
STATS 507
Data Analysis in Python

Lecture 2: Conditionals,
Recursion, Iteration and Strings

Boolean Expressions
Boolean expressions evaluate the truth/falsity of a statement

Python supplies a special Boolean type, bool
variable of type bool can be either True or False

Boolean Expressions
Comparison operators available in Python:

Expressions involving comparison
operators evaluate to a Boolean.

Note: In true Pythonic style, one can compare many
types, not just numbers. Most obviously, strings can be
compared, with ordering given alphabetically.

Boolean Expressions
Can combine Boolean expressions into larger expressions via logical operators

In Python: and, or and not

Note: technically, any
nonzero number or any
nonempty string will
evaluate to True, but you
should avoid comparing
anything that isn’t Boolean.

Boolean Expressions: Example
Let’s see Boolean expressions in action

Note: in practice, we would want to include some extra code to
check that n is actually a number, and to “fail gracefully” if it
isn’t, e.g., by throwing an error with a useful error message.
More about this in future lectures.

Reminder: x % y returns the
remainder when x is divided by y.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

This is an if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

This Boolean expression is called the test
condition, or just the condition.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

If the condition evaluates to True,
then Python runs the code in the
body of the if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

If the condition evaluates to False,
then Python skips the body and
continues running code starting at the
end of the if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

Note: the body of a conditional statement
can have any number of lines in it, but it
must have at least one line. To do
nothing, use the pass keyword.

Conditional Expressions
More complicated logic can be handled with chained conditionals

Conditional Expressions
More complicated logic can be handled with chained conditionals

This is treated as a single if-statement.

Conditional Expressions
More complicated logic can be handled with chained conditionals

If this expression evaluates to True...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...then this block of code is executed...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...and then Python exits the if-statement

Conditional Expressions
More complicated logic can be handled with chained conditionals

If this expression evaluates to False...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...then we go to the condition. If this
condition fails, we go to the next
condition, etc.

Note: elif is short for else if.

Conditional Expressions
More complicated logic can be handled with chained conditionals

If all the other tests fail, we execute the
block in the else part of the statement.

Conditional Expressions
Conditionals can also be nested

This if-statement...

Conditional Expressions
Conditionals can also be nested

...contains another if-statement.

This if-statement...

Conditional Expressions
Often, a nested conditional can be simplified

When this is possible, I recommend it for the sake of your sanity,
because debugging complicated nested conditionals is tricky!

These two if-statements
are equivalent, in that
they do the same thing!

But the second one is
(arguably) preferable, as
it is simpler to read.

Recursion
A function is a allowed to call itself, in what is termed recursion

Countdown calls itself!

But the key is that each time it calls itself, it is passing an argument
with its value decreased by 1, so eventually, n <= 0 is true.

With a small change, we can make it so that
countdown(1) encounters an infinite
recursion, in which it repeatedly calls itself.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

This block specifies a while-loop. So
long as the condition is true, Python will
run the code in the body of the loop,
checking the condition again at the end
of each time through.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

Warning: Once again, there is a danger of creating an infinite
loop. If, for example, n never gets updated, then when we call
countdown(10) , the condition n>0 will always evaluate to
True, and we will never exit the while-loop.

Repeated actions: Iteration

One always wants to try and ensure that a while loop will
(eventually) terminate, but it’s not always so easy to know!
https://en.wikipedia.org/wiki/Collatz_conjecture

“Mathematics may not be ready for such problems."
Paul Erdős

https://en.wikipedia.org/wiki/Collatz_conjecture

Repeated actions: Iteration
We can also terminate a while-loop using the break keyword

Newton-Raphson method:
https://en.wikipedia.org/wiki/Newton's_method

The break keyword terminates the
current loop when it is called.

https://en.wikipedia.org/wiki/Newton's_method

Repeated actions: Iteration
We can also terminate a while-loop using the break keyword

Newton-Raphson method:
https://en.wikipedia.org/wiki/Newton's_method

Notice that we’re not testing for equality
here. That’s because testing for equality
between pairs of floats is dangerous.
When I write x=1/3, for example, the
value of x is actually only an
approximation to the number 1/3.

https://en.wikipedia.org/wiki/Newton's_method

Strings in Python
Strings are sequences of characters

Python sequences are 0-indexed. The
index counts the offset from the
beginning of the sequence. So the first
letter is the 0-th character of the string.

Note: in some languages, there’s a
difference between a character and a
string of length 1. That is, the character ‘g’
and the string “g” are different data types.
In Python, no such difference exists. A
character is just a one-character string.

Strings in Python
Strings are sequences of characters

All Python sequences include a length
attribute, which is the number of
elements in the sequence.

If we try to access an element
of the sequence that doesn’t
exist, we get an error.

We can also index into a sequence
counting from the end.

Strings in Python

We can index into a sequence
using an index variable.

...but there’s a better way to
perform this operation...

Iterations and traversals: for-loops

For-loop provides a more
concise way to express the
pattern on the right.

Selecting subsequences: slices
A segment of a Python sequence is called a slice

string[m:n] picks out the m-th character to the
n-th character, including the m-th character, but
not including the n-th character.

Selecting subsequences: slices
A segment of a Python sequence is called a slice

string[:m] picks out the subsequence
starting at 0 through the (m-1)-th character.

string[m:] picks out the subsequence starting at
the m-th character through the end of the sequence.

Slices also work with negative indexing.

Selecting subsequences: slices

string[:] picks out the
entire string.

string[x:x] picks out
the x-th through x-th
letters, not including the
x-th, so this gets the
empty string.

Selecting subsequences: slices

string[:] picks out the
entire string.

string[x:x] picks out
the x-th through x-th
letters, not including the
x-th, so this gets the
empty string.

The empty string is a
string just like any other,
but it contains no letters
and has length 0.

Important concept: immutability
What if I want to change a letter in my string?

Try and assign a different
string to a subsequence of
a string.

We get an error because strings are immutable.
We can’t change the value of an existing string.

Important concept: immutability
What if I want to change a letter in my string?

This avoids the error we saw before because it
changes the value of the variable mystr, rather
than trying to change the contents of a string.

Example: string traversal

The function count makes use of a common
pattern, often called a traversal. We examine
each element of a sequence (i.e., a string),
taking some action for each element.

The variable cnt keeps a tally of
how many times we have seen
letter in the string word, so far.
We call such a variable a
counter or an accumulator.

Python string methods
Python strings provide a number of built-in operations, called methods

str.upper() makes all letters in str
upper case. str.lower() is analogous.

str.find(sub) finds the index of the
first location of the string sub in str.

str.startswith(sub) returns True if
and only if str starts with sub.

Python string methods
Python strings provide a number of built-in operations, called methods

A method is like a function, but it is provided by an
object. We’ll learn much more about this later in
the semester, but for now, it suffices to know that
some data types provide what look like functions
(they take arguments and return values), and we
call these function-like things methods.

This variable.method() notation is called dot notation,
and it is ubiquitous in Python (and many other languages).

Many more Python string methods:
https://docs.python.org/3/library/stdtypes.html#string-methods

https://docs.python.org/3/library/stdtypes.html#string-methods

Optional arguments: str.find()

Find first occurrence of ‘na’, starting from index 3.

The str.find() method takes optional arguments,
which specify where in the string to start looking for a
match, and the last index to consider for a match.

The documentation writes this method as
str.find(sub[, start[, end]]). Square
brackets indicate optional arguments. In this case,
brackets also indicate that with two arguments, the
second one will be interpreted as the start argument.
https://docs.python.org/3/library/stdtypes.html#string-methods

Find first occurrence of ‘na’, starting from index 3, and
nowhere past 4.

https://docs.python.org/3/library/stdtypes.html#string-methods

Searching sequences: the in keyword

The in keyword applies more generally to check
whether an object is contained in a sequence. We’ll
see more examples of this in the future, but for now,
we only need to worry about strings.

x in y returns True if x occurs as a
substring of y, and False otherwise.

Importantly, we can check for a whole substring,
making this very similar to str.find().

String Comparison
Sometimes we want to check if two strings are equal

Use the equality operator (==),
just like for comparing numbers.

Strings have to match exactly.
Substring is not enough!

String Comparison
Sometimes we want to check if two strings are equal

Use the equality operator (==),
just like for comparing numbers.

Strings have to match exactly.
Substring is not enough!

If we can compare strings with equality, we should
be able to compare them with inequalities, too...

String Comparison
We can also compare words under alphabetical ordering

Words earlier in the dictionary are “smaller”
than words later in the dictionary.

Strings including numbers,
symbols, etc. are also ordered.

The empty string ‘’ comes first in the ordering.

String Comparison
Important: upper case and lower case letters ordered differently!

Upper case letters are ordered
before lower case letters.

For more information:
https://docs.python.org/3/library/stdtypes.html#comparisons

For much more information:
https://docs.python.org/3/library/operator.html?highlight=equallity

https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/library/operator.html?highlight=equallity

Python Lists
Strings in Python are “sequences of characters”

But what if I want a sequence of something else?
A vector would be naturally represented as a sequence of numbers
A class roster might be represented as a sequence of strings

Python lists are sequences whose values can be of any data type
We call these list entries the elements of the list

