
STATS 507
Data Analysis in Python

Lecture 10: Basics of pandas

Pandas
Open-source library of data analysis tools

Low-level ops implemented in Cython (C+Python=Cython, often faster)
Database-like structures, largely similar to those available in R
Optimized for most common operations

E.g., vectorized operations, operations on rows of a table

From the documentation: pandas is a Python package providing
fast, flexible, and expressive data structures designed to make
working with “relational” or “labeled” data both easy and intuitive. It
aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python.

Installing pandas
Anaconda:

conda install pandas

Using pip:
pip install pandas

From binary (not recommended):

http://pypi.python.org/pypi/pandas

Warning: a few recent updates to pandas have been API-breaking changes,
meaning they changed one or more functions (e.g., changed the number of
arguments, their default values, or other behaviors). This shouldn’t be a problem for
us, but you may as well check that you have the most recent version installed.

http://pypi.python.org/pypi/pandas

Basic Data Structures
Series: represents a one-dimensional labeled array

Labeled just means that there is an index into the array
Support vectorized operations

DataFrame: table of rows, with labeled columns
Like a spreadsheet or an R data frame
Support numpy ufuncs (provided data are numeric)

pandas Series

By default, indices are
integers, starting from 0,
just like you’re used to.

But we can specify a
different set of indices if
we so choose.

Can create a pandas Series from
any array-like structure (e.g.,
numpy array, Python list, dict).

Pandas tries to infer this data
type automatically.

Warning: providing too few or too
many indices is a ValueError .

pandas Series

Can create a series from a
dictionary. Keys become indices.

Index ‘cthulu’ doesn’t appear in the
dictionary, so pandas assigns it NaN, the
standard “missing data” symbol.

pandas Series Indexing works like you’re used
to and supports slices, but not
negative indexing.

This object has type np.int64

This object is another
pandas Series.

pandas Series

Caution: indices need not be unique in pandas
Series. This will only cause an error if/when you
perform an operation that requires unique indices.

pandas Series
Series objects are like np.ndarray
objects, so they support all the same
kinds of slice operations, but note that
the indices come along with the slices.

Series objects even support most numpy
functions that act on arrays.

pandas Series

Series objects are dict-like,
in that we can access and
update entries via their keys.

Like a dictionary, accessing
a non-existent key is a
KeyError.

Note: I cropped out a bunch of the
error message, but you get the idea.

Not shown: Series also support the
in operator: x in s checks if x
appears as an index of Series s.
Series also supports the dictionary
get method.

pandas Series

Entries of a Series can be of
(almost) any type, and they may
be mixed (e.g., some floats,
some ints, some strings, etc), but
they can not be sequences.

More information on indexing:
https://pandas.pydata.org/pandas-d
ocs/stable/indexing.html

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html

pandas Series

Series support universal
functions, so long as all their
entries support operations.

Series operations require
that keys be shared.
Missing values become
NaN by default.

To reiterate, Series objects support most numpy ufuncs. For
example, np.sqrt(s) is valid, so long as all entries are positive.

pandas Series

Series have an optional
name attribute.

After it is set, name
attribute can be changed
with rename method.

This will become especially useful
when we start talking about
DataFrames, because these name
attributes will be column names.

Note: this returns a new
Series. It does not
change s.name.

Mapping and linking Series values

Series map method works
analogously to Python’s map
function. Takes a function and
applies it to every entry.

Mapping and linking Series values

Series map also allows us to change
values based on another Series. Here,
we’re changing the fruit/animal category
labels to binary labels.

pandas DataFrames
Fundamental unit of pandas

Analogous to R data frame

2-dimensional structure (i.e., rows and columns)
Columns, of potentially different types
Think: spreadsheet (or, better, database, but we haven’t learned those, yet)

Can be created from many different objects
Dict of {ndarrays, Python lists, dicts, Series}
2-dimensional ndarray
Series

pandas DataFrames
Creating a DataFrame from a dictionary, the
keys become the column names. Values
become the columns of the dictionary.

Each column may have its own indices, but the
resulting DataFrame will have a row for every
index (i.e., every row name) that appears.

Indices that are unspecified for a
given column receive NaN.

Note: in the code above, we specified the two columns
differently. One was specified as a Series object, and the other as
a dictionary. This is just to make the point that there is flexibility in
how you construct your DataFrame. More options:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.
DataFrame.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

pandas DataFrames: creating DataFrames
Dictionary has 4 keys, so 4 columns.

Note: Dictionary includes both
text and numeric columns

By default, rows and columns
are ordered alphabetically.

pandas DataFrames: row/column names

Row and column names accessible as
the index and column attributes ,
respectively, of the DataFrame.

Both are returned as pandas Index objects.

pandas DataFrames: accessing/adding columns
DataFrame acts like a dictionary whose keys
are column names, values are Series.

Like a dictionary, we can create
new key-value pairs.

Note: technically, this isn’t quite correct,
because Ford did not serve a full term.
https://en.wikipedia.org/wiki/Gerald_Ford

https://en.wikipedia.org/wiki/Gerald_Ford

pandas DataFrames: accessing/adding columns

Since the row labels are ordered, we
can specify a new column directly from
a Python list, numpy array, etc. without
having to specify indices.

Note: by default, new column are
inserted at the end. See the insert
method to change this behavior:
https://pandas.pydata.org/pandas-d
ocs/stable/generated/pandas.DataFr
ame.insert.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html

pandas DataFrames: accessing/adding columns

Scalars are broadcast across the rows.

Deleting columns

Delete columns identically to
deleting keys from a
dictionary. One can use the
del keyword, or pop a key.

Indexing and selection

df.loc selects rows by their labels.
df.iloc selects rows by their integer
labels (starting from 0).

Indexing and selection

Select columns by their names.

Indexing and selection

Select rows by their numerical
indices (again 0-indexed). This
supports slices.

Note: one can also select slices
with lists of column names, e.g.,
presidents[[‘JD’,’PhD’]] .

Indexing and selection

Select columns by
Boolean expression.

Indexing and selection

These expressions
return Series objects.

Indexing and selection

These expressions
return Series objects.

These expressions
return DataFrames.

More on indexing:
https://pandas.pydata.org/pandas-doc
s/stable/indexing.html

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html

Arithmetic with DataFrames

pandas tries to align the DataFrames as best it
can, filling in non-alignable entries with NaN.

In this example, rows 0 through 4 and columns
A through C exist in both DataFrames, so these
entries can be successfully added. All other
entries get NaN, because x + NaN = NaN .

Arithmetic with DataFrames

By default, Series are aligned to
DataFrames via row-wise broadcasting.

df.iloc[0] is a Series representing the 0-th row
of df. When we try to subtract it from df, pandas
forces dimensions to agree by broadcasting the
operation across all rows of df.

Arithmetic with DataFrames

Scalar addition and multiplication
works in the obvious way.
DataFrames also support scalar
division, exponentiation…
Basically every numpy ufunc.

DataFrames also support
entrywise Boolean operations.

Arithmetic with DataFrames

pandas DataFrames support
numpy-like any and all methods.

Just like numpy, direct
Boolean operations are
not supported.

Arithmetic with DataFrames

values attribute stores the entries of the table in a
numpy array. This is occasionally useful when you
want to stop dragging the extra information around
and just work with the numbers in the table.

Arithmetic with DataFrames

DataFrames support entrywise
multiplication. The T attribute is the
transpose of the DataFrame.

DataFrames also support matrix
multiplication via the numpy-like dot
method. The DataFrame dimensions
must be conformal, of course. Note: Series also

support a dot method,
so you can compute
inner products.

Removing NaNs
DataFrame dropna method
removes rows or columns that
contain NaNs.

how=’any’ will remove all
rows/columns that contain
even one NaN. how=’all’
removes rows/columns that
have all entries NaN.

axis argument controls
whether we act on rows,
columns, etc.

Reading/writing files

https://pandas.pydata.org/pandas-docs/stable/io.html

pandas supports read/write for a wide range
of different file formats. This flexibility is a
major advantage of pandas.

https://pandas.pydata.org/pandas-docs/stable/io.html

Reading/writing files

Table credit: https://pandas.pydata.org/pandas-docs/stable/io.html

pandas supports read/write for a wide range
of different file formats. This flexibility is a
major advantage of pandas.

pandas file I/O is largely similar to R read.table
and similar functions, so I’ll leave it to you to read the
pandas documentation as needed.

https://pandas.pydata.org/pandas-docs/stable/io.html

Summarizing DataFrames

info() method prints summary data
about the DataFrame. Number of rows,
column names and their types, etc.

Note: there is a separate to_string()
method that generates a string representing the
DataFrame in tabular form, but this usually
doesn’t display well if you have many columns.

pd.read_csv() reads a
comma-separated file into a DataFrame.

Summarizing DataFrames
head() method displays just the first few rows of the
DataFrame (5 by default; change this by supplying an
argument). tail() displays the last few rows.

Note: R and pandas both supply head/tail
functions, named after UNIX/Linux commands
that displays the first/last lines of a file.

Comparing DataFrames

These two DataFrames
ought to be equivalent...

...but they aren’t.

Comparing DataFrames

These two DataFrames
ought to be equivalent...

...but they aren’t.

The problem comes from the fact that
NaNs are not equal to one another.

Solution: DataFrames have a separate
equals() method for checking the kind
of equality that we meant above.

Comparing DataFrames

Solution: DataFrames have a separate
equals() method for checking the kind
of equality that we meant above.

There is a solid design principle behind this. If
there are NaNs in our data, we want to err on the
side of being overly careful about what
operations we perform on them. We see similar
ideas in numpy and in R.

Statistical Operations on DataFrames
Getting means of DataFrame
rows/columns using numpy is
possible, but tedious.

DataFrame.mean method is a cleaner way to
do the same thing. Argument picks out which axis
to take means on: rows (1) or columns (0).

Statistical Operations on DataFrames
Getting means of DataFrame
rows/columns using numpy is
possible, but tedious.

Of course, DataFrames also support a bunch of related
functions, that work similarly: sum, min, max, std, var etc.
All of these functions take an optional Boolean argument
skipna. If True, NaNs are not included in the
computation. If False, NaNs are included (which can
mean either that the computation doesn’t work at all, or
changes the value only slightly). More information:
https://pandas.pydata.org/pandas-docs/stable/basics.html#
descriptive-statistics

DataFrame.mean method is a cleaner way to
do the same thing. Argument picks out which axis
to take means on: rows (1) or columns (0).

https://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics
https://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics

Summarizing DataFrames

DataFrame.describe() is similar to the R
summary() function. Non-numeric data will
get statistics like counts, number of unique
items, etc. If a DataFrame has mixed types
(both numeric and non-numeric), the
non-numeric data is excluded by default.

Details and optional arguments:
https://pandas.pydata.org/pandas-docs/stable/basics.ht
ml#summarizing-data-describe

https://pandas.pydata.org/pandas-docs/stable/basics.html#summarizing-data-describe
https://pandas.pydata.org/pandas-docs/stable/basics.html#summarizing-data-describe

Row- and column-wise functions: apply()

DataFrame.apply() takes a function and
applies it to each column of the DataFrame.

Axis argument is 0 by default (column-wise).
Change to 1 for row-wise application.

Row- and column-wise functions: apply()

Numpy ufuncs take vectors and spit out
vectors, so using df.apply() to apply a
ufunc to every row or column in effect ends up
applying the ufunc to every element.

Row- and column-wise functions: apply()

We can pass positional and keyword arguments
into the function via df.apply . Args is a tuple
of the positional arguments (in order), followed
by the keyword arguments.

Note: “apply() takes an argument raw which is False by default,
which converts each row or column into a Series before applying the
function. When set to True, the passed function will instead receive
an ndarray object, which has positive performance implications if
you do not need the indexing functionality.” This can be useful if your
function is meant to work specifically with Series.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html#pandas.DataFrame.apply

Element-wise function application

This causes an error, because
apply thinks that its argument
should be applied to Series
(i.e., columns), not to individual
entries.

Element-wise function application

applymap works similarly to Python’s
map function (and the Series map
method). Applies its argument function
to every entry of the DataFrame.

Tablewise Function Application

Here we have a function composition
applied to a DataFrame. This is
perfectly valid code, but pandas
supports another approach.

Tablewise Function Application

The DataFrame pipe method is built for a
pattern called method chaining. The pipe
method has better support for passing
additional arguments around than does the
function composition to the right. This
pattern using pipe is also more conducive
to functional programming patterns.

