
STATS 507
Data Analysis in Python

Lecture 3: Lists

Python Lists
Strings in Python are “sequences of characters”

But what if I want a sequence of something else?
A vector would be naturally represented as a sequence of numbers
A class roster might be represented as a sequence of strings

Python lists are sequences whose values can be of any data type
We call these list entries the elements of the list

Constructing Lists
We create a list by putting its elements between
square brackets, separated by commas.

Constructing Lists We create a list by putting its elements between
square brackets, separated by commas.

This is a list of four strings.

Constructing Lists We create a list by putting its elements between
square brackets, separated by commas.

This is a list of nine integers

Constructing Lists We create a list by putting its elements between
square brackets, separated by commas.

The elements of a list need not be
of the same type. Here is a list with
a string, an integer and a float.

Constructing Lists We create a list by putting its elements between
square brackets, separated by commas.

A list can even contain more lists!
This is a list of three lists, each of
which is a list of three integers.

Constructing Lists
It is possible to construct a list with no elements, the empty list.

Straight-forwardly create a list using square brackets
notation, but supply no elements. So x is empty.

Two equivalent ways of creating an empty list.

Use the reserved keyword list, which casts to a list.
Given no arguments, it creates an empty list.

Accessing List Elements

We can access individual elements of a list just like a
string. This is because both strings and lists are
examples of Python sequences.

Indexing from the end of the list, just like with strings.

Accessing List Elements

Unlike strings, lists are mutable. We can change
individual elements after creating the list.

Reminder of what happens if we try to do this with a
string. This error is because string are immutable.
Once they’re created, they can’t be altered.

Lists are sequences, so they have a length

The empty list has length 0, just like the empty string.

One might be tempted to say that pythagoras should
have length 9, but each element of a list counts only
once, even if it is itself a more complicated object!

Lists are sequences, so they support the in operator

Just like with strings, x in y returns
True if and only if x is an element of y.

Warning: This contrasts with the string case.
Recall that ‘ap’ in ‘apple’ evaluates to
True. By analogy, this line of code should
also evaluate to True, but it doesn’t, because
for lists, the in operator only checks
elements, not subsequences.

Common pattern: list traversal
For each element of a list, do something with that element

range(x) produces a list of the integers 0 to x-1.
For more information:
https://docs.python.org/3/library/stdtypes.html#ranges

https://docs.python.org/3/library/stdtypes.html#ranges

Common pattern: list traversal
For each element of a list, do something with that element

Sometimes, we need to be able to index into
the list itself, in which case we use a slightly
different traversal pattern, in which we iterate
an index variable, i in this example.

Common pattern: list traversal
For each element of a list, do something with that element

Sometimes, we need to be able to index into
the list itself, in which case we use a slightly
different traversal pattern, in which we iterate
an index variable, i in this example.

Note: this operation is possible
because lists are mutable!

List operations: concatenation
List concatenation is similar to strings.

These operations are precisely analogous to the corresponding string
operations. This makes sense, since both strings and lists are sequences.
https://docs.python.org/3/library/stdtypes.html#typesseq

https://docs.python.org/3/library/stdtypes.html#typesseq

List operations: slices
Also like strings, it is possible to select slices of a list

Again, analogously to the corresponding string operations.
https://docs.python.org/3/library/stdtypes.html#typesseq

https://docs.python.org/3/library/stdtypes.html#typesseq

List Methods
Lists supply a certain set of methods:

list.append(x): adds x to the end of the list

list.extend(L2): adds list L2 to the end of another list (like concatenation)

list.sort(): sort the elements of the list

list.remove(x): removes from the list the first element equal to x.

list.pop(): removes the last element of the list and returns that element.

list.append() and list.extend()

We call list methods with dot
notation. These are methods
supported by certain objects.

Warning: list.append() adds
its argument as the last element of
a list! Use list.extend() to
concatenate to the end of the list!

Note: all of these list methods act upon the list that
calls the method. These methods don’t return the
new list, they alter the list on which we call them.

list.sort() and sorted()

list.sort() sorts the list in place.
See documentation for how Python
sorts data of different types.

If I don’t want to sort a list in place,
the sorted() command returns a
sorted version of the list, leaving its
argument unchanged.

Removing elements: list.pop()

list.pop() removes the last element
from the list and returns that element.

list.pop() takes an optional argument,
which indexes into the list and removes and
returns the indexed element

Again, this method alters the list itself,
rather than returning an altered list.

Removing elements: list.remove()

list.remove(x) removes the first
instance of x in the list.

Raises a ValueError if
no such element exists.

Map, filter and reduce
Example: suppose I want to square every element of a list.

This function takes a list t, and creates
a new list res, which consists of the
squares of the elements of t.

This kind of operation, in which we
apply a function to each element of a
list, is called a map operation.

Note: unlike the list methods in the
previous slides, this function creates a
new list, and doesn’t alter the argument.

Map, filter and reduce
Example: I want to remove all even numbers from a list.

This function takes a list t, and creates
a new list res, which contains only the
odd elements of t.

This kind of operation, in which we keep
only the elements of a list that satisfy some
condition, is called a filter operation.

Note: again, this function creates a new
list, and doesn’t alter the argument.

Map, filter and reduce
Example: compute the sum of a list of numbers

This function takes a list t, sums the
elements of t, and returns the sum.

This kind of operation, in which we combine
the elements of a list to obtain a single
element, is called a reduce operation.

This notation may be familiar to you already. It
is called augmented assignment. It is short
for res = res + elmt .

The variable res holds a running sum. We call
a variable like this an accumulator.

Map, filter and reduce
We’ll see lots more of these operations later in the course

They’re fundamental to functional programming
MapReduce and related frameworks are built on this paradigm

Note: all examples were on lists of numbers...
...but can write similar functions for strings or other more complicated data

Some of these operations can be expressed with Python list comprehensions

Map with list comprehensions

List comprehensions are a special pattern
supplied by Python. They’re one of the
features of Python that makes it appealing.
Very expressive way to write operations!

Basic pattern: [f(x) for x in mylist]
creates a new list, whose elements are the
elements of mylist, each with function f applied.

Note: the function f must
actually return something!

Filter with list comprehensions

Basic pattern:
[x for x in mylist if boolean_expr]
creates a new list of all and only the elements of
mylist that satisfy boolean_expr .

Can combine filter and map to
apply a function to only the
elements that pass the filter.

Lists and strings
Lists and strings are both sequences, but they aren’t quite the same...

str.split() turns a string into a list
of strings, splitting the string on its
argument, called the delimiter.

str.join() is like the inverse of
str.split() . It takes a list of strings
and joins them into a single string.

Equivalent vs identical objects

Question: are a and b the same?

Well, what do we mean by “the same”?

Possibility 1:
a and b both ‘point to’
the same object.

a

b

‘unicorn’

a

b

‘unicorn’Possibility 2:
a and b ‘point to’ different
objects, both objects have
same value. ‘unicorn’

Equivalent vs identical objects

Question: are a and b the same?

Well, what do we mean by “the same”?

Possibility 1:
a and b both ‘point to’
the same object.

a

b

‘unicorn’

a

b

‘unicorn’Possibility 2:
a and b ‘point to’ different
objects, both objects have
same value. ‘unicorn’

In this case, we say that a
and b are equivalent

In this case, we say that a
and b are identical

Equivalent vs identical objects

a

b
‘unicorn’

a

b

‘unicorn’

‘unicorn’

identical

equivalent

== tests if two variables are equivalent.
is tests if two variables are identical.

Reminder:

Strings are immutable, so Python only creates one
copy of the string ‘unicorn’ , and both a and b
point to it. So they are equivalent and identical.

Equivalent vs identical objects

a

b
‘unicorn’

a

b

‘unicorn’

‘unicorn’

identical

equivalent

== tests if two variables are equivalent.
is tests if two variables are identical.

Reminder:

Lists are mutable, so Python creates
different copies for a and b. So they are
equivalent but not identical.

Equivalent vs identical objects: reference

a

b
‘unicorn’

a

b

‘unicorn’

‘unicorn’

identical

equivalent

== tests if two variables are equivalent.
is tests if two variables are identical.

Reminder:
Question: will this evaluate to True or False?

Equivalent vs identical objects: reference

a

b
‘unicorn’

a

b

[1,2,3]

[1,2,3]

identical

equivalent

== tests if two variables are equivalent.
is tests if two variables are identical.

Reminder:Answer: evaluates to True, because assignment
changes the reference of a variable.

Reference of a variable is the value
to which it “points”, like on the right.

An object that has more than one reference
(i.e., more than one “name”) is called aliased.
So, on the right, ‘unicorn’ is aliased.

Equivalent vs identical objects: reference

Warning: Aliased mutable objects can
sometimes cause unexpected behavior.

Question: what should
this evaluate to?

Equivalent vs identical objects: reference

Warning: Aliased mutable objects can
sometimes cause unexpected behavior.

Question: what should
this evaluate to?

Answer: when we changed the last
element of b, we changed the object
referenced by both a and b.

Pass-by-reference vs pass-by-value

When you pass an object to a function, the
function gets a reference to that object. So
changes that we make inside the function
are also true outside. This is called
pass-by-reference, because the function
gets a reference to its argument.

Note: strictly speaking, what Python does is
not pass-by-reference in the same way as
what is normally meant by the term. This is
because Python does not use pointers per
se in the way that, e.g., C/C++ does.

Pass-by-reference vs pass-by-value

When we make the assignment to t, we
create a new list, and the reference of t is
changed, so it no longer points to the list
that we passed to the function!

Moral of the story: be careful when working with mutable
objects, especially when you are trying to modify objects in
place. Often, it’s better to just write a function that modifies
a list and returns the modified list!

