
STATS 507
Data Analysis in Python

Lecture 13: Text Encoding and Regular Expressions
Some slides adapted from C. Budak

Structured data
Storage: bits on some storage medium (e.g., hard-drive)

Encoding: how do bits correspond to symbols?

Interpretation/meaning: e.g., characters grouped into words

Delimited files: words grouped into sentences, documents

Structured content: metadata, tags, etc

Collections: databases, directories, archives (.zip, .gz, .tar, etc)

Increasing structure

Structured data
Storage: bits on some storage medium (e.g., hard-drive)

Encoding: how do bits correspond to symbols?

Interpretation/meaning: e.g., characters grouped into words

Delimited files: words grouped into sentences, documents

Structured content: metadata, tags, etc

Collections: databases, directories, archives (.zip, .gz, .tar, etc)

Increasing structure
Today

Structured data
Storage: bits on some storage medium (e.g., hard-drive)

Encoding: how do bits correspond to symbols?

Interpretation/meaning: e.g., characters grouped into words

Delimited files: words grouped into sentences, documents

Structured content: metadata, tags, etc

Collections: databases, directories, archives (.zip, .gz, .tar, etc)

Increasing structure
Today

Lectures 13 and 14

Text data is ubiquitous
Examples:

Biostatistics (DNA/RNA/protein sequences)

Databases (e.g., census data, product inventory)

Log files (program names, IP addresses, user IDs, etc)

Medical records (case histories, doctors’ notes, medication lists)

Social media (Facebook, twitter, etc)

How is text data stored?
Underlyingly, every file on your computer is just a string of bits…

...which are broken up into (for example) bytes…

...which correspond to (in the case of text) characters.

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 00

c a t

How is text data stored?

Some encodings (e.g., UTF-8 and UTF-16) use “variable-length” encoding, in
which different characters may use different numbers of bytes.

We’ll concentrate (today, at least) on ASCII, which uses fixed-length encodings.

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

c a t

ASCII (American Standard Code for Information Interchange)
8-bit* fixed-length encoding, file stored as stream of bytes

Each byte encodes a character
Letter, number, symbol or “special” characters (e.g., tabs, newlines, NULL)

Delimiter: one or more characters used to specify boundaries
Ex: space (‘ ’, ASCII 32), tab (‘\t’, ASCII 9), newline (‘\n’, ASCII 10)

https://en.wikipedia.org/wiki/ASCII

*technically, each ASCII character is 7 bits, with the 8th bit reserved for error checking

https://en.wikipedia.org/wiki/ASCII

Caution!
Different OSs follow slightly different conventions when saving text files!

Most common issue:
● UNIX/Linux/MacOS: newlines stored as ‘\n’
● DOS/Windows: stored as ‘\r\n’ (carriage return, then newline)

When in doubt, use a tool like UNIX/Linux xxd (hexdump) to inspect raw bytes
xxd is also in MacOS; available in cygwin on Windows

Unicode
Universal encoding of (almost) all of the world’s writing systems

Each symbol is assigned a unique code point, a four-hexadecimal digit number
● Unique number assigned to a given character U+XXXX
● ‘U+’ for unicode, XXXX is the code point (in hexadecimal)
● Example: 😎=U+1F60E, ∰=U+2230; http://www.unicode.org/ for more

Variable-length encoding
● UTF-8: 1 byte for first 128 code points, 2+ bytes for higher code points
● Result: ASCII is a subset of UTF-8

Newer versions (i.e., 3+) of Python encode scripts in unicode by default

http://www.unicode.org/

Matching text: regular expressions (“regexes”)

Suppose I want to find all addresses in a
big text document. How to do this?

Regexes allow concise specification for
matching patterns in text

Image credit: Randall Munroe, XKCD #208

Specifics vary from one program to
another (perl, grep, vim, emacs), but the
basics that you learn in this course will
generalize with minimal changes.

Regular expressions in Python: the re package
Three basic functions:

re.match(): tries to apply regex at start of string.

re.search(): tries to match regex to any part of string.

re.findall() : finds all matches of pattern in the string.

See https://docs.python.org/3/library/re.html for additional information and more
functions (e.g., splitting and substitution).

Gentle introduction: https://docs.python.org/3/howto/regex.html#regex-howto

https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto

Pattern matches beginning of
string1, and returns match object.

Pattern matches string2, but not
at the beginning, so match fails and
returns None.

Pattern matches beginning of
string1, and returns match object.

Pattern matches string2 (not at the
beginning!) and returns match object.

Pattern does not match anything in
string3, returns None.

Pattern matches string1 once,
returns that match.

Pattern matches string2 in three
places; returns list of three
instances of cat.

Pattern does not match anything in
string3, returns empty list.

What about more complicated matches?
Regexes would not be very useful if all we could do is search for strings like ‘cat’

Power of regexes lies in specifying complicated patterns. Examples:
Whitespace characters: ‘\t’, ‘\n’, ‘\r’
Matching classes of characters (e.g., digits, whitespace, alphanumerics)
Special characters: . ^ $ * + ? { } [] \ | ()

We’ll discuss meaning of special characters shortly

Special characters must be escaped with backslash ‘\’
Ex: match a string containing a backslash followed by dollar sign:

Gosh, that was a lot of backslashes...
Regular expressions often written as r‘text’

Prepending the regex with ‘r’ makes things a little more sane
● ’r’ for raw text
● Prevents python from parsing the string
● Avoids escaping every backslash
● Ex: ‘\n’ is a single-character string, a new line, while

r’\n’ is a two-character string, equivalent to ‘\\n’.

Note: Python also includes support for unicode regexes

Recall ‘\n’ is a single-character string, a new line, while
r’\n’ is a two-character string, equivalent to ‘\\n’.

But…

More about raw text

Has to do with Python string parsing.

From the documentation (emphasis mine):
“This is complicated and hard to understand, so it’s
highly recommended that you use raw strings for all
but the simplest expressions.”

Special characters: basics
Some characters have special meaning

These are: . ^ $ * + ? { } [] \ | ()

We’ll talk about some of these today, for others, refer to documentation

Important: special characters must be escaped to match literally!

Special characters: sets and ranges
Can match “sets” of characters using square brackets:

● ‘[aeiou]’ matches any one of the characters ’a’,’e’,’i’,’o’,’u’
● ‘[^aeiou]’ matches any one character NOT in the set.

Can also match “ranges”:
● Ex: ‘[a-z]’ matches lower case letters

○ Ranges calculated according to ASCII numbering
● Ex: ‘[0-9A-Fa-f]’ will match any hexadecimal digit
● Escaped ‘-’ (e.g. ‘[a\-z]’) will match literal ‘-’

○ Alternative: ‘-’ first or last in set to match literal

Special characters lose special meaning inside square brackets:
● Ex: ‘[(+*)]’ will match any of ‘(‘, ‘+’, ‘*’, or ‘)’
● To match ‘^’ literal, make sure it isn’t first: ‘[(+*)^]’

Special characters: single character matches
‘^’ : matches beginning of a line

‘$’ : matches end of a line (i.e., matches “empty character” before a newline)

‘.’ : matches any character other than a newline

‘\s’ : matches whitespace (spaces, tabs, newlines)

‘\d’ : matches a digit (0,1,2,3,4,5,6,7,8,9), equivalent to r‘[0-9]’

‘\w’ : matches a “word” character (number, letter or underscore ‘_’)

‘\b’ : matches boundary between word (‘\w’) and non-word (‘\W’) characters

Example: beginning and end of lines, wildcards

‘.’ matches ‘a’, and start- and
end-lines match correctly.

Matching fails because of ‘s’ at
end of string, which means that
‘d’ is not followed by end-of-line.

‘.’ matches ‘i’, and start- and
end-lines match correctly.

Matching fails because of ‘a’ at
start of string, which means that
‘b’ is not the start of the string.

Example: whitespace and boundaries

‘\s’ matches any whitespace. That
includes spaces, tabs and newlines.

The trailing newline in string1 isn’t
matched, because it isn’t followed by
a whitespace-word boundary.

Character classes: complements
‘\s’, ‘\d’, ‘\w’, ‘\b’ can all be complemented by capitalizing:

‘\S’ : matches anything that isn’t whitespace

‘\D’ : matches any character that isn’t a digit

‘\W’ : matches any non-word character

‘\B’ : matches NOT at a word boundary

Matching and repetition
‘*’ : zero or more of the previous item

‘+’ : one or more of the previous item

‘?’ : zero or one of the previous item

‘{4}’ : exactly four of the previous item

‘{3,}’ : three or more of previous item

‘{2,5}’ : between two and five (inclusive) of previous item

Test your understanding
Which of the following will match r’^\d{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match r’^\d{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Or clauses: |
‘|’ (“pipe”) is a special character that allows one to specify “or” clauses

Example: I want to match the word “cat” or the word “dog”

Solution: ‘(cat|dog)’

Note: parentheses are not strictly
necessary here, but parentheses
tend to make for easier reading and
avoid possible ambiguity. It’s a
good habit to just use them always.

Or clauses: | is lazy!
What happens when an expression using pipe can match many different ways?

What’s going on here?!

Matching with ‘|’ is lazy
Tries to match each regex separated by ‘|’, in order, left to right.
As soon as it matches something, it returns that match…

...and starts trying to make another match.
Note: this behavior can be changed using flags. Refer to documentation.

Matching and greediness
Pipe operator ‘|’ is lazy. But, confusingly, python re module is usually greedy:

‘a+’ gobbles up the whole string,
because Python regexes are greedy.

‘?’ modifies operators like ‘+’ and
‘*’ to not be greedy, and we get lazy
matching, like when using ‘|’.

From the documentation: Repetition qualifiers (*, +, ?, {m,n}, etc) cannot be directly nested.
This avoids ambiguity with the non-greedy modifier suffix ?, and with other modifiers in other
implementations. To apply a second repetition to an inner repetition, parentheses may be used.
For example, the expression (?:a{6})* matches any multiple of six 'a' characters.

Extracting groups
Python re lets us extract things we matched and use them later

Example: matching the user and domain in an email address

‘re.search’ returns a match
object. The group attribute is the
whole string that was matched.

Can access groups (parts of the regex
in parentheses) in numerical order.
Each set of parentheses gets a group,
in order from left to right.

Note: re.findall has similar functionality!

Backreferences
Can refer to an earlier match within the same regex!

‘\N’, where N is a number, references the N-th group

Example: find strings of the form ‘X X’,where X is any non-whitespace string.

Backreferences
Backrefs allows very complicated pattern matching!

Test your understanding:
Describe what strings ‘(\d+)([A-Z]+):\1+\2’ matches?
What about ‘([a-zA-Z]+).*\1’?

Backreferences
Backrefs allows very complicated pattern matching!

Test your understanding:
Describe what strings ‘(\d+)([A-Z]+):\1+\2’ matches?
What about ‘([a-zA-Z]+).*\1’?

Tougher question:
Is it possible to write a regular expression that matches palindromes?
Answer: Strictly speaking, no. https://en.wikipedia.org/wiki/Regular_language
Better answer: ...but if your matcher provides enough bells and whistles...

https://en.wikipedia.org/wiki/Regular_language

Options provided by Python re module
Optional flag modifies behavior of re.findall, re.search, etc.

Ex: re.search(r‘dog’, ‘DOG’, re.IGNORECASE) matches.

re.IGNORECASE : ignore case when forming a match.

re.MULTILINE : ‘^’,‘$’ match start/end of any line, not just start/end of string

re.DOTALL : ‘.’ matches any character, including newline.

See https://docs.python.org/2/library/re.html#contents-of-module-re for more.

https://docs.python.org/2/library/re.html#contents-of-module-re

Debugging
When in doubt, test your regexes!

A bit of googling will find you lots of tools for doing this

Compiling and then using the re.DEBUG flag can also be helpful
Compiling also good for using a regex repeatedly, like in your homework

