
STATS 507
Data Analysis in Python

Lecture 23: scikit-learn

scikit-learn
Open-source Python machine learning library

Built atop numpy, scipy and matplotlib

Makes many common ML/stats models easily available
API supports simple model fitting, prediction, cross-validation, etc.

Installation:
pip install scikit-learn (or conda install scikit-learn)
...or install from source (still not recommended)

Example: classifiers in scikit-learn
sklearn includes a number of built-in data sets, among
which is a version of the famous MNIST digits data set.
We’ll see more of this when we discuss TensorFlow.

digits.data is an array, entries of which are
64-dimensional vectors, which correspond to images. To
display them, we have to reshape them to 8-by-8. The
cmap argument specifies a color map. See
https://matplotlib.org/users/colormaps.html

https://matplotlib.org/users/colormaps.html

Example: classifiers in scikit-learn SVC is a support vector machine
(SVM) classifier, one of many
classifiers that sklearn provides.
It requires two hyperparameters
(more on these soon, but for now
just treat them as magic).

Example: classifiers in scikit-learn Every classifier object supports
a fit method, which takes
observations and labels and
adjusts the model parameters
to best fit that data.

Example: classifiers in scikit-learn We are training on all but one of
the digits in the collection, keeping
one as “held out” data on which we
can test our classifier.

Example: classifiers in scikit-learn

Every classifier object also supports a predict
method, which takes an observation and tries to guess
the “best” label for it, based on the model parameters.

Supervised learning example: LASSO in sklearn

Review: linear regression

Predictors

Coefficients

Noise

Response

Ordinary least squares (OLS)

Minimizes the sum of the squared residuals between
the response and the model prediction. OLS is
computationally convenient. The solution can be
expressed as an expression of X.

Supervised learning example: LASSO in sklearn

Review: linear regression

Predictors

Coefficients

Noise

Response

In many applications (e.g., audio,
genomics, medical imaging), we
expect only a few coefficients to
be non-zero. That is, we expect
the coefficients to be sparse.

Supervised learning example: LASSO in sklearn

Review: linear regression

Predictors

Coefficients

Noise

Response

Ordinary least squares (OLS)

LASSO

This penalty term discourages non-zero coefficients. The larger α
is, the more we are penalized for having non-zero coefficients.

Supervised learning example: LASSO in sklearn

Review: linear regression

Predictors

Coefficients

Noise

Response

LASSO (equivalent formulation)

L2 objective L1 penalty

The key tradeoff here is that whereas OLS had a nice
closed-form solution, we have to find a solution to the
LASSO using optimization techniques, but that’s okay,
because sklearn will solve the optimization for us.

Supervised learning example: LASSO in sklearn

Generate data; split into train/test.

Fit the model based on the train set.

Assess how well the model fits the test data.

Supervised learning example: LASSO in sklearn
200 points in 500 dimensions. Sparsity k=10.

Fit the model based on the train set.

Assess how well the model fits the test data.

Supervised learning example: LASSO in sklearn

Fit the model based on the train set.

Assess how well the model fits the test data.

Choose 10 coefficients at
random to be nonzero.

Supervised learning example: LASSO in sklearn

Fit the model based on the train set.

Assess how well the model fits the test data.

Now generate the responses:
inner product of independent
variable with coefficients, plus
normal noise.

Supervised learning example: LASSO in sklearn

Fit the model based on the train set.

Assess how well the model fits the test data.

Split into train and test sets.
Typically the train set is chosen
to be much larger than the test
set, but this is just demo code.

Supervised learning example: LASSO in sklearn

Generate data; split into train/test.

The alpha parameter controls how
much regularization we use. Larger
values encourage sparser solutions.
More on this in a few slides.

Assess how well the model fits the test data.

Supervised learning example: LASSO in sklearn

Generate data; split into train/test.

lasso is a Lasso object, which
supports both fit and predict
methods (as do all “estimator”
objects in sklearn).

Assess how well the model fits the test data.

Supervised learning example: LASSO in sklearn

Generate data; split into train/test.

Now that we’ve called fit, the coefficients of
lasso have been updated to fit the training
data. Now it’s time to tell if the model we
learned actually fits the held out data.

Fit the model based on the train set.

Supervised learning example: LASSO in sklearn

Generate data; split into train/test.

lasso supports the predict method, which
takes in data points and outputs responses
based on the current estimate of beta.

Fit the model based on the train set.

Supervised learning example: LASSO in sklearn

Generate data; split into train/test.

r2score is just one of the many ways to assess
whether or not we’re doing well. 1 is perfect
performance, 0 is “chance”.
https://en.wikipedia.org/wiki/Coefficient_of_determination

Fit the model based on the train set.

https://en.wikipedia.org/wiki/Coefficient_of_determination

Supervised learning example: LASSO in sklearn
A different but equally important measure
of performance is how well we recovered
the non-zero entries of beta.

Note that we committed both type I and
type II errors by missing some entries of
beta and by incorrectly identifying
certain entries as non-zero.

F1 score is a good way to assess performance on these kinds of
problems. It is a harmonic mean between the recall and precision.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Unsupervised learning example: k-GMM in sklearn

https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
https://en.wikipedia.org/wiki/Iris_flower_data_set

Here’s the famous iris data set again.
Clearly there’s a cluster structure in
the data. How can we discover it
without using the label information?

Gaussian Mixture Model

https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
https://en.wikipedia.org/wiki/Iris_flower_data_set

Unsupervised learning example: k-GMM in sklearn
Basic idea: model data as mixture of Gaussians

each Gaussian generates one cluster

For each cluster, estimate mean and covariance
Computationally hard...
...but can approximate via EM
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Unsupervised learning example: k-GMM in sklearn

Letting these ellipses represent the
level sets of three Gaussians, we hope
to see something like this picture.

Basic idea: model data as mixture of Gaussians
each Gaussian generates one cluster

For each cluster, estimate mean and covariance
Computationally hard...
...but can approximate via EM
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Unsupervised learning example: k-GMM in sklearn

Letting these ellipses represent the
level sets of three Gaussians, we hope
to see something like this picture.

Of course, GMM is just one of many clustering algorithms
we could choose from. For other options (though hardly an
exhaustive list) and a good overview, see here:
https://scikit-learn.org/stable/modules/clustering.html

Basic idea: model data as mixture of Gaussians
each Gaussian generates one cluster

For each cluster, estimate mean and covariance
Computationally hard...
...but can approximate via EM
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

https://scikit-learn.org/stable/modules/clustering.html
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Unsupervised learning example: k-GMM in sklearn

Fit the model to the data.

Retrieve the (estimated) labels.

Unsupervised learning example: k-GMM in sklearn
Gathering the sepal and petal
ratios into a single array.

The GaussianMixture object has
a number of attributes that specify
how to go about finding a good fit.
More about this in a moment.

Every sklearn model supports the fit method. In
this case, fitting consists of estimating the means
and covariances of n=2 components.

Unsupervised learning example: k-GMM in sklearn

Fit a model with 2 components.

Note: we can already see a hard problem here. In this case,
we happen to know that there are really three classes here
(there are three species in the data), but typically, we don’t
know the classes ahead of time, so we don’t know how to
choose n_components . This is called model selection.
More on this in a few slides.

Unsupervised learning example: k-GMM in sklearn

The EM algorithm is sensitive to its
starting conditions, so we tell
sklearn to run the EM algorithm
multiple times (10, in this case),
with different (random) starting
conditions, and it keeps the one
with the highest likelihood.

Unsupervised learning example: k-GMM in sklearn

This tells sklearn to estimate a
covariance matrix separately for
each cluster. Other options include
estimating one covariance shared
across all clusters (‘tied’) and
estimating spherical covariances
for each cluster (‘spherical’).

Unsupervised learning example: k-GMM in sklearn

Of course, because we
chose the wrong number
of components, we fail to
recover the true cluster
structure of the data.

Unsupervised learning example: k-GMM in sklearn

But even if we choose the
correct number of
components, the “ratio”
representation of the data
collapses the versicolor
and virginica species, and
we get a weird solution.

Unsupervised learning example: k-GMM in sklearn

Clustering with the correct
number of components in
the original 4-dimensional
space recovers the truth.

Note use of X, the full data, instead of the “ratios” R.

Model selection in sklearn
How should we choose the number of clusters in practice?

Again, typically we don’t know, e.g., that there are three species in the data

One popular solution is to use an information criterion
● measures how well a model reflects data
● penalizes model complexity

Examples:
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Mallows%27s_Cp

See also
 https://en.wikipedia.org/wiki/Minimum_description_length

https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Mallows%27s_Cp
https://en.wikipedia.org/wiki/Minimum_description_length

Model selection in sklearn
For different numbers of components
and different covariance estimation
methods, we’re going to fit a GMM with
that many components and using that
covariance estimation method.

Measure BIC of each such choice;
store it in the array bics.

This is a simplified version of the demo here: https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_selection.html

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_selection.html

Model selection in sklearn
Now, let’s have a look at the BIC scores.
Within each covariance estimation method,
the number of components with the lowest
BIC is the one we should choose.

Don’t worry about the code, yet.
Just have a look at the plot.

Model selection in sklearn
Now, let’s have a look at the BIC scores.
Within each covariance estimation method,
the number of components with the lowest
BIC is the one we should choose.

Spherical and diagonal covariance both seem to
think that more components is always better (at
least up to 6, anyway). This is unsurprising given
the data: it’s simple to check that the dimensions
of the iris data are correlated.

Don’t worry about the code, yet.
Just have a look at the plot.

Model selection in sklearn
Now, let’s have a look at the BIC scores.
Within each covariance estimation method,
the number of components with the lowest
BIC is the one we should choose.

Full covariance has lowest BIC at 2.
Tied covariance selects (the correct)
number of components to be 3.

The lesson here is not that one of these methods will
always be best, but that even a principled technique like
BIC may sometimes give us the wrong answer.

Don’t worry about the code, yet.
Just have a look at the plot.

Model selection in sklearn We need to do a bit of annoying work
because matplotlib doesn’t have good
support for “grouped” bar plots like this.

If we did not alter the placement of the bars
with this extra barwidth business, we would
end up with a stacked bar graph like this one.

Model selection in sklearn

We also have to alter the
location of the ticks on the
x-axis, which would
otherwise be aligned to the
first bar in each group.

If we did not alter the placement of the bars
with this extra barwidth business, we would
end up with a stacked bar graph like this one.

Cross-validation in sklearn
Similar to model selection, sklearn includes tools for cross-validation (CV)

CV is how we choose parameters like alpha in the LASSO

Basic idea:
Try many different choices of parameter
Keep the one that gives the best performance on the train data

There are many ways to do this, but we’ll focus on K-fold CV
See https://en.wikipedia.org/wiki/Cross-validation_(statistics) for more

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Cross-validation in sklearn: K-fold CV

We split the training data into K “folds”
(K=5 in the example at right). For each
fold, we train on the other K-1 folds
and evaluate the trained model on the
“held-out” fold.

Image credit: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

Cross-validation in sklearn: K-fold CV

We split the training data into K “folds”
(K=5 in the example at right). For each
fold, we train on the other K-1 folds
and evaluate the trained model on the
“held-out” fold.

Image credit: https://scikit-learn.org/stable/modules/cross_validation.html

On each fold, we evaluate all
of the models that are under
consideration. We then
average each model over the
folds and keep the model with
the best average score.

https://scikit-learn.org/stable/modules/cross_validation.html

Cross-validation in sklearn

Generating sparse
data just like before.

Cross-validation in sklearn

We pass a model, observations,
labels, and a number of folds to
the cross_val_score function.

cross_val_score performs cv splits. On each split, we hold out one fold,
train on the rest, and evaluate on the held-out fold. cross_val_score
returns an array of the scores obtained in this way.

Cross-validation in sklearn
Now, we’re going to do exactly
the same thing, but for several
different choices of alpha.

By default, cross_val_score
evaluates based on the score
method supplied by the model.
This can be changed by specifying
the scoring parameter.

The score method of the Lasso
model is the r2score, which we
saw a few slides ago.

Assessing Models: sklearn.metrics
sklearn.metrics contains
a bunch of useful methods for
evaluating models.

Example: the adjusted Rand index measures how
well two clusterings agree. It’s a good measure of how
well a clustering that we come up with agrees with the
truth. ARI=1 is perfect, ARI=0 is random chance.

https://scikit-learn.org/stable/modules/model_evaluation.html

https://scikit-learn.org/stable/modules/model_evaluation.html

Model persistence: pickling model objects

Using the pickle module, we can train
a model, and save it in a file and load
it again later (e.g., for use in a different
program, on a different data set, etc.).
We’ll see a similar pattern again soon
when we discuss TensorFlow.

Here we’re picking lasso, and
reloading it into lasso2. Note that the
two models are indeed the same.

