
STATS507: Data Analysis in Python 1

Homework 4: Functional Programming

Due October 17, 11:59 pm

Worth 20 points

Read this first. A few things to bring to your attention:

1. If you have not received a Cavium username, please request one here: http://

myumi.ch/6pn5d (you will need to be on the Michigan network to access this form).
List me (Keith Levin, unique name klevin) as your “advisor”.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

4. Be careful to follow directions! Remember that Python is case sensitive. If we
ask you to define a function called my_function and you define a function called
My_Function, you will not receive full credit. You may want to copy-paste the
function names below to make sure that the functions in your notebook match what
we are expecting.

5. A note on grading: overly complicated solutions or solutions that suggest an
incomplete grasp of key concepts from lecture will not receive full credit.

Instructions on writing and submitting your homework can be found at http://

www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.

html. Failure to follow these instructions will result in lost points. Please direct any ques-
tions to either the instructor or your GSI.

1 Iterators and Generators (5 points)

In this exercise, you’ll get some practice working with iterators and generators. Note:
in this problem, the word enumerate is meant in the sense of returning elements, not in
the sense of the Python function enumerate. So, if I say that an iterator enumerates a
sequence a0, a1, a2, . . . , I mean that these are the elements that it returns upon calls to
the __next__ method, not that it returns pairs (i, ai) like the enumerate function.

1. Define a class Fibo of iterators that enumerate the Fibonacci numbers. For the
purposes of this problem, the Fibonacci sequence begins 0, 1, 1, 2, 3, . . . , with the
n-th Fibonacci number Fn given by the recursive formula Fn = Fn−1 + Fn−2. Your

http://myumi.ch/6pn5d
http://myumi.ch/6pn5d
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Fall2019/STATS507/hw_instructions.html

STATS507: Data Analysis in Python 2

solution should not make use of any function aside from addition (i.e., you should
not need to use the function fibo() defined in lecture a few weeks ago). Your class
should support, at a minimum, an initialization method, a __iter__ method (so
that we can get an iterator) and a __next__ method. Note: there is an especially
simple solution to this problem that can be expressed in just a few lines using tuple
assignment.

2. We can generalize the Fibonacci sequence by following the same recursive procedure
Fn = Fn−1+Fn−2, but using a different choice of initial two values for F0 and F1. For
example, if we take F0 = 2 and F1 = 1, then we obtain the Lucas numbers, which
are closely related to the Fibonacci numbers (https://en.wikipedia.org/wiki/
Lucas_number). Define a class GenFibo of iterators that enumerate generalized
Fibonacci numbers. Your class should inherit from the Fibo class defined in the
previous subproblem. The initialization method for the GenFibo class should take
two optional arguments that specify the values of F0 and F1, in that order, and their
values should default so that F = GenFibo() results in an enumerator equivalent to
the one that would have been created if you had called F = Fibo() (i.e., GenFibo()
should produce an iterator over the Fibonacci numbers).

3. Define a generator primes that enumerates the prime numbers. Recall that a prime
number is any integer p > 1 whose only divisors are p and 1. Note: you may
use the function is_prime that we defined in class (or something similar to it),
but such solutions will not receive full credit, as there is a more graceful solution
that avoids declaring a separate function or method for directly checking primality.
Hint: consider a pattern similar to the one seen in lecture using the any and/or all
functions.

4. This one is good practice for coding interview questions. The Ulam numbers are a
sequence u1, u2, u3, . . . of positive integers, defined in the following way: u1 = 1, and
u2 = 2. For all n > 2, un is the smallest integer that is expressible as a sum of two
distinct terms from earlier in the sequence in exactly one way. See the Examples sec-
tion of the Wikipedia page for an illustration: https://en.wikipedia.org/wiki/

Ulam_number. Define a generator ulam that enumerates the Ulam numbers. Hint:
it will be helpful to try and break this problem into smaller, simpler subproblems.
In particular, you may find it helpful to write a function that takes a list of integers
t and one additional integer u, and determines whether or not u is expressible as a
sum of two distinct elements of t in exactly one way.

2 List Comprehensions and Generator Expressions (5 points)

In this exercise you’ll write a few simple list comprehensions and generator expressions.
Again in this problem I use the term enumerate to mean that a list comprehension or
generator expression returns certain elements, rather than in the sense of the Python
function enumerate.

1. Write a list comprehension that enumerates the sequence 3n−1 for n = 1, 2, 3, . . . , 20.
For ease of grading, please assign this list comprehension to a variable called pow3minus1.

2. The Lazy Caterer’s sequence is a sequence of numbers that counts, for each n =
0, 1, 2, . . . , the largest number of pieces that can be cut from a disk with at most

https://en.wikipedia.org/wiki/Lucas_number
https://en.wikipedia.org/wiki/Lucas_number
https://en.wikipedia.org/wiki/Ulam_number
https://en.wikipedia.org/wiki/Ulam_number

STATS507: Data Analysis in Python 3

n cuts (https://en.wikipedia.org/wiki/Lazy_caterer’s_sequence). The n-th
number in this sequence is given by pn = (n2 + n + 2)/2, where n = 0, 1, 2,
Write a generator expression that enumerates the Lazy Caterer’s sequence. For
ease of grading, please assign this generator expression to a variable called caterer.
Hint: you may find it useful to define a generator that enumerates the non-negative
integers.

3. Write a generator expression that enumerates the pyramid numbers. The n-th pyra-
mid number P)n (n = 1, 2, . . .) counts the number of spheres in a pyramid with an
n-by-n based (see https://en.wikipedia.org/wiki/Square_pyramidal_number),
and is given by

Pn =
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

For ease of grading, please assign this generator expression to a variable called
pyramid. Hint: you may find it useful to define a generator that enumerates the
positive integers.

4. Write a generator expression that enumerates the octahedral numbers. The n-th

octahedral number (n = 1, 2, . . .) is given by On = n(2n2+1)
3

, and counts the number of
spheres in an octahedron with n spheres to each edge (see https://en.wikipedia.

org/wiki/Octahedral_number). For ease of grading, please assign this generator
expression to a variable called octa. Note: a particularly clever solution to this
problem could take advantage of the fact that the n-th octahedral number can be
expressed as On = Pn + Pn−1 where Pn denotes the n-th pyramidal number, which
you dealt with in the previous subproblem. Hint: you may find it useful to define
a generator that enumerates the positive integers.

3 Map, Filter and Reduce (5 points)

In this exercise, you’ll learn a bit about map, filter and reduce operations. We will revisit
these operations in a few weeks when we discuss MapReduce and related frameworks in
distributed computing. In this problem, I expect that you will use only the functions map,
filter and functions from the functools and itertools modules, along with the range
function (and similar list-related functions) and a sprinkling of lambda expressions.

1. Write a one-line expression that computes the sum of the first 10 odd numbers
(starting from 1). For ease of grading, please assign the output of this expression to
a variable called sum_of_odd_squares.

2. Write a one-line expression that computes the product of the first 13 primes. You
may use the primes generator that you defined above. For ease of grading, please
assign the output of this expression to a variable called product_of_primes.

3. Write a one-line expression that computes the sum of the squares of the first 31
primes. You may use the primes generator that you defined above. For ease of grad-
ing, please assign the output of this expression to a variable called squared_primes.

4. Write a one-line expression that computes a list of the first twenty harmonic numbers.
Recall that the n-th harmonic number is given by Hn =

∑n
k=1 1/k. For ease of

grading, please assign the output of this expression to a variable called harmonics.

https://en.wikipedia.org/wiki/Lazy_caterer's_sequence
https://en.wikipedia.org/wiki/Square_pyramidal_number
https://en.wikipedia.org/wiki/Octahedral_number
https://en.wikipedia.org/wiki/Octahedral_number

STATS507: Data Analysis in Python 4

5. Write a one-line expression that computes the geometric mean of the first 12 octa-
hedral numbers. You may use the generator that you wrote in the previous problem.
Recall that the geometric mean of a collection of n numbers a1, a2, . . . , an is given
by (

∏n
i=1 ai)

1/n. For ease of grading, please assign the output of this expression to a
variable called octa_geom.

4 Fun with Polynomials (5 points)

In this exercise you’ll get a bit of experience writing higher-order functions. You may
ignore error checking in this problem.

1. Write a function make_poly that takes a list of numbers (ints and/or floats) coeffs
as its only argument and returns a function p. The list coeffs encodes the co-
efficients of a polynomial, p(x) = a0 + a1x + a2x

2 + · · · + anx
n, with ai given by

coeffs[i]. The function p should take a single number (int or float) x as its argu-
ment, and return the value of the polynomial p evaluated at x.

2. Write a function eval_poly that takes two lists of numbers (ints and/or floats),
coeffs and args. coeffs encodes the coefficients of polynomial p, and your function
should return the list of numbers (ints and/or floats) representing the result of
evaluating the polynomial p on each of the elements in args, in order. You should
be able to express the solution to this problem in a single line (not including the
function definition header, of course). Your function should make use of make_poly
from the previous part to receive full credit.

	Iterators and Generators (5 points)
	List Comprehensions and Generator Expressions (5 points)
	Map, Filter and Reduce (5 points)
	Fun with Polynomials (5 points)

