
STATS507: Data Analysis in Python 1

Homework 3: Files and Objects

Due October 3, 11:59 pm

Worth 15 points

Read this first. A few things to bring to your attention:

1. Important: If you have not received a Cavium username, please request one here:
http://myumi.ch/6pn5d (you will need to be on the Michigan network to access
this form). List me (Keith Levin, unique name klevin) as your “advisor”.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Fall2019/STATS507/hw_template.ipynb. You will submit, via Canvas, a .zip file called
yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand in a
file for homework 1, it would be called klevin_hw1.zip. Contact the instructor or your
GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able to
extract your archived file and run your notebook file on my own machine. Please include
all of your code for all problems in the homework in a single Python notebook unless
instructed otherwise, and please include in your notebook file a list of any and all people
with whom you discussed this homework assignment. Please also include an estimate of
how many hours you spent on each of the sections of this homework assignment.

These instructions can also be found on the course web page at http://www-personal.
umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html. Please di-
rect any questions to either the instructor or your GSI.

http://myumi.ch/6pn5d
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html

STATS507: Data Analysis in Python 2

1 Counting Word Bigrams (7 points)

In your previous homework, you wrote a function for counting character bigrams. Now,
let’s write a function for counting word bigrams. That is, for each pair of words, say,
cat and dog, we want to count how many times the word “cat” occurred immediately
before the word “dog”. We will represent this bigram by a tuple, (’cat’, ’dog’). For
our purposes, we will ignore all spaces, newlines, punctuation and capitalization in our
counting. So, as an example, the fragment of poem,

Half a league, half a league,
Half a league onward,
All in the valley of Death
Rode the six hundred.

includes the bigrams (’half’, ’a’) and (’a’, ’league’) both three times, the bigram
(’league’, ’half’) appears twice, while the bigram (’in’, ’the’) appears only once.

1. Write a function count_bigrams_in_file that takes a filename as its only argument.
Your function should read from the given file, and return a dictionary whose keys
are bigrams (given in the tuple form above), and values are the counts for those
bigrams. Again, your function should ignore punctuation, spaces, newlines and
capitalization. The strings in your key tuples should be lower-case. Your function
should use a try-catch statement to raise an error with an appropriate message to
alert the user in the event that the given file cannot be opened, and a different
error in the event that the provided argument isn’t a string at all. Hint: you will
find the Python function str.strip(), along with the string constants defined in
the string documentation (https://docs.python.org/3/library/string.html),
useful in removing punctuation. Hint: be careful to check that your function handles
newlines correctly. For example, in the poem above, one of the (’league’, ’half’)

bigrams spans a newline, but should be counted nonetheless. Note: be careful that
your function does not accidentally count the empty string as a word (this is a
common bug if you aren’t careful about splitting the input text). Solutions that
merely delete “bad” keys from the dictionary at the end will not receive full credit,
as all edge cases can handled by correctly splitting the input.

2. Download the file WandP.txt from the course webpage: http://www-personal.

umich.edu/~klevin/teaching/Fall2019/STATS507/WandP.txt. This is an ASCII
copy of all of Tolstoi’s novel War and Peace. Run your function on this file, and
pickle the resulting dictionary in a file called mb.bigrams.pickle. Please include
this file in your submission, along with WandP.txt, so that we can run your notebook
directly from your submission.

3. We say that word A is collocated with word B in a text if words A and B occur im-
mediately one after another (in either order). That is, words A and B are collocated
if and only if either of the tuples (A, B) or (B, A) are present in the text. Write a
function collocations that takes a filename as its only argument and returns a dic-
tionary. Your function should read from the given file (raising an appropriate error if
the file cannot be opened or if the argument isn’t a string at all) and return a dictio-
nary whose keys are all the strings appearing in the file (again ignoring case and strip-
ping away all spaces, newlines and punctuation) and the value of word A is a Python
set containing all the words collocated with A. Again using the poem fragment above

https://docs.python.org/3/library/string.html
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/WandP.txt
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/WandP.txt

STATS507: Data Analysis in Python 3

as an example, the string ’league’ should appear as a key, and should have as its
value the set {’a’, ’half’, ’onward’}, while the string ’in’ should have the set
{’all’, ’the’} as its value. Hint: we didn’t discuss Python sets in lecture, be-
cause they are essentially just dictionaries without values. See the documentation
at https://docs.python.org/3/tutorial/datastructures.html#sets for more
information.

4. Run your function on the file WandP.txt and pickle the resulting dictionary in a file
called mb.colloc.pickle. Please include this file in your submission.

2 More Fun with Vectors (8 points)

In this exercise, we’ll encounter our old friend the vector yet again, this time taking an
object-oriented approach.

1. Define a class Vector. Every vector should have a dimension (a non-negative integer)
and a list or tuple specifying its entries. The initializer for your class should take
the dimension as its first argument and a list or tuple of numbers (ints or floats),
representing the vector’s entries, as its second argument (note: your initializer should
work correctly given either a list or a tuple of numbers). Choose sensible default
behavior for the case where the user applies only a dimension and no entries. The
initializer should raise an appropriate error in the case where the dimension is invalid
(i.e., wrong type or a negative number), and should also raise an error in the event
that the dimension and the number of supplied entries disagree.

2. Did you choose to make the vector’s entries a tuple or a list? Defend your choice.
(There is no wrong answer here, although I would say one is better than the other
in this context.)

3. Are the dimension and entries class attributes or instance attributes? Why is this
the right design choice?

4. Implement the necessary operator(s) to support comparison (equality, less than, less
or equal to, greater than, etc) of Vector objects. We will say that two Vector objects
are equivalent if they have the same coordinates. Otherwise, comparison should be
analogous to tuples in Python, so that comparison is done on the first coordinate
first, then the second coordinate, then the third, and so on. So, for example, the
two-dimensional vector (2, 4) is ordered before (less than) (2, 5). Attempting to
compare two vectors of different dimensions should result in an error.

5. Implement a method Vector.dot that takes a single Vector as its argument and
returns the inner product of the caller with the given Vector object. Your method
should raise an appropriate error in the event that the argument is not of the correct
type or in the event that the dimensions of the two vectors do not agree.

6. We would also like our Vector class to support scalar multiplication. Left- or right-
multiplication by a scalar, e.g., 2*v or v*2, where v is a Vector object, should
result in a new Vector object with its entries all scaled by the given scalar. We
will also follow R and numpy (which you will learn in a few weeks), and use * to
denote entrywise vector-vector multiplication, so that for Vector objects v and w,
v*w results in a new Vector object, with the i-th entry of v*w equal to the i-th

https://docs.python.org/3/tutorial/datastructures.html#sets

STATS507: Data Analysis in Python 4

entry of v multiplied by the i-th entry of w. Implement the appropriate operators to
support this multiplication operation. Many languages have a convention for dealing
with multiplication of vectors that differ in their dimension, but we will punt on this
matter. Your method should raise an appropriate error in the event that v and w

disagree in their dimensions.

7. For a real number 0 ≤ p ≤ ∞, and a vector v ∈ Rd, the p-norm of v, written ‖v‖p,
is given by

‖v‖p =


∑d

i=1 1vi 6=0 if p = 0

(
∑d

i=1 |vi|p)1/p if 0 < p <∞,

maxi=1,2,...,d |vi| if p =∞
.

Strictly speaking, this is only a norm for p ≥ 1, but that’s beside the point. Imple-
ment a method Vector.norm that takes a single int or float p as an argument and
returns the p-norm of the calling Vector object. Your method should work whether
p is an integer or float. Your method should raise a sensible error in the event that
p is negative. Hint: see https://docs.python.org/3/library/functions.html#

float for documentation on representing positive infinity in Python.

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

	Counting Word Bigrams (7 points)
	More Fun with Vectors (8 points)

