
STATS 507
Data Analysis in Python
Lecture 21: Algorithms, Profiling and Testing

Some material adapted from Appendix B of A. Downey’s Think Python
http://greenteapress.com/wp/think-python-2e/

http://greenteapress.com/wp/think-python-2e/


What makes a good algorithm?
We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership
Ex: certain operations on pandas tables are fast

How do we make such judgments?



What makes a good algorithm?
We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership
Ex: certain operations on pandas tables are fast

How do we make such judgments?

Answer 1: run timing experiments (i.e., profile our code)

But then our answer to “what algorithm/structure is better?” 
is highly machine- and implementation-dependent.



What makes a good algorithm?
We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership
Ex: certain operations on pandas tables are fast

How do we make such judgments?

Answer 2: algorithmic analysis

Provides a theoretical framework for comparing algorithms in 
terms of worst-case runtime and space requirements (i.e., 
how long they run and how much memory they need).



Measuring time and space usage
We measure an algorithm’s runtime and space usage in terms of input size n

e.g., number of objects in a set, length of a list to be sorted, etc.

Example: Suppose algorithm A takes 100n+1 steps of computation to 
solve a problem of size n while algorithm B takes n2+n+1

Input size Runtime of A Runtime of B

10 1001 111

100 10001 10101

1 000 100001 1001001

10 000 1000001 >108

B looks better than A for smaller 
inputs, but for n large, A is much 
faster than B. This is the motivation 
for asymptotic analysis, in which 
we compare algorithms based on 
their leading-order runtime terms.



Big-O notation
We form equivalence classes of runtimes according to these leading-order terms

e.g., 10n+1, 2n-1, n+1000, are all O(n) because leading-order terms are n

Test your understanding: what order are each of the following?

10n3-n+1

n-100

n2+n+1

1000
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Big-O notation
We form equivalence classes of runtimes according to these leading-order terms

e.g., 10n+1, 2n-1, n+1000, are all O(n) because leading-order terms are n

Test your understanding:

10n3-n+1 O(n3)
n-100 O(n)
n2+n+1 O(n2)
1000 O(1)

Order Common Name

O(1) constant

O(log n) logarithmic

O(n) linear

O(n2) quadratic

O(n3) cubic

O(nc) polynomial

O(cn) exponential

c is any constant 
(doesn’t depend on n).



Runtimes of basic Python operations
Arithmetic: addition, subtraction, multiplication, division, all constant time*

Indexing: run in constant time, regardless of the size of the sequence
Note: this is not the same as the time to check every entry of a sequence

For-loop and reduce-like operations: linear time in the length of the sequence
Provided that each operation in the for loop is constant-time.

* technically, this is only approximately true



Runtimes of basic Python operations
Arithmetic: addition, subtraction, multiplication, division, all constant time*

Indexing: run in constant time, regardless of the size of the sequence
Note: this is not the same as the time to check every entry of a sequence

For-loop and reduce-like operations: linear time in the length of the sequence
Provided that each operation in the for loop is constant-time.

* technically, this is only approximately true

We perform constant-order computational work for 
each element of list t, so the total runtime to sum 
the elements is proportional to the length of list t.

Each addition requires 1 unit of computation 
(i.e., constant-order computation time).



Constant-order work on each element of a list
Experiment: create lists of different 
lengths, time how long it takes to sum 
the elements of a list of that length. We 
expect to see linear dependence. seqlens stores the different sequence 

lengths we’re going to use.
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random list of numbers...
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Experiment: create lists of different 
lengths, time how long it takes to sum 
the elements of a list of that length. We 
expect to see linear dependence. seqlens stores the different sequence 

lengths we’re going to use.

For each length, generate a 
random list of numbers...

...and time how long it 
takes to sum them up.



Constant-order work on each element of a list
Experiment: create lists of different 
lengths, time how long it takes to sum 
the elements of a list of that length. We 
expect to see linear dependence.



Constant-order work on each element of a list
Experiment: create lists of different 
lengths, time how long it takes to sum 
the elements of a list of that length. We 
expect to see linear dependence.

Note: there is some variability here because 
other processes were running on my computer 
at the same time as the experiment.



Interesting side-note: len(t) is constant time
Experiment: create lists of different 
lengths, time how long it takes to get 
the length of the list.

len(seq)  takes constant time because in Python, 
the length is an attribute of a list, which gets 
updated whenever the list is changed.



Sorting
Problem: given a list, sort the list in ascending order

The best sorting algorithms sort a length-n list time O(n log n)
But let’s first look at some suboptimal sorting algorithms

This is called selection sort. We look for the 
biggest element, move it to the end of the list, 
and then repeat on the rest of the list.

https://en.wikipedia.org/wiki/Selection_sort

argmax finds the largest element and its index.

https://en.wikipedia.org/wiki/Selection_sort


Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)
But let’s first look at some suboptimal sorting algorithms

https://en.wikipedia.org/wiki/Selection_sort

This is called selection sort. We look for the 
biggest element, move it to the end of the list, 
and then repeat on the rest of the list.

In the k-th iteration of the for-loop, 
we look at n-k elements, so the 
total work is 1+2+...+n = O(n2).

https://en.wikipedia.org/wiki/Selection_sort


Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)
But let’s first look at some suboptimal sorting algorithms

https://en.wikipedia.org/wiki/Selection_sort

And indeed, runtime 
grows quadratically 
with input size.

https://en.wikipedia.org/wiki/Selection_sort


Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)

This recursion is the important part. 
less and more contain the elements 
less than and greater than the pivot, 
but they may not yet be sorted.

This is called quicksort. We pick a “pivot” 
element from the list, split the list into elements 
less than, equal to, and greater than the pivot, 
an recurse on the less-than and greater-than 
lists. This pattern should look familiar from your 
binary search problem in HW2.
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Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)

Proving that quicksort takes O(n log n) runtime is 
beyond the scope of this course, but it should be 
intuitively clear: the runtime T(n) as a function of n 
should obey T(n) = 2*T(n/2) + C for some 
constant C, and T(n) = n log n is such a function.



Aside: the house always wins, Python edition
If there is a Python implementation of the thing you are trying to do, use it.

(and the same goes all the more so for numpy/scipy!)
You should not expect to out-wit the Python developers!

https://en.wikipedia.org/wiki/Timsort

https://en.wikipedia.org/wiki/Timsort


Profiling Code
Say you’ve written some code, but it’s fairly slow

How should you spend your time in optimizing it?

Most software engineers would agree that you 
should find the slowest part of your program and 

concentrate on making that part faster.

A profiler is a program that runs other programs 
and summarizes how long each part took to run.



time: the simplest approach

Sometimes, all we want to do is compare the 
runtimes of two different solutions to a problem. 
For this, the time module is often enough.

But note that timing in this way doesn’t tell us 
where in the process of checking set 
membership we are taking all our time.

Other profiling tools will give us more granular 
summaries of runtime information.



profile and cProfile
Two related modules that both support profiling of code.

cProfile is implemented in C, and thus avoids some of the overhead of Python

profile is basically the same as cProfile, but more is implemented in Python
More features, at the cost of (slightly) less accurate timing

The two packages are so similar that they 
share a documentation page:
https://docs.python.org/3/library/profile.html

Unless you’re doing some serious 
software engineering, cProfile  is 
probably right for you.

https://docs.python.org/3/library/profile.html


profile and cProfile
Profiling your code is simple: pass the 
command that you want to profile, as a 
string, to the profiler’s run method.

cProfile  uses the exec function to run a string as Python code. 
https://docs.python.org/3.5/library/functions.html#exec

https://docs.python.org/3.5/library/functions.html#exec


profile and cProfile

Number of times each function was called



profile and cProfile

Total time spent inside this function 
(but not in subcalls of the function).



profile and cProfile

Total time per call (averaged over 
all calls to the function).



profile and cProfile

Total time spent in the function, 
including function subcalls.



profile and cProfile

Cumulative time spent in the function, 
including function subcalls.



profile and cProfile

Names of the functions, with 
their files and line numbers.



profile and cProfile

fibonacci.py
Recall that this is slow….

...while this is fast.

But why is one faster than the 
other, and where does the 
slow one spend all its time?...





naive_fibo(30)  results in >2.5M (recursive) calls!



Note: the total time per call is negligible, 
but the cumulative time is not.



A more realistic example: fitting a model
ols_expt.py

This example code uses numpy and 
sklearn, the latter of which you don’t 
know about, yet. For now, it’s enough to 
know that: generate_data  generates 
data from a simple linear model and 
saves it to a pair of files; load_data  
loads data from those files; and 
olsmodel.fit(x,y)  fits the model 
olsmodel to the data x, y.

This function is the important part. 
It generates data, writes it to a file, 
reads it back in and fits a model. 
Let’s see where Python spends 
most of its time in this function.



Reminder of what our experiment does

I cropped a bunch of output from the cProfile  report.



Reminder of what our experiment does

Important point: vast majority of the execution time is 
spent on I/O, vanishingly little on actual computation.



How do I know if my code works?
Once we’ve written a program, how do we verify that it works as intended?

Problems often have edge cases that we may not think of ahead of time
Easy to make mistakes in code

Until now, you probably have done something like:
1. Write a function to do something
2. Try running the function on a bunch of different inputs
3. Search for problems with print statements



How do I know if my code works?
Once we’ve written a program, how do we verify that it works as intended?

Problems often have edge cases that we may not think of
Easy to make mistakes in code

Until now, you probably have done something like:
1. Write a function to do something
2. Try running the function on a bunch of different inputs
3. Search for problems with print statements

This works well enough for small projects, but it doesn’t 
scale well. Better is to write a test suite for your program.



How do I know if my code works?
How can we (more) systematically find errors like this one?



Python unittest module
Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

unittest  module:
https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html


Python unittest module
Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

unittest  module:
https://docs.python.org/3/library/unittest.html

Note: unittest  is most naturally used 
from the command line. Some examples 
will seem a bit clumsy because we are 
running them in Python instead.

https://docs.python.org/3/library/unittest.html


Python unittest module
Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

Tests are encapsulated in a class that 
extends unittest.TestCase .

Methods prefaced by test_ will run 
automatically once we run the test suite.

Note: a collection of tests is typically called a 
test suite. unittest  uses this term to refer to a 
collection of TestCase  objects (or a collection of 
objects that inherit from TestCase).



Python unittest module

The unittest.TextTestRunner  runs 
all the tests in our PrimeTest  object.

Initializes an instance of PrimeTest  and 
sets some of its attributes for us. 

Reminder: only methods prefaced by 
test_ will be run as part of the test!



Python unittest module

If one or more tests fail, unittest  will raise 
an error, and tell you which test(s) failed.

The results would also be stored in a TextTestResult  
object, if we had chosen to assign the output.



Python unittest module
Let’s correct the error.



Python unittest module

Using the same set of tests as before, 
all defined in the PrimeTest  object.



This function operates on files (and creates 
new files). So to test it, we need our test 
suite to create files for testing and check 
that the new files are as expected.

Python unittest module



Often, it is useful to set up some 
files or objects before running our 
tests. This can be done using the 
setUp and tearDown  methods.

The setUp method is called before 
each test. Here, our setup involves 
creating a directory and moving into it. 
This provides a “sandbox” for us to 
operate in where we won’t touch 
important files elsewhere.

The tearDown  method is called after 
each test. Here, our tear down just 
requires that we delete the files that we 
created in the test directory and then 
delete the test directory.



Reminder: the pattern is setUp, 
run a test, then tearDown .

The setUp/tearDown  pattern ensures 
that each of these tests takes place in an 
otherwise empty, clean directory.

file2upper  is a fairly simple function, so this 
setUp/tearDown  framework isn’t particularly 
necessary, but it should be clear that for functions 
or objects that do more complicated things, it can 
be a very useful. For example, if we were writing 
tests for our Time object, the setUp/tearDown  
methods would enable us to create a new Time 
object for each test without having to repeat the 
same few lines of code everywhere.



Python unittest module

Parting note: the unittest  module supports a whole lot of additional 
functionality and control over tests, but most of them are going to be 
beyond your needs unless you expect to be a software engineer. The 
module is useful to us as data scientists primarily in that it provides a 

(comparatively) clean way to encapsulate your testing code.


