
STATS 507
Data Analysis in Python

Lecture 6: Functional Programming
with itertools and functools

Functional Programming
In the last lecture, we saw ideas from object oriented programming

“Everything is an object”
Every operation is the responsibility of some class/object
Use side effects to our advantage (e.g., modifying attributes)

In functional programming, functions are the central concept, not objects
“Everything is a function”, “data is immutable”
Avoid side effects at all costs
Use pure functions (and “meta-functions”) as much as possible
Iterators (or their equivalents) become hugely important

Iterators
An iterator is an object that represents a “data stream”

Supports method __next__():
returns next element of the stream/sequence
raises StopIteration error when there are no more elements left

Iterators
An iterator is an object that represents a “data stream”

Supports method __next__():
returns next element of the stream/sequence
raises StopIteration error when there are no more elements left

__next__() is the important point, here.
It returns a value, the next square.

next(iter) is equivalent to calling
__next__() . Variable _ in the list
comprehension is a placeholder, tells
Python to ignore the value.

Iterators Lists are not iterators, so we first
have to turn the list t into an iterator
using the function iter().

Now, each time we call next(), we get the next
element in the list. Reminder: next(iter) and
iter.__next__() are equivalent.

Once we run out of elements, we get an error.

Iterators Lists are not iterators, so we first
have to turn the list t into an iterator
using the function iter().

Now, each time we call next(), we get the next
element in the list. Reminder: next(iter) and
iter.__next__() are equivalent.

Once we run out of elements, we get an error.

Lists are not iterators, but we can turn a list into an iterator
by calling iter() on it. Thus, lists are iterable, meaning
that it is possible to obtain an iterator over their elements.
https://docs.python.org/3/glossary.html#term-iterable

From the documentation: “When an iterable object is passed as
an argument to the built-in function iter(), it returns an iterator for
the object. This iterator is good for one pass over the set of
values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for statement does
that automatically for you, creating a temporary unnamed variable
to hold the iterator for the duration of the loop.”

https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#iter

Iterators You are already familiar with iterators from previous
lectures. When you ask Python to traverse an object
obj with a for-loop, Python calls iter(obj) to
obtain an iterator over the elements of obj.

These two for-loops are equivalent. The first
one hides the call to iter() from you,
whereas in the second, we are doing the
work that Python would otherwise do for us
by casting t to an iterator.

Iterators You are already familiar with iterators from previous
lectures. When you ask Python to traverse an object
obj with a for-loop, Python calls iter(obj) to
obtain an iterator over the elements of obj.

These two for-loops are equivalent. The first
one hides the call to iter() from you,
whereas in the second, we are doing the
work that Python would otherwise do for us
by casting t to an iterator.

A useful note from the documentation: “There is a subtlety when the sequence is being
modified by the loop (this can only occur for mutable sequences, i.e. lists). An internal counter
is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means
that if the suite deletes the current (or a previous) item from the sequence, the next item will
be skipped (since it gets the index of the current item which has already been treated).
Likewise, if the suite inserts an item in the sequence before the current item, the current item
will be treated again the next time through the loop.”

Iterators
If we try to iterate over an object that is not
iterable, we’re going to get an error.

Objects of class dummy have neither __iter__()
(i.e., doesn’t support iter()) nor __next__() , so
iteration is hopeless. When we try to iterate, Python
is going to raise a TypeError .

Iterators

Merely being an iterator isn’t enough, either!
for X in Y requires that object Y be iterable.

Iterators

Now Squares supports __iter__() (it just returns
itself!), so Python allows us to iterate over it.

Iterable means that an object has the __iter__()
method, which returns an iterator. So __iter__()
returns a new object that supports __next__() .

This is an infinite loop. Don’t try this at home.

Iterators

We can turn an iterator back into a list, tuple, etc.
Caution: if you have an iterator like our Squares
example earlier, this list is infinite and you’ll just
run out of memory.

Many built-in functions work on iterators. e.g., max, min, sum,
work on any iterator (provided elements support the operation);
in operator will also work on any iterator

Warning: Once again, care must
be taken if the iterator is infinite.

List Comprehensions and Generator Expressions
Recall that a list comprehension creates a list from an iterable

List comprehension computes and
returns the whole list. What if the
iterable were infinite? Then this list
comprehension would never return!

This list comprehension is going to be infinite! But I
really ought to be able to get an iterator over the
squares of the elements of Catalan object c...

This is the motivation for generator
expressions. Generator expressions
are like list comprehensions, but they
create an iterator rather than a list.

Generator expressions are written like list comprehensions,
but with parentheses instead of square brackets.

Generators
Related to generator expressions are generators

Provide a simple way to write iterators (avoids having to create a new class)

Each time we call this function, a local namespace is
created, we do a bunch of work there, and then all that
work disappears when the namespace is destroyed.

Alternatively, we can write harmonic as a generator.
Generators work like functions, but they maintain internal
state, and they yield instead of return. Each time a
generator gets called, it runs until it encounters a yield
statement or reaches the end of the def block.

https://en.wikipedia.org/wiki/Harmonic_number

https://en.wikipedia.org/wiki/Harmonic_number

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Create a new harmonic generator. Inside this
object, Python keeps track of where in the def
code we are. So far, no code has been run.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

If/when we run out of yield statements (i.e.,
because we reach the end of the definition block),
the generator returns a StopIteration error, as
required of an iterator (not shown here).

Generators
Generators supply a few more bells and whistles

Ability to pass values into the generator to modify behavior
Can make generators both produce and consume information

Coroutines as opposed to subroutines

See generator documentation for more:
https://docs.python.org/3/reference/expressions.html#generator-iterator-methods

https://docs.python.org/3/reference/expressions.html#generator-iterator-methods

Map and Filter
Recall:

map operation applies a function to every element of a sequence
Yields a new, transformed sequence

filter operation removes from a sequence all elements failing some condition
Again, yields a new, filtered sequence

Map
We saw how to achieve a map operation using list comprehensions

But there’s also the Python map function: From the documentation:
map(function, iterable, ...)
Return an iterator that applies function to
every item of iterable, yielding the results.

map and range are both
special kinds of iterators.

Map
The first argument to map is a
function; remaining arguments
are one or more iterables.

Number of iterables and
number of function
arguments must agree!

Aside: lambda expressions
Lambda expressions let you define functions without using a def statement

Called an in-line function or anonymous function
Name is a reference to lambda calculus, a concept from symbolic logic

Define a function, then pass it to map.

Alternatively, define an equivalent function
in-line, using a lambda statement.

A lambda expression returns a function,
so my_square and lambda x: x**2
are, in a certain sense, equivalent.

Aside: lambda expressions Arguments of the function are listed
before the colon. So this function
takes a single argument...

...while this one takes four.

Aside: lambda expressions Return value of the function is listed on
the right of the colon. So this function
returns the square of its input plus 1....

...and this one returns a
Boolean stating whether or
not the four numbers satisfy
Fermat’s last theorem.

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem

Aside: lambda expressions

Lambda expressions return
actual functions, which we
can apply to inputs.

Function names are stored in an attribute
__name__ . Since lambda expressions yield
anonymous functions, they all have the
generic name ‘<lambda>’ .

Aside: lambda expressions

Lambda expressions can be used anywhere you
would use a function. Note that the term
anonymous function makes sense: the lambda
expression defines a function, but it never gets a
variable name (unless we assign it to something,
like in the ‘goat’ example to the left).

First-class functions

The fact that we can have variables
whose values are functions is actually
quite special. We say that Python has
first-class functions. That is,
functions are perfectly reasonable
values for a variable to have.

You’ve seen these ideas before if
you’ve used R’s tapply (or similar),
MATLAB’s function handles, C/C++
function pointers, etc.

Filter
The list filter expression also has an analogous function, filter.

filter takes a Boolean function and an
iterator and returns an iterator of only the
elements that evaluated to True.

Returns its own special iterator.

Second argument to filter (and map) can be
any iterator. Here we are filtering a generator.

Filter

It’s often more convenient to just use a
lambda expression in-line instead of
defining a Boolean function elsewhere.

Lambda expressions don’t support scatter/gather, so
you have to use this kind of pattern to process tuples.
Worry not! Another Python module does support this,
and we’ll see it in a few slides.

Quantifiers over iterables: any() and all()

any takes an iterable as its input
and returns True if and only if one
or more elements is True.

Reminder: 0, 0.0, empty string, empty
list, etc all evaluate to False. Just about
everything else evaluates to True.

all takes an iterable as its input
and returns True if and only if all
elements are True.

Quantifiers over iterables: any() and all()

Here’s a nice example of why functional
programming is useful. Complicated
functions become elegant one-liners!

Of course, sometimes that elegance comes at
the cost of efficiency. In this example, we’re
failing to use a speedup that would be gained
from using, e.g., the sieve of Eratosthenes and
stopping checking above sqrt(n).

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

zip, revisited Recall that zip takes two or more iterables
and returns an iterator over tuples

Here are two infinite iterators, and we zip them. So
z should also be an infinite iterator. But this
expression doesn’t result in an infinite evaluation...

The trick is that zip uses lazy evaluation. Rather
than trying to build all the tuples right when we call
zip, Python is lazy. It only builds tuples as we ask
for them! We’ll see this plenty more in this course.
https://en.wikipedia.org/wiki/Lazy_evaluation

https://en.wikipedia.org/wiki/Lazy_evaluation

Speaking of laziness

any and all are lazy. As soon as any finds a True
element, it returns True. As soon as all finds a False
element, it returns False. This is a simpler (i.e., less
general) notion of laziness than lazy evaluation, but the
underlying motivation is the same. Do as little work as
is necessary to get your answer!

What about reduce?
Saw map and filter earlier, but we can’t have MapReduce without reduce

functools contains a bunch of useful functional
programming functions, including reduce.

Reduce operations reduce an iterator (i.e., a sequence) to a
single element. Sum is a good example of a reduce function.

functools.reduce takes a
function and and iterator and
performs a reduce operation on
the iterator using the function.A reduce operation takes a function and a sequence returns

a single object (typically of the same type as the elements of
the sequence). sum() is a good example of a reduce
operation, but it’s hardly the only one.

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Python initializes an accumulator with the given initial value.
Think of the accumulator as a “running total”.

0

accumulator

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

0

accumulator

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

0

accumulator

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

0

accumulator

f(0,2) = 2

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

2

accumulator

f(0,2) = 2

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

2

accumulator

f(2,3) = 5

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

5

accumulator

f(2,3) = 5

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

5

accumulator

f(2,3) = 5

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

5

accumulator

f(5,5) = 10

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

10

accumulator

f(5,5) = 10

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator,y)
where y traverses the sequence

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

10

accumulator

...and so on.

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

27

accumulator

Once Python gets a StopIteration error
indicating that the iterator has no more elements,
it returns the value in the accumulator.

If the initial value isn’t supplied, Python
initializes the accumulator as acc = f(x,y)
where x and y are the first two elements of the
iterator. If the iterator is length 1, it just returns
that element. All told, it’s best to always specify
the initial value, except in very simple cases
(like these slides).

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Warning: if the iterator supplied to reduce is
empty, then we really do need the initial value!

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Reduce in Python
reduce is not included as a built-in function in Python, unlike map and filter

Because developers felt that reduce is not “Pythonic”

The argument is that reduce operations can always be written as a for-loop:

Reduce in Python
reduce is not included as a built-in function in Python, unlike map and filter

Because developers felt that reduce is not “Pythonic”

The argument is that reduce operations can always be written as a for-loop:

This criticism is mostly correct, but we’ll see
later in the course when we cover MapReduce
that there are cases where we really do want a
proper reduce function.

Reduce in Python
All of the standard reduce-like functions are
easily reimplemented with reduce statements,
like this example, with max. Note the use of
Python’s in-line conditional statement.

More often, one has to implement the pairwise
function. For example, here we have implemented
a function for entrywise addition of tuples.

Note: there are “more functional” ways to do this. Since tuples are
themselves iterable, we could write a clever “function of functions”
to do this more gracefully. More on this soon.

Related: itertools.accumulate itertools.accumulate
performs a reduce operation, but
it returns an iterator over the
partial “sums” of its argument.
Returns an empty iterator if
argument is empty.

I put “sums” in quotes, because of course the function need not
be addition. The point is that we get an iterator over the values
of the accumulator at each step of the reduce operation.

Working with iterators: itertools
itertools.count(x,y) returns an
infinite iterator of numbers starting at x
and proceeding in increments of y.

itertools.accumulate(t) returns an
iterator of partial sums of t. Or partial
“sums” if we specify a different function.

itertools.filterfalse(t)
is like the opposite of filter.

itertools.starmap similar to map, but
applies multi-argument function to tuples.
Name is reference to the *args notation.

https://docs.python.org/3/library/itertools.html#module-itertools

https://docs.python.org/3/library/itertools.html#module-itertools

More itertools: combinations

itertools also includes some combinatorial
functions that can be useful on occasion.

Aside: Python operator module
It’s awfully annoying to have to write lambda x,y:x+y all the time

operator includes many other functions:
Math: add(), sub(), mul(), abs(), etc.
Logic: not_(), truth().
Bitwise: and_(), or_(), invert() .
Comparison: eq(), ne(), lt(), le(), etc.
Identity: is_(), is_not() .

Here is what we’d like to write,
but of course it’s a syntax error.

operator.mul gives us *, but
as a function, just as though we
wrote a lambda expression.

https://docs.python.org/3/library/operator.html#module-operator

https://docs.python.org/3/library/operator.html#module-operator

More functional patterns: functools
functools module provides a number of functional programming constructions

functools.partial takes a function and a set
of arguments to pass to the function. Returns a
function with some of its arguments “fixed”.

So in this case, it’s like we got a new function,
pow2(x) == math.pow(2,x)

functools.partial also lets
us pass keyword arguments.

Higher-order functions and currying
functools.partial takes a function (and other stuff), returns a function

Called a higher-order function

In most other languages, Python’s functools.partial is called currying

Currying is named after logician Haskell Curry
https://en.wikipedia.org/wiki/Currying

curry1 takes two arguments,
returns their product times 2.

curry2 takes one argument z, returns
2*3*z (reminder: partial fills positional
arguments in order).

Equivalently, just pass both
arguments in one call to partial.

https://en.wikipedia.org/wiki/Currying

Pure functions, again
Recall that a pure function was a function that did not have any side effects

Pure functions are especially important in functional programming
A pure function is really a function (in the mathematical sense)
Given the same input, it always produces the same output

(And doesn’t change the state of our program!)

This function is a modifier.
It has side effects.

This is a pure function.

Pure functions, again
Recall that a pure function was a function that did not have any side effects

Pure functions are especially important in functional programming
A pure function is really a function (in the mathematical sense)
Given the same input, it always produces the same output

(And doesn’t change the state of our program!)

Pure functions are also crucial to having immutable
data. Think about processing the observations in a
data set. We don’t want to change the original data
file in the process of our analysis! We want to be
able to write a pipeline, in which we pass data from
one function to another, producing a transformed
version of the data at each step.

Pure functions and higher-order functions
Pure functions arise frequently in map/reduce frameworks

A good example of a higher-order
function: compose takes some
functions and produces a new function.

You can see why we prefer pure
functions for this. If f and/or g had side
effects, this would be a big mess!

Returning a function is okay, because
Python has first-class functions.

Example credit: D. Mertz, Functional Programming in Python

Functional vs Object-oriented Programming
Of course, I’m exaggerating the
complexity of this object here, but this
really is what object-oriented code
ends up looking like in the wild.

Contrast that with the simplicity of this
functional version of the same
letter-counting operation.

Why use functional programming?
Some problems are especially well-suited to this paradigm

Example: quicksort

https://en.wikipedia.org/wiki/Quicksort
See the quicksort Wikipedia page for
examples of what this looks like when
written in a non-functional style.

https://en.wikipedia.org/wiki/Quicksort

A note on recursion in Python: tail call optimization
M. R. Cook, A Practical Introduction to Functional Programming:
“Tail call optimisation is a programming language feature. Each time a function recurses, a
new stack frame is created. A stack frame is used to store the arguments and local values for
the current function invocation. If a function recurses a large number of times, it is possible
for the interpreter or compiler to run out of memory. Languages with tail call optimisation
reuse the same stack frame for their entire sequence of recursive calls. Languages like
Python that do not have tail call optimisation generally limit the number of times a function
may recurse to some number in the thousands.”

Python doesn’t have tail call recursion, so some functional
programing patterns simply aren’t well-suited if we may
encounter many thousands of layers of recursion. Recall our
memoized function for computing the Fibonacci numbers.

Declarative Programming
Describe what the program should do, rather than how it does it

Implementation details are left up to the language as much as possible

In contrast to imperative/procedural programming
Sequence of statements describes how program should proceed
Most programming you have done in the past is procedural
Program consists of subroutines that get called, change state of program

Don’t worry too much about these distinctions. Most languages are a mix
of them, and no single approach is a silver bullet.

Different applications call for different programming paradigms.

Congratulations! You know enough functional
programming to get the joke in this xkcd comic!

Alt-text: Functional programming
combines the flexibility and power of
abstract mathematics with the intuitive
clarity of abstract mathematics.

