropy for one observation should now
look something like−

∑
k y
′
k log pk, where y′ is the one-hot encoded vector and p is the

vector whose k-th entry is the (estimated) probability of the k-th observation given
its class. Another note: do not include any estimation of the mixing coefficients
(i.e., the class priors) in your model. You only need to estimate three means and
three variances, because we are building a discriminative model in this problem.

7. Evaluating loss on test data. Load the test data. What is the cross-entropy of
your model on this test data? That is, what is the cross-entropy when you use your
estimated parameters with the previously unseen test data?

8. Evaluating parameter estimation on test data. The true parameter values for
the three classes were

µ0 = −1, σ2
0 = 0.5

µ1 = 0, σ2
1 = 1

µ2 = 3, σ2
2 = 1.5.

Write a TensorFlow expression to compute the total squared error (i.e., summed
over the six parameters) between your estimates and their true values. What is the

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/AdagradOptimizer
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/AdagradOptimizer
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent


STATS507: Data Analysis in Python 5

squared error? Note: you need only evaluate the error of your final estimates, not
at every step.

9. Evaluating classification error on test data. Write and evaluate a TensorFlow
expression that computes the classification error of your estimated model averaged
over the test data.

10. Again, for ease of grading, define a dictionary called results_class, with keys
’mu’, ’sigma2’, ’crossent_test’, ’class_error’ with keys corresponding to
the evaluation (again using sess.run) of your estimate of µ, σ2, the cross-entropy
on the test set, and the classification error from the previous problem.

3 Running Models on Google Cloud Platform (18 points)

In this problem, you’ll get a bit of experience running TensorFlow jobs on Google Cloud
Platform (GCP), Google’s cloud computing service. Google has provided us with a grant,
which will provide each of you with free compute time on GCP.

Important: this problem is very hard. It involves a sequence of fairly complicated
operations in GCP. As such, I do not expect every student to complete it. Don’t worry
about that. Unless you’ve done a lot of programming in the past, this problem is likely
your first foray into learning a new tool largely from scratch instead of having my lectures
to guide you. The ability to do this is a crucial one for any data scientist, so consider
this a learning opportunity (and a sort of miniature final exam). Start early, read the
documentation carefully, and come to office hours if you’re having trouble.

Good luck, and have fun!
The first thing you should do is claim your share of the grant money by visiting this

link: https://google.secure.force.com/GCPEDU?cid=HVe78B8tfw3bHEOFuVu%2BonEq8XNxlOpwDwEKGhMpMS%
2Ff%2FXp6oxXcpqo6Jf15frWW You will need to supply your name and your UMich email.
Please use the email address associated to your unique name (i.e., uniqname@umich.edu),
so that we can easily determine which account belongs to which student. Once you have
submitted this form, you will receive a confirmation email through which you can claim
your compute credits. These credits are valid on GCP until they expire in September
2020. Any credits left over after completing this homework are yours to use as you wish.
Make sure that you claim your credits while signed in under your University of Michigan
email, rather than a personal gmail account so that your project is correctly associated
with your UMich email. If you accidentally claim the credits under a different address,
add your unique name email as an owner.

Once you have claimed your credits, you should create a project, which will serve as a
repository for your work on this problem. You should name your project uniqname-stats507f19,
where uniqname is your unique name in all lower-case letters. Your project’s billing should
be automatically linked to your credits, but you can verify this fact in the billing section
dashboard in the GCP browser console. Please add me (UMID klevin) as well as your
GSIs Roger Fan (UMID rogerfan) and Su I Iao (UMID iaosui) as owners. You can do
this in the IAM tab of the IAM & admin dashboard by clicking “Add” near the top of
the page, and listing our UMich emails and specifying our Roles as Project → Owner.

Note: this problem is comparatively complicated, and involves a lot of moving parts.
At the end of this problem (several pages below), I have included a list of all the files that
should be included in your submission for this problem, as well as a list of what should
be on your GCP project upon submission.

https://google.secure.force.com/GCPEDU?cid=HVe78B8tfw3bHEOFuVu%2BonEq8XNxlOpwDwEKGhMpMS%2Ff%2FXp6oxXcpqo6Jf15frWW
https://google.secure.force.com/GCPEDU?cid=HVe78B8tfw3bHEOFuVu%2BonEq8XNxlOpwDwEKGhMpMS%2Ff%2FXp6oxXcpqo6Jf15frWW


STATS507: Data Analysis in Python 6

Important: after the deadline (December 20th at 10:00am) you should not edit
your GCP project in any way until you receive a grade for the assignment in canvas.
If your project indicates that any files or running processes have been altered after the
deadline by a user other than klevin, rogerfan or iaosui we will assume this to be an
instance of editing your assignment after the deadline, and you will receive a penalty.

1. Follow the tutorial at https://cloud.google.com/ml-engine/docs/tensorflow/
getting-started-training-prediction which will walk you through the process
of training a deep neural net similar to the one we saw in class, but this time using
resources on GCP instead of your own machine.

A few notes:

• You may have already completed some parts of the first few steps of the tu-
torial in the process of claiming your credits. Some steps of the tutorial have
instructions for either MacOS and Cloud Shell. You should follow the cloud
shell instructions, even if you are running Mac OSX. Similarly, you may ignore
any discussion of the Cloud SDK. SDK stands for “Software Development Kit”.
The Cloud SDK is a collection of tools for building programs that interact with
Google Cloud. There’s lots of cool stuff you can do with this, but it is outside
the scope of this assignment (of course, you are highly encouraged to check it
out, if you wish to learn more). Note, however, that there is a section titled
“Verify the Google Cloud SDK components” that you should still run, despite
the fact that Google Cloud SDK is in the name.

• The section titled “Develop and validate your training application locally” refers
to running a GCP training job in such a way as to avoid any charges for storage,
compute time, etc. This is a good way to make sure that everything is running
properly before you start paying for things. Note that the reference to “locally”
may be a bit confusing. Usually, we mean “local” to refer to the machine that
we are sitting at. In this case, “local” means the computer that is running your
Google Cloud console (that you access through a browser), as opposed to the
computers that GCP offers for rent.

• When it comes time to train a model on a non-local GCP machine, the first
thing we need to do is set up a bucket, which is the Google Cloud term for what is
essentially a storage drive. This is done in the section titled “Set up your Cloud
Storage bucket”. Important: Please follow that section’s suggestion to set
your bucket name as PROJECT_ID=$(gcloud config list project --format

"value(core.project)") BUCKET_NAME=${PROJECT_ID}-mlengine When it comes
time to grade this problem of the assignment, we will look for a bucket by this
name, and look for a trained model in that bucket, so please make sure that
your bucket is named correctly. Provided that you have set your project name
as suggested above, then the above two commands should suffice. The remain-
der of the section titled “Set up your Cloud Storage bucket” will walk you
through moving the requisite files from your local (i.e., Cloud Shell) machine
to the bucket. This is roughly analogous to moving a file from your laptop to
an external harddrive.

• Pay special attention to the section titled “Deploy a model to support predic-
tion”. That section includes ideas that you will need later in this assignment.
One possible stumbling block in that section is in step 3, where you should be

https://cloud.google.com/ml-engine/docs/tensorflow/getting-started-training-prediction
https://cloud.google.com/ml-engine/docs/tensorflow/getting-started-training-prediction


STATS507: Data Analysis in Python 7

careful that your OUTPUT_PATH variable points to a directory in your bucket
where you actually wrote job output.

• If trying to launch a new job gets an error ”A job with this id already exists.”,
you’ll need to launch the job with a different name by supplying a different job
name to the gcloud ai-platform jobs submit training <job name> com-
mand.

Important: the tutorial will tell you to tear your storage down at the end. Do not
do that. Leave that up so that we can verify that you set things up correctly. It
should cost at most a dollar or two to leave your storage buckets running, but if
you wish to conserve your credits, you can tear everything down and go through the
tutorial again on the evening of December 19th or the (early!) morning of December
20th.

2. Let us return to the classifier that you trained above on the normally-distributed
data. In this and the next several subproblems, we will take an adaptation of that
model and upload it to GCP where it will serve as a prediction node similar to the one
you built in the tutorial above. Train the same classifier on the same training data,
but this time, save the resulting trained model in a directory called normal_trained.
You’ll want to use the tf.saved_model.simple_save function. Refer to the GCP
documentation at

https://cloud.google.com/ml-engine/docs/deploying-models,

and the documentation on the tf.saved_model.simple_save function, here: https:
//github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.

md Please include a copy of this model directory in your submission. Hint: a stum-
bling block in this problem is figuring out what to supply as the inputs and outputs
arguments to the simple_save function. Your arguments should look something
like inputs = {’x’:x}, outputs = {’prediction’:prediction}.

3. Let’s upload that model to GCP. First, we need somewhere to put your model. You
already set up a bucket in the tutorial, but let’s build a separate one. Create a
new bucket called uniqname-stats507f19-hw10-normal, where uniqname is your
uniqname. You should be able to do this by making minor changes to the commands
you ran in the tutorial, or by following the instructions at
https://cloud.google.com/solutions/running-distributed-tensorflow-on-

compute-engine#creating_a_cloud_storage_bucket. Now, we need to upload
your saved model to this bucket. There are several ways to do this, but the eas-
iest is to follow the instructions at https://cloud.google.com/storage/docs/

uploading-objects and upload your model through the GUI. Optional chal-
lenge (worth no extra points, just bragging rights): Instead of using the
GUI, download and install the Google Cloud SDK, available at https://cloud.

google.com/sdk/ and use the gsutil command line tool to upload your model to
a storage bucket.

4. Now we need to create a version of your model. Versions are how the GCP machine
learning tools organize different instances of the same model (e.g., the same model
trained on two different data sets). To do this, follow the instructions located at
https://cloud.google.com/ml-engine/docs/deploying-models#creating_a_model_

version, which will ask you to

https://cloud.google.com/ml-engine/docs/deploying-models
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.md
https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine#creating_a_cloud_storage_bucket
https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine#creating_a_cloud_storage_bucket
https://cloud.google.com/storage/docs/uploading-objects
https://cloud.google.com/storage/docs/uploading-objects
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/ml-engine/docs/deploying-models#creating_a_model_version
https://cloud.google.com/ml-engine/docs/deploying-models#creating_a_model_version


STATS507: Data Analysis in Python 8

• Upload a SavedModel directory (which you just did)

• Create a Cloud ML Engine model resource

• Create a Cloud ML Engine version resource (this specifies where your model is
stored, among other information)

• Enable the appropriate permissions on your account.

Please name your model stats507f19_hw10_normal (note the underscores here as
opposed to the hyphens in the bucket name and note that this model name should not
include your uniqname; see the documentation for the gcloud ml-engine versions

command for how to delete versions, if need be). Important: there are a num-
ber of pitfalls that you may encounter here, which I want to warn you about: A
good way to check that your model resource and version are set up correctly is to
run the command gcloud ml-engine versions describe "your_version_name"

--model "your_model_name". The resulting output should include a line reading
state: READY. You may notice that the Python version for the model appears
as, say, pythonVersion: ’2.7’, even though you used, say, Python 3.6. This
should not be a problem, but you should make sure that the runtimeVersion is
set correctly. If the line runtimeVersion: ’1.0’ is appearing when you describe
your version, you are likely headed for a bug. You can prevent this bug by adding
the flag --runtime-version 1.14 to your gcloud ml-engine versions create

command, and making sure that you are running TensorFlow version 1.14 on your
local machine (i.e., the machine where you’re running Jupyter). Running other 1.X
versions locally while running 1.14 on GCP also seems to work fine.

5. Create a .json file corresponding to a single prediction instance on the input obser-
vation x = 4. Name this .json file instance.hw10.json, and please include a copy
of it in your submission. Hint: you will likely find it easiest to use nano/vim/emacs
to edit edit the .json file from the tutorial (GCP Cloud Shell has versions of all three
of these editors). Doing this will allow you to edit a copy of the .json file directly
in the GCP shell instead of going through the trouble of repeatedly downloading
and uploading files. Being proficient with a shell-based text editor is also, generally
speaking, a good skill for a data scientist to have.

6. Okay, it’s time to make a prediction. Follow the instructions at https://cloud.

google.com/ml-engine/docs/online-predict#requesting_predictions to sub-
mit the observation in your .json file to your running model. Your model will make
a prediction, and print the output of the model to the screen. Please include a copy-
paste of the command you ran to request this prediction as well as the resulting
output in your jupyter notebook. Which cluster does your model think x = 4 came
from? Hint: if you are getting errors about dimensions being wrong, make sure that
your instance has the correct dimension expected by your model. Second hint: if
you are encountering an error along the lines of Error during model execution:

AbortionError(code=StatusCode.INVALID_ARGUMENT, details=\"NodeDef mentions

attr ’output_type’, this is an indication that either (a) there is a mismatch be-
tween the version of TensorFlow that you used to create your model and the one
that you are running on GCP or (b) your .json file is formatted incorrectly. See the
discussion of gcloud ml-engine versions create above.

That’s all of it! Great work! Here is a list of all files that should be included for this

https://cloud.google.com/ml-engine/docs/online-predict#requesting_predictions
https://cloud.google.com/ml-engine/docs/online-predict#requesting_predictions


STATS507: Data Analysis in Python 9

problem in your submission, as well as a list of what processes or resources should be left
running in your GCP project:

• You should leave the model and storage bucket from your GCP census classicier
(i.e., the storage bucket with saved models in it) from the GCP ML tutorial running
in your GCP project.

• Include in your submission a copy of your saved model directory constructed from
your classifier. You should also have a copy of this directory in a storage bucket on
GCP.

• Leave a storage bucket running on GCP containing your uploaded model directory.
This storage bucket should contain a model with a single version.

• Include in your submission a .json file representing a single observation. You need
not include a copy of this file in a storage bucket on GCP; it will be stored by default
in your GCP home directory if you created it in a text editor in the GCP shell.

• Include in your jupyter notebook a copy-paste of the command you ran to request
your model’s prediction on the .json file, and please include the output that was
printed to the screen in response to that prediction request. Note: Please make
sure that the cell(s) that you copy-paste into is/are set to be Raw NBconvert cell(s),
so that your commands display as code but are not run as code by Jupyter.


	Warmup: Constructing a 3-tensor (2 points)
	Building and training simple models (10 points)
	Running Models on Google Cloud Platform (18 points)

