STATS 507
Data Analysis in Python

Lecture 3: Lists

Python Lists

Strings in Python are “sequences of characters”

But what if | want a sequence of something else?
A vector would be naturally represented as a sequence of numbers
A class roster might be represented as a sequence of strings

Python lists are sequences whose values can be of any data type
We call these list entries the elements of the list

Constructing Lists

We create a list by putting its elements between
square brackets, separated by commas.

fruits = ['apple', 'orange', 'banana', 'kiwi']
2 fibonacei = [0, 1, 1, 2, 3, S, 8, 13, 21)
3 mixed = ['one', 2, 3.0]
i pythagoras = [[3,4,5], [5, 12, 13], [8, 15, 17]]

COﬂStru Ctl ng LIStS We create a list by putting its elements between
square brackets, separated by commas.
This is a list of four strings.

3 mixed = ['one', 2, 3.0]
i pythagoras = [[3,4,5], [5, 12, 13], [8, 15, 17]]

COﬂStru Ctl ng LIStS We create a list by putting its elements between
square brackets, separated by commas.

. . . o ull This is a list of nine integers
fibonacci

i pythagoras = [[3,4,5], [5, 12, 13], [8, 15, 17]]

COﬂStru Ctl ng LIStS We create a list by putting its elements between
square brackets, separated by commas.

_ ; T T S The elements of a list need not be
fruits = ['apple , ‘orange’, 'banana’, ‘“kiwi of the same type. Here is a list with

P 5‘ 8§ L A2r2T] a string, an integer and a float.

12, 13}, [8, 15, 17}]

COﬂStru Ctl ng LIStS We create a list by putting its elements between
square brackets, separated by commas.

fruits = ['apple', 'orange', 'banana', 'kiwi']
fibonacei = [0, 1, 1, 2, 3, S, 8; 13, 21])

pythagoras = [[(3,4,5], [5, 12, 13], [8, 15, 17]]

A list can even contain more lists!
This is a list of three lists, each of
which is a list of three integers.

Constructing Lists

It is possible to construct a list with no elements, the empty list.

> (] Two equivalent ways of creating an empty list.
[] Straight-forwardly create a list using square brackets
notation, but supply no elements. So x is empty.

list()

E
I

E
I

Use the reserved keyword 1ist, which casts to a list.
Given no arguments, it creates an empty list.

(]

Accessing List Elements

1 fruits = ['apple', 'orange', 'banana’', 'kiwi']
2 fruits[0]
'apple’

We can access individual elements of a list just like a
1 fruits[l] string. This is because both strings and lists are

examples of Python sequences.

'orange’

fruits[2]

Ib '
B Indexing from the end of the list, just like with strings.
1 fruits[-1]

"kiwi'

Accessing List Elements

1 fruits = ['apple', 'orange', 'banana', 'kiwi']
2 fruits
['apple', 'orange', 'banana', 'kiwi')] Unlike strings, lists are mutable. We can change
individual elements after creating the list.
1 fruits[-1] = 'mango’
2 fruits

['apple', 'orange', 'banana', 'mango']

Reminder of what happens if we try to do this with a

L mystring = 'goat' string. This error is because string are immutable.
2/ mystring[0])="b’ Once they're created, they can’t be altered.
TypeError Traceback (most recent call last)
<ipython-input-86-b526da741b%a> in <module>()
1 mystring = 'goat'’
~===> 2 mystring[0]='b’

TypeError: 'str' object does not support item assignment

Lists are sequences, so they have a length

fruits = ['apple', 'orange', 'banana’', 'kiwi']
2 len(fruits)

4
len([]) -4 The empty list has length 0O, just like the empty string.
0
1 pythagoras = [[3, 4, 5], [5, 12, 13], [8, 15, 17]]
© len(pythagoras)
3 One might be tempted to say that pythagoras should

have length 9, but each element of a list counts only

once, even if it is itself a more complicated object!

Lists are sequences, so they support the in operator

fruits = ['apple’', 'orange', 'banana’', ‘'kiwi']

Just like with strings, x in y returns
True if and only if x is an element of y.

'apple' in fruits

True
‘grape’ in fruits
bay Warning: This contrasts with the string case.
o Recall that ‘ap’ in ‘apple’ evaluates to
True. By analogy, this line of code should
['apple', 'orange'] in fruits also evaluate to True, but it doesn’t, because
for lists, the in operator only checks
False elements, not subsequences.

['cat','dog'] in [['cat','dog'], ['bird', 'goat’']]

True

Common pattern: list traversal

For each element of a list, do something with that element

1 fruits = ['apple', 'orange', 'banana’', 'kiwi']
2 for £ in fruits:
3 print(f)
apple
orange
banana
kiwi
range (x) produces a list of the integers 0 to x-1.
1 numbers = range(5) - For more information:
2 for n in numbers: https://docs.python.org/3/library/stdtypes.html#ranges

print(2*+*n)

= N

https://docs.python.org/3/library/stdtypes.html#ranges

Common pattern: list traversal

For each element of a list, do something with that element

1 fruits = ['apple', 'orange', 'banana’', ‘kiwi']
for i in range(len(fruits)):
fruits[i] = fruits[i].upper()

5 for £ in fruits:

Sometimes, we need to be able to index into

int . : : :
pEARELL) the list itself, in which case we use a slightly
APPLE different traversal pattern, in which we iterate
ORANGE an index variable, i in this example.

BANANA
KIWI

Common pattern: list traversal

For each element of a list, do something with that element

1 fruits = ['apple', 'orange', 'banana’', 'kiwi']
2 for i in range(len(fruits)):
3 fruits[i] = fruits[i].upper()

5 for £ in fruits:
= > = Sometimes, we need to be able to index into

’) the list itself, in which case we use a slightly
APPLE different traversal pattern, in which we iterate
ORANGE an index variable, i in this example.
BANANA
KIWI

Note: this operation is possible
because lists are mutable!

List operations: concatenation

List concatenation is similar to strings.

fibonacci = [0,1,1,2,3,5,8]
primes = [2,3,5,7,11,13]
fibonacci + primes

W N~

1 3*['cat’', 'dog']

[“cat’; “dog'y Toat’y ‘dog’y, ‘cat’; dog']

These operations are precisely analogous to the corresponding string

operations. This makes sense, since both strings and lists are sequences.
https://docs.python.org/3/library/stdtypes.html#typesseq

https://docs.python.org/3/library/stdtypes.html#typesseq

List operations: slices

Also like strings, it is possible to select slices of a list

1 animals = ['cat’', 'dog', 'goat', 'bird', 'llama']
2 animals[1:3]

['dog', 'goat']

1 animals([3:]

Y Bipa", YTiAna"] Again, analogously to the corresponding string operations.

https://docs.python.org/3/library/stdtypes.html#typesseq

1 animals[:2]

[“cat®, 'dog*]}

1 animals[:]

['cat', 'dog', 'goat’', 'bird', 'llama’]

https://docs.python.org/3/library/stdtypes.html#typesseq

List Methods

Lists supply a certain set of methods:

list.append (x): adds x to the end of the list

list.extend (L2): adds list L2 to the end of another list (like concatenation)
list.sort (): sort the elements of the list

list.remove (x):removes from the list the first element equal to x.

list.pop (): removes the last element of the list and returns that element.

list.append() and 1list.extend ()

animals: = [eat ; ~dog'; ‘goat’, ‘bird] We call list methods with dot
2 an}mals APEEUA (N0 GO) notation. These are methods
3 animals

supported by certain objects.

{'cat', ‘'dog', 'goat’, “bird’, "unicorn']

fibonaceci = [0,1,1,2,3,5,8] Warning: 1ist.append () adds
2 fibonacci.append([13,21]) its argument as the last element of
fibonacci alistt Use 1ist.extend () to

concatenate to the end of the list!
[0 51y Ly 2y 35 5585 [13%: 2177

1 fibonacci = [0,1,1,2,3,5,8]
2 fibonacci.extend([13, 21])
3 fibonacci

Note: all of these list methods act upon the list that
calls the method. These methods don’t return the
£00. A% i B 8, Bod. 155515 new list, they alter the list on which we call them.

list.sort () and sorted ()

| animals = ['cat', 'dog', 'goat', 'bird']
> animals.sort() -
AiinasE list.sort () sorts the listin place.

['bird', ‘'cat', 'dog', 'goat'] See documentation for how Python
sorts data of different types.

1l mixed = [1, 'two', 3.0, [4,5]]
> mixed.sort()
i mixed

s 2:0; T[4y 53, ‘two”]

animals = ['cat’', 'dog', 'goat', 'bird']
? sorted animals = sorted(animals)

sortad aviniis If I don’t want to sort a list in place,

the sorted () command returns a
['bird', 'cat', 'dog', 'goat'] sorted version of the list, leaving its
argument unchanged.

animals

[cat®, “dog", "goat’', "bird’]

Removing elements: 1ist.pop ()

animals = ['cat', 'dog', 'goat', 'bird']
animals.pop()

list.pop () removes the last element
from the list and returns that element.

‘bird’

animals
['cat', 'dog', 'goat']
list.pop () takes an optional argument,

f}bonaCC} = [0,1,1,2,3,5,8] which indexes into the list and removes and
fibonacci.pop(3) <@ returns the indexed element

fibonacci Again, this method alters the list itself,
rather than returning an altered list.

[0, 1, 1, 3, 5, 8]

Removing elements: 1ist.remove ()

animals = ['cat', 'dog', 'goat', 'bird']
animals.remove('cat')
animals

{'dog', ‘goat', “"bird"]

list.remove (x) removes the first

instance of x in the list.

numbers = [0,1,2,3,1,2,3,2,3]
numbers.remove(2)
numbers

[0' 1' 3’ 1, 2, 3' 2’ 3]

Raises a ValueError if
numbers.remove(4) - no such element exists.

ValueError Traceback (most recent call last)

<ipython-input-160-6d289%ee6c03d> in ()
~===> 1 numbers.remove(4)

ValueError: list.remove(x): x not in list

Map, filter and reduce

Example: suppose | want to square every element of a list.

1 def square all(t):

res = []
for elmt in t:

res.append(elmt**2)
return res

7 square_all(range(10))

(0,

1, 4, 9, 16, 25, 36, 49, 64, 81]

1 fibonacci = [0,1,1,2,3,5,8,13,21)
2 square_all(fibonacci)

[0,

1, 1, 4, 9, 25, 64, 169, 441]

I fibonacci

[0,

1y Y7 25 3; 5587 135 21]

This function takes a list £, and creates
a new list res, which consists of the
squares of the elements of t.

This kind of operation, in which we
apply a function to each element of a
list, is called a map operation.

Note: unlike the list methods in the

previous slides, this function creates a
new list, and doesn’t alter the argument.

Map, filter and reduce

Example: | want to remove all even numbers from a list.

1 def remove even(t):
res = [] This function takes a list t, and creates

return res

£S5 e e ¢ a new list res, which contains only the
4 if elmt % 2 ==

. odd elements of t.

) continue

6 else: # elmt is odd.

7 res.append(elmt)

This kind of operation, in which we keep
only the elements of a list that satisfy some
§1, 3 5 T 99 condition, is called a filter operation.

10 remove even(range(10))

1 fibonacci = [0,1,1,2,3,5,8,13,21]
2 remove_ even(fibonacci) -

[11 1[3[5' 13’ 21]

Note: again, this function creates a new
list, and doesn'’t alter the argument.

1 fibonacci

(o, 1,1, 2, 3, 5, 8, 13, 21}

Map, filter and reduce

Example: compute the sum of a list of numbers

1 def my sum(t): This function takes a list t, sums the
2 res = 0 elements of t, and returns the sum.

for elmt in t:
res += elmt

return res This notation may be familiar to you already. It
is called augmented assignment. It is short
my_sum(range(lO)) forres = res + elmt.
45
The variable res holds a running sum. We call
fibonacei = [0,1,1,2,3,5,8,13,21) a variable like this an accumulator.
 my sum(fibonacci)
54

This kind of operation, in which we combine
the elements of a list to obtain a single
I my sum([]) element, is called a reduce operation.

Map, filter and reduce

WEe'll see lots more of these operations later in the course
They’re fundamental to functional programming
MapReduce and related frameworks are built on this paradigm

Note: all examples were on lists of numbers...
...but can write similar functions for strings or other more complicated data

Some of these operations can be expressed with Python list comprehensions

Map with list comprehensions

Basic pattern: [f (x) for x in mylist]

creates a new list, whose elements are the
elements of my1ist, each with function £ applied.

zero2nine = range(10)
[x**2 for x in zero2nine]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] .
Note: the function £ must
actually return something!

Il animals = ['cat', 'dog', 'goat', 'bird’']

[s.upper() for s in animals]

['CAT', 'DOG', 'GOAT', 'BIRD'] : : :
List comprehensions are a special pattern
supplied by Python. They’re one of the

features of Python that makes it appealing.
Very expressive way to write operations!

Filter with list comprehensions

Basic pattern:
fibonacci = [0,1,1,2,3,5,8,13,21] [x for x in mylist if boolean expr]
[x for x in fibonacci if x % 2 ==1] creates a new list of all and only the elements of
mylist that satisfy boolean expr.
Pl, 1, 3, 5, 13, 21} -

1 animals = ['cat', 'dog', 'goat', 'bird']
> [x.upper() for x in animals if 'o' in x[1]] Can combine filter and map to
['DOG', 'GOAT'] apply a function to only the

elements that pass the filter.

[x for x in animals if len(x)==5]

[]

Lists and strings

Lists and strings are both sequences, but they aren’t quite the same...

goatstr = 'goat’
2 goatlist = list(goatstr o .
2 goatlist (9) str.split () turns a string into a list

of strings, splitting the string on its
argument, called the delimiter.

[|gl' IOI’ |al’ 't']

1 wittgenstein = 'Die Welt ist alles was der Fall ist.'
t = wittgenstein.split(' ')
- % Jf

['Die', 'Welt', 'ist', 'alles', 'was', 'der', 'Fall’', 'ist.']

' str.join () is like the inverse of
str.split () . It takes a list of strings
and joins them into a single string.

1 delim =
2 delim.join(t) -

'Die Welt ist alles was der Fall ist.'

Equivalent vs identical objects

1 a = 'unicorn'
2 b = 'unicorn' Question: are a and b the same?

Well, what do we mean by “the same”?

Possibility 1: =
a and b both ‘point to’ ‘unicorn’ |
the same object. u

Possibility 2:

a and b ‘point to’ different B | |

‘unicorn’ |

objects, both objects have
same value.

‘unicorn’ |

Equivalent vs identical objects

1 a = 'unicorn’
2 b = 'unicorn' Question: are a and b the same?

Well, what do we mean by “the same”?

Possibility 1: = = s , In this case, we say that a
a and b both ‘point to unicorn))
: and b are identical

the same object. u
Possibility 2: B_»l onicorn’ |
a and b ‘point to’ different In this case, we say that a
objects, both objects have and b are e’quivalent
same value. E_>| ‘unicorn’ |

Equivalent vs identical objects

. a = 'unicorn'’
>’ b = 'unicorn’
a==
True
l1 a is b

Strings are immutable, so Python only creates one

copy of the string ‘unicorn’, and both a and b
point to it. So they are equivalent and identical.

‘unicorn’ |

equivalent

‘unicorn’

Equivalent vs identical objects

Lists are mutable, so Python creates
different copies for a and b. So they are
equivalent but not identical.

‘unicorn’ |

equivalent

‘unicorn’

Equivalent vs identical objects: reference

a=1_[1,2,3]
b =a
i ais b

Question: will this evaluate to True or False?

‘unicorn’ |

equivalent

‘unicorn’

Equivalent vs identical objects: reference

= [1,2,3]

Answer: evaluates to True, because assignment
changes the reference of a variable.

Reference of a variable is the value
to which it “points”, like on the right.

[1,2,3] |

equivalent

An object that has more than one reference
(i.e., more than one “name”) is called aliased. [1,2,3] |
So, on the right, *unicorn’ is aliased.

Equivalent vs identical objects: reference

l a=1[1,2,3] Warning: Aliased mutable objects can
2 b= a sometimes cause unexpected behavior.
i b[=1] = 42
i1 b

[1, 2, 42]

1 a[-1] Question: what should
< this evaluate to?

Equivalent vs identical objects: reference
b =a sometimes cause unexpected behavior.

(1, 2, 42]

a[-1] Question: what should
< this evaluate to?

Answer: when we changed the last

42

element of b, we changed the object
referenced by both a and b.

Pass-by-reference vs pass-by-value

def make end 42(t):
Change the last element of
list t to be 42.
t[~=1] = 42

a=17_[1,2,3]
make end 42(a)

3| a

When you pass an object to a function, the
function gets a reference to that object. So
changes that we make inside the function
are also true outside. This is called
pass-by-reference, because the function
gets a reference to its argument.

Note: strictly speaking, what Python does is
not pass-by-reference in the same way as
what is normally meant by the term. This is
because Python does not use pointers per
se in the way that, e.g., C/C++ does.

Pass-by-reference vs pass-by-value

| def wrong make end 42(t):
: # Change the last element of
list t to be 42, incorrectly.
t = t[:~1] # delete the last element.

t.append(42) < When we make the assignment to t, we
create a new list, and the reference of t is
a=1[1,2,3] changed, so it no longer points to the list
3 wrong make end 42(a) that we passed to the function!
- |
[l, 2. 3]

Moral of the story: be careful when working with mutable
objects, especially when you are trying to modify objects in

place. Often, it's better to just write a function that modifies
a list and returns the modified list!

