
STATS 507
Data Analysis in Python
Lecture 21: Algorithms, Profiling and Testing

Some material adapted from Appendix B of A. Downey’s Think Python
http://greenteapress.com/wp/think-python-2e/

http://greenteapress.com/wp/think-python-2e/

What makes a good algorithm?
We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership
Ex: certain operations on pandas tables are fast

How do we make such judgments?

What makes a good algorithm?
We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership
Ex: certain operations on pandas tables are fast

How do we make such judgments?

Answer 1: run timing experiments (i.e., profile our code)

But then our answer to “what algorithm/structure is better?”
is highly machine- and implementation-dependent.

What makes a good algorithm?
We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership
Ex: certain operations on pandas tables are fast

How do we make such judgments?

Answer 2: algorithmic analysis

Provides a theoretical framework for comparing algorithms in
terms of worst-case runtime and space requirements (i.e.,
how long they run and how much memory they need).

Measuring time and space usage
We measure an algorithm’s runtime and space usage in terms of input size n

e.g., number of objects in a set, length of a list to be sorted, etc.

Example: Suppose algorithm A takes 100n+1 steps of computation to
solve a problem of size n while algorithm B takes n2+n+1

Input size Runtime of A Runtime of B

10 1001 111

100 10001 10101

1 000 100001 1001001

10 000 1000001 >108

B looks better than A for smaller
inputs, but for n large, A is much
faster than B. This is the motivation
for asymptotic analysis, in which
we compare algorithms based on
their leading-order runtime terms.

Big-O notation
We form equivalence classes of runtimes according to these leading-order terms

e.g., 10n+1, 2n-1, n+1000, are all O(n) because leading-order terms are n

Test your understanding: what order are each of the following?

10n3-n+1

n-100

n2+n+1

1000

Big-O notation
We form equivalence classes of runtimes according to these leading-order terms

e.g., 10n+1, 2n-1, n+1000, are all O(n) because leading-order terms are n

Test your understanding:

10n3-n+1 O(n3)

n-100 O(n)

n2+n+1 O(n2)

1000 O(1)

Big-O notation
We form equivalence classes of runtimes according to these leading-order terms

e.g., 10n+1, 2n-1, n+1000, are all O(n) because leading-order terms are n

Test your understanding:

10n3-n+1 O(n3)
n-100 O(n)
n2+n+1 O(n2)
1000 O(1)

Order Common Name

O(1) constant

O(log n) logarithmic

O(n) linear

O(n2) quadratic

O(n3) cubic

O(nc) polynomial

O(cn) exponential

c is any constant
(doesn’t depend on n).

Runtimes of basic Python operations
Arithmetic: addition, subtraction, multiplication, division, all constant time*

Indexing: run in constant time, regardless of the size of the sequence
Note: this is not the same as the time to check every entry of a sequence

For-loop and reduce-like operations: linear time in the length of the sequence
Provided that each operation in the for loop is constant-time.

* technically, this is only approximately true

Runtimes of basic Python operations
Arithmetic: addition, subtraction, multiplication, division, all constant time*

Indexing: run in constant time, regardless of the size of the sequence
Note: this is not the same as the time to check every entry of a sequence

For-loop and reduce-like operations: linear time in the length of the sequence
Provided that each operation in the for loop is constant-time.

* technically, this is only approximately true

We perform constant-order computational work for
each element of list t, so the total runtime to sum
the elements is proportional to the length of list t.

Each addition requires 1 unit of computation
(i.e., constant-order computation time).

Constant-order work on each element of a list
Experiment: create lists of different
lengths, time how long it takes to sum
the elements of a list of that length. We
expect to see linear dependence. seqlens stores the different sequence

lengths we’re going to use.

Constant-order work on each element of a list
Experiment: create lists of different
lengths, time how long it takes to sum
the elements of a list of that length. We
expect to see linear dependence. seqlens stores the different sequence

lengths we’re going to use.

For each length, generate a
random list of numbers...

Constant-order work on each element of a list
Experiment: create lists of different
lengths, time how long it takes to sum
the elements of a list of that length. We
expect to see linear dependence. seqlens stores the different sequence

lengths we’re going to use.

For each length, generate a
random list of numbers...

...and time how long it
takes to sum them up.

Constant-order work on each element of a list
Experiment: create lists of different
lengths, time how long it takes to sum
the elements of a list of that length. We
expect to see linear dependence.

Constant-order work on each element of a list
Experiment: create lists of different
lengths, time how long it takes to sum
the elements of a list of that length. We
expect to see linear dependence.

Note: there is some variability here because
other processes were running on my computer
at the same time as the experiment.

Interesting side-note: len(t) is constant time
Experiment: create lists of different
lengths, time how long it takes to get
the length of the list.

len(seq) takes constant time because in Python,
the length is an attribute of a list, which gets
updated whenever the list is changed.

Sorting
Problem: given a list, sort the list in ascending order

The best sorting algorithms sort a length-n list time O(n log n)
But let’s first look at some suboptimal sorting algorithms

This is called selection sort. We look for the
biggest element, move it to the end of the list,
and then repeat on the rest of the list.

https://en.wikipedia.org/wiki/Selection_sort

argmax finds the largest element and its index.

https://en.wikipedia.org/wiki/Selection_sort

Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)
But let’s first look at some suboptimal sorting algorithms

https://en.wikipedia.org/wiki/Selection_sort

This is called selection sort. We look for the
biggest element, move it to the end of the list,
and then repeat on the rest of the list.

In the k-th iteration of the for-loop,
we look at n-k elements, so the
total work is 1+2+...+n = O(n2).

https://en.wikipedia.org/wiki/Selection_sort

Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)
But let’s first look at some suboptimal sorting algorithms

https://en.wikipedia.org/wiki/Selection_sort

And indeed, runtime
grows quadratically
with input size.

https://en.wikipedia.org/wiki/Selection_sort

Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)

This recursion is the important part.
less and more contain the elements
less than and greater than the pivot,
but they may not yet be sorted.

This is called quicksort. We pick a “pivot”
element from the list, split the list into elements
less than, equal to, and greater than the pivot,
an recurse on the less-than and greater-than
lists. This pattern should look familiar from your
binary search problem in HW2.

Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)

Sorting
Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time O(n log n)

Proving that quicksort takes O(n log n) runtime is
beyond the scope of this course, but it should be
intuitively clear: the runtime T(n) as a function of n
should obey T(n) = 2*T(n/2) + C for some
constant C, and T(n) = n log n is such a function.

Aside: the house always wins, Python edition
If there is a Python implementation of the thing you are trying to do, use it.

(and the same goes all the more so for numpy/scipy!)
You should not expect to out-wit the Python developers!

https://en.wikipedia.org/wiki/Timsort

https://en.wikipedia.org/wiki/Timsort

Profiling Code
Say you’ve written some code, but it’s fairly slow

How should you spend your time in optimizing it?

Most software engineers would agree that you
should find the slowest part of your program and

concentrate on making that part faster.

A profiler is a program that runs other programs
and summarizes how long each part took to run.

time: the simplest approach

Sometimes, all we want to do is compare the
runtimes of two different solutions to a problem.
For this, the time module is often enough.

But note that timing in this way doesn’t tell us
where in the process of checking set
membership we are taking all our time.

Other profiling tools will give us more granular
summaries of runtime information.

profile and cProfile
Two related modules that both support profiling of code.

cProfile is implemented in C, and thus avoids some of the overhead of Python

profile is basically the same as cProfile, but more is implemented in Python
More features, at the cost of (slightly) less accurate timing

The two packages are so similar that they
share a documentation page:
https://docs.python.org/3/library/profile.html

Unless you’re doing some serious
software engineering, cProfile is
probably right for you.

https://docs.python.org/3/library/profile.html

profile and cProfile
Profiling your code is simple: pass the
command that you want to profile, as a
string, to the profiler’s run method.

cProfile uses the exec function to run a string as Python code.
https://docs.python.org/3.5/library/functions.html#exec

https://docs.python.org/3.5/library/functions.html#exec

profile and cProfile

Number of times each function was called

profile and cProfile

Total time spent inside this function
(but not in subcalls of the function).

profile and cProfile

Total time per call (averaged over
all calls to the function).

profile and cProfile

Total time spent in the function,
including function subcalls.

profile and cProfile

Cumulative time spent in the function,
including function subcalls.

profile and cProfile

Names of the functions, with
their files and line numbers.

profile and cProfile

fibonacci.py
Recall that this is slow….

...while this is fast.

But why is one faster than the
other, and where does the
slow one spend all its time?...

naive_fibo(30) results in >2.5M (recursive) calls!

Note: the total time per call is negligible,
but the cumulative time is not.

A more realistic example: fitting a model
ols_expt.py

This example code uses numpy and
sklearn, the latter of which you don’t
know about, yet. For now, it’s enough to
know that: generate_data generates
data from a simple linear model and
saves it to a pair of files; load_data
loads data from those files; and
olsmodel.fit(x,y) fits the model
olsmodel to the data x, y.

This function is the important part.
It generates data, writes it to a file,
reads it back in and fits a model.
Let’s see where Python spends
most of its time in this function.

Reminder of what our experiment does

I cropped a bunch of output from the cProfile report.

Reminder of what our experiment does

Important point: vast majority of the execution time is
spent on I/O, vanishingly little on actual computation.

How do I know if my code works?
Once we’ve written a program, how do we verify that it works as intended?

Problems often have edge cases that we may not think of ahead of time
Easy to make mistakes in code

Until now, you probably have done something like:
1. Write a function to do something
2. Try running the function on a bunch of different inputs
3. Search for problems with print statements

How do I know if my code works?
Once we’ve written a program, how do we verify that it works as intended?

Problems often have edge cases that we may not think of
Easy to make mistakes in code

Until now, you probably have done something like:
1. Write a function to do something
2. Try running the function on a bunch of different inputs
3. Search for problems with print statements

This works well enough for small projects, but it doesn’t
scale well. Better is to write a test suite for your program.

How do I know if my code works?
How can we (more) systematically find errors like this one?

Python unittest module
Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

unittest module:
https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Python unittest module
Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

unittest module:
https://docs.python.org/3/library/unittest.html

Note: unittest is most naturally used
from the command line. Some examples
will seem a bit clumsy because we are
running them in Python instead.

https://docs.python.org/3/library/unittest.html

Python unittest module
Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

Tests are encapsulated in a class that
extends unittest.TestCase .

Methods prefaced by test_ will run
automatically once we run the test suite.

Note: a collection of tests is typically called a
test suite. unittest uses this term to refer to a
collection of TestCase objects (or a collection of
objects that inherit from TestCase).

Python unittest module

The unittest.TextTestRunner runs
all the tests in our PrimeTest object.

Initializes an instance of PrimeTest and
sets some of its attributes for us.

Reminder: only methods prefaced by
test_ will be run as part of the test!

Python unittest module

If one or more tests fail, unittest will raise
an error, and tell you which test(s) failed.

The results would also be stored in a TextTestResult
object, if we had chosen to assign the output.

Python unittest module
Let’s correct the error.

Python unittest module

Using the same set of tests as before,
all defined in the PrimeTest object.

This function operates on files (and creates
new files). So to test it, we need our test
suite to create files for testing and check
that the new files are as expected.

Python unittest module

Often, it is useful to set up some
files or objects before running our
tests. This can be done using the
setUp and tearDown methods.

The setUp method is called before
each test. Here, our setup involves
creating a directory and moving into it.
This provides a “sandbox” for us to
operate in where we won’t touch
important files elsewhere.

The tearDown method is called after
each test. Here, our tear down just
requires that we delete the files that we
created in the test directory and then
delete the test directory.

Reminder: the pattern is setUp,
run a test, then tearDown .

The setUp/tearDown pattern ensures
that each of these tests takes place in an
otherwise empty, clean directory.

file2upper is a fairly simple function, so this
setUp/tearDown framework isn’t particularly
necessary, but it should be clear that for functions
or objects that do more complicated things, it can
be a very useful. For example, if we were writing
tests for our Time object, the setUp/tearDown
methods would enable us to create a new Time
object for each test without having to repeat the
same few lines of code everywhere.

Python unittest module

Parting note: the unittest module supports a whole lot of additional
functionality and control over tests, but most of them are going to be
beyond your needs unless you expect to be a software engineer. The
module is useful to us as data scientists primarily in that it provides a

(comparatively) clean way to encapsulate your testing code.

