
STATS 507
Data Analysis in Python

Lecture 24: TensorFlow



TensorFlow
Open source symbolic math library

Popular in ML, especially for neural networks

Developed by GoogleBrain
Google’s AI/Deep learning division
You may recall their major computer vision triumph circa 2012:
http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html

TensorFlow is not new, and not very special:
Many other symbolic math programs predate it!
TensorFlow is unique in how quickly it gained so much market share
Open-sourced only in 2015…
...and almost immediately became the dominant framework for NNs

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html


TensorFlow: Installation
Easiest: pip install tensorflow==1.14

Also easy: install in anaconda

More information: https://www.tensorflow.org/install/

Note: if you want to do fancier things (e.g., run on GPU instead of CPU), installation 
and setup gets a lot harder. For this course, we’re not going to worry about it. In 
general, for running on a GPU, if you don’t have access to a cluster with existing TF 
installation, you should consider paying for Amazon/GoogleCloud instances.

TensorFlow updated to version 2.0 over the summer, 
which introduces a few difficulties for us (more on this 
on the next slide). So we will use version 1.14.

https://www.tensorflow.org/install/


Aside: TensorFlow, Versions and Upgrading
Over the summer, TensorFlow introduced version 2.0

This new version of TensorFlow made some fundamental changes
Added built-in support for Keras https://en.wikipedia.org/wiki/Keras
Added tricks for computational speedups such as eager execution

https://en.wikipedia.org/wiki/Eager_evaluation
Streamlined code surrounding running models (more on this soon)

But Google Cloud Platform has not yet implemented support for TensorFlow2.0
So we will continue to use 1.X

Warning: all our slides will be about TensorFlow v1.X. Be careful when you go to read the 
documentation, because most of the TensorFlow docs will default to 2.0. The TF version 1 
documentation is archived here: https://github.com/tensorflow/docs/tree/master/site/en/r1

https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Eager_evaluation
https://github.com/tensorflow/docs/tree/master/site/en/r1


Fundamental concepts of TensorFlow
Tensor

Recall that a tensor is really just an array of numbers
“Rank” of a tensor is the number of dimensions it has
So, a matrix is a rank-2 tensor, vector is rank 1, scalar rank 0
A cube of numbers is a 3-tensor, and so on

Computational graph
Directed graph that captures the “flow” of data through the program
Nodes are operations (i.e., computations)
Edges represent data sent between operations



Tensors

0-tensor (scalar) 1-tensor (vector)

2-tensor (matrix)
3-tensor

Note: most things you read will call this dimension the rank of the tensor, but you should know that 
some mathematicians use rank to mean the tensor generalization of linear algebraic rank. These 
people will usually use the term order instead.



Tensors: tf.Tensor objects
Tensors are represented in TensorFlow as tf.Tensor objects

Every tf.Tensor object has:
data type (e.g., int, float, string, …)
shape (e.g., 2-by-3-by-5, 5-by-5, 1-by-1, etc)

Shape encodes both rank and ‘length’ of each dimension

tf.Tensor objects are, in general, immutable
with slight exceptions, which we’ll talk about soon



Special tf.Tensor() objects
tf.Constant: will not change its value during your program.

Like an immutable tensor

tf.Placeholder: gets its value from elsewhere in your program
E.g., from training data or from results of other Tensor computations

tf.Variable: represents a tensor whose value may change during execution
Unlike above tf.Tensor  types, tf.Variables  are mutable
Useful for ML, because we want to update parameters during training

tf.SparseTensor: most entries of a SparseTensor will be zero
TF stores this differently; saves on memory
Useful for applications where data is sparse, such as networks



Special tf.Tensor() objects
tf.Constant: will not change its value during your program.

Like an immutable tensor

tf.Placeholder: gets its value from elsewhere in your program
E.g., from training data or from results of other Tensor computations

tf.Variable: represents a tensor whose value may change during execution
Unlike above tf.Tensor  types, tf.Variables  are mutable
Useful for ML, because we want to update parameters during training

tf.SparseTensor: most entries of a SparseTensor will be zero
TF stores this differently; saves on memory
Useful for applications where data is sparse, such as networks

For now, these three are the important ones.



Computational Graph
From the “Getting Started” guide: “A computational graph is a series of 
TensorFlow operations arranged into a graph of nodes.”

Every node takes zero or more tensors as input and outputs one or more tensors.

A TensorFlow program consists, essentially, of two sections:
1) Building the computational graph
2) Running the computational graph

*

+

b

a

x

z

An example of a computational graph that 
represents the computation z = a*x + b .



TF as Dataflow
Dataflow is a term for frameworks in which computation is concerned with the 
pipeline by which the data is processed

Data transformed and combined via a series of operations
This view makes it clear when parallelization is possible…
...because dependence between operations can be read off the graph
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Stream_processing

This should sound familiar from PySpark!

https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Stream_processing


Building the Computational Graph

Here’s a snippet of a TF program, in which we define a computational graph.

*

+

b

a

x

z
Equivalent computational graph:

Note: depending on what version of numpy 
you are running, you may get warnings that 
“Passing (type, 1) or '1type' as a synonym 
of type is deprecated.” You can safely 
ignore these warnings.



Building the Computational Graph

Here’s a snippet of a TF program, in which we define a computational graph.

*

+

b

a

x

z
Equivalent computational graph:

tf.constant  is a TF tensor whose 
value will not change. This is the TF 
analogue of an immutable type.

tf.placeholder  is a TF tensor 
whose value will be assigned at 
runtime, after building the graph.



Building the Computational Graph

Similarly, * is short for the 
tf.multiply()  function.

+ Is just short for the 
tf.add()  function.



Building the Computational Graph

Variables don’t have values until you run the graph!

These are all tf.Tensor  objects.



Running TensorFlow

Operations are defined here, 
but we still haven’t actually 
computed anything, yet...

Computation only carried out 
once we give a value to x and 
ask TF to run the graph.



Data types in TensorFlow
Four basic data types:

Strings
Integers
Floats
Complex numbers

Some flexibility in 
specifying precision

Every tf.Tensor()  object has a data type, accessed 
through the dtype attribute.

Note: if no dtype is specified, TF will do its best to figure it out from 
context, but this doesn’t always go as expected, such as when you want 
a vector of complex numbers. When in doubt, specify!



Creating Tensors
These are all rank-0 tensors.
Yes, tf.string  is a single item, 
and so is tf.complex .

To create a 1-tensor (i.e., a 
vector), just pass a list of scalars.

Note: all elements of a tf.Tensor  must be of the same datatype. 
The one sneaky way around this is to serialize objects to strings and 
store them in a tensor with dtype=tf.string .



Creating Tensors

We can create a 1-by-1 matrix, 
which is different from a 1-vector, 
which is different from a scalar.



Creating Tensors

To create a matrix, we can 
pass a list of its rows.

Matrix populated in row-major order.



Creating Tensors

The eval() method actually computes a 
tensor’s value and returns it as a numpy 
array. eval() has to be run within a 
given session designated as “default”, so 
we specify sess as the default. More on 
this in a few slides.

To create a matrix, we can 
pass a list of its rows.



Creating Tensors

Create a 10-by-10 matrix of all ones

Create a 4-tensor, which we could use 
to represent one second of 720p color 
video (27 frames per second, 
1280x720 resolution, 3 colors)



Tensor shape
Rank: number of dimensions

Shape: sizes of the dimensions Rank 2, shape 3-by-4

Rank 3, shape 3-by-4-by-3

Note: This looks like a tuple, but it is actually its 
own special type, tf.TensorShape



More about tensor rank

r will only get a value once we run the 
computational graph. There are good 
design reasons behind this: if the rank of 
our tensor depends on other inputs or 
variables, then we can’t know the rank 
of the tensor until runtime!

If the tensor is already populated (so 
that its rank is already established), one 
can simply look at the length of its shape 
object to get the rank.



Tensor slices

It is often natural to refer to 
certain subsets of the entries 
of a tensor. A “subtensor” of 
a tensor is often called a 
slice, and the operation of 
picking out a slice is called 
slicing the tensor.



Tensor slices

One index is enough to 
specify a number in a 
vector (i.e., a 1-tensor)

Need two indices to pick 
out an entry of a matrix 
(i.e., a 2-tensor)



Tensor slices

Create a vector from the 
second (zero-indexing!) 
row of the matrix.

Create a vector from the 
third column of the matrix.

Use ‘:’ to pick out all entries 
along a row or column. 

Note: result is a “column vector” regardless of whether we slice a row or a column!



Tensor Slices
More complicated example: video processing

Four dimensions:
Pixels (height-by-width)
Three colors (RGB)
Time index (multiple frames)

...
Frame 0 Frame 1 Frame 2 Frame T



Tensor Slices
More complicated example: video processing

Four dimensions:
Pixels (height-by-width)
Three colors (RGB)
Time index (multiple frames)

...
Frame 0 Frame 1 Frame 2 Frame T

Test your understanding:
What is the rank of the “video” 
tensor below?



Tensor Slices
More complicated example: video processing

Four dimensions:
Pixels (height-by-width)
Three colors (RGB)
Time index (multiple frames)

...
Frame 0 Frame 1 Frame 2 Frame T

Test your understanding:
What is the rank of the “video” 
tensor below?

Answer: 4, since there are 
four dimensions; height, width, 
color and time. 



Tensor slices

Pick out the 3-color 
1280-by-720 image that is 
the first frame of the video

Pick out only the blue 
channel of the video (see 
RGB on wikipedia)

Use ‘:’ to pick out all entries 
along a row or column. 

Pick out only the red 
channel of the video



Reshaping tensors
Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?



Reshaping tensors
Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?

A: 3

Q: How many elements are in this x-by-y-by-z 3-tensor?



Reshaping tensors
Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?

A: 3

Q: How many elements are in this x-by-y-by-z 3-tensor?

A: x*y*z



Reshaping tensors

Reshape a 3-tensor into a 
4-tensor. Note that the 
shapes are consistent 
with one another.

Reshaping to an inconsistent 
shape results in an error.



Evaluating Tensors

Evaluating the tensor lets us finally 
see the tensor’s contents rather 
than only its shape and dtype.

Evaluation requires running a computational 
graph, so we have to give TF a session to run.



Building a Simple Model: Linear Regression



Building a Simple Model: Linear Regression

Model: y = Wx + b

*

+

b

W

x

linear_model
tf.Variable

tf.Placeholder

W and b are both rank-1 
tensors, with values 0.3 
and -0.3, respectively.



Building a Simple Model: Linear Regression

*

+

b

W

x

linear_model
tf.Variable

tf.Placeholder

From the documentation: The Variable()  
constructor requires an initial value for the 
variable, which can be a Tensor of any type 
and shape. The initial value defines the type 
and shape of the variable. After construction, 
the type and shape of the variable are fixed, 
but the value can be changed using one of the 
assign functions.

You don’t know what these are, 
yet, but we’ll see them soon.



Building a Simple Model: Linear Regression

Test your understanding: why 
is the shape unknown, here?

*

+

b

W

x

linear_model
tf.Variable

tf.Placeholder



Building a Simple Model: Linear Regression

tf.Constant  tensors are 
initialized immediately when 
we create them. On the other 
hand, tf.Variable  Tensors 
need to be initialized before 
we can run the computational 
graph. init here becomes a 
pointer to a TF subgraph.

More information: https://www.tensorflow.org/api_docs/python/tf/global_variables_initializer

Model: y = Wx + b

https://www.tensorflow.org/api_docs/python/tf/global_variables_initializer


Building a Simple Model: Linear Regression

Evaluate the computational 
graph with x taking the values 
1, 2, 3 and 4.



Building a Simple Model: Linear Regression

*

+

b

W

x

linear_model

So far, we have a circuit that computes a linear regression estimate

To train our model, we need:
1) A loss function
2) A placeholder y for the training data dependent values



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Test your understanding: is 
sq_err a vector or a scalar?



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Note: tf.reduce_sum  does 
just what you think it does!



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
To change values of tf.Variables, use tf.assign Need to tell TF to use the 

newly-updated variables 
instead of the old ones.



Building a Simple Model: Linear Regression
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Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
To change values of tf.Variables, use tf.assign

Option 2: use closed-form solution for loss-minimizing W and b.
...but then what happens when we have a model with no closed-form solution?
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Option 3: use the built-in tf.train optimizer
Takes advantage of symbolic differentiation
Allows easy implementation of gradient descent and related techniques



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
To change values of tf.Variables, use tf.assign

Option 2: use closed-form solution for loss-minimizing W and b.
...but then what happens when we have a model with no closed-form solution?

Option 3: use the built-in tf.train optimizer
Takes advantage of symbolic differentiation
Allows easy implementation of gradient descent and related techniques

This is why we use TensorFlow!



Training a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

lossReminder: this is what our model looks like, as a computational graph.



Gradient Descent: Crash Course
Iterative optimization method for minimizing a function

At location x, take gradient of loss function
Take a gradient step in the direction of the gradient
Size of step changes over time

according to learning rate



Gradient Descent: Crash Course
Iterative optimization method for minimizing a function

At location x, take gradient of loss function
Take a gradient step in the direction of the gradient
Size of step changes over time according to learning rate

In short, gradient descent is a method for minimizing a function, 
provided we can compute its gradient (i.e., derivative). It’s enough 
for this course to treat this as a black box.

For more information:
S. P. Boyd and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.
J. Nocedal and S. J. Wright (2006). Numerical Optimization. Springer.



Training a Simple Model: Linear Regression

*
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Training a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Each iteration of this loop 
computes one gradient step 
and updates the variables 
accordingly.



Training a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Each iteration of this loop 
computes one gradient step 
and updates the variables 
accordingly.

Note: As you can see below, the computational graph can get very complicated 
very quickly. TensorFlow has a set of built-in tools, collectively called 

TensorBoard, for handling some of this complexity: 
https://www.tensorflow.org/tensorboard/graphs

(these examples are for TF version 2. For TF version 1.X, see 
https://github.com/tensorflow/tensorboard/blob/master/docs/r1/overview.md)

https://www.tensorflow.org/tensorboard/graphs
https://github.com/tensorflow/tensorboard/blob/master/docs/r1/overview.md


Training a Simple Model: Linear Regression

Note: TensorBoard includes a set of 
tools for visualization, including for 
tracking loss, but the approach here  is 
quicker and easier for our purposes.



TensorFlow Estimators API: tf.estimators
tf.estimators is a TF module that simplifies model training and evaluation

Module allows one to run models on CPU or GPU, local or on cloud, etc

Simplifies much of the work of building the graph and estimating parameters

More information:
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/estimators.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/premade_estimators.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/estimators/linear.ipynb

Note: Keras in TensorFlow v2 serves similar purpose for specifying neural nets
https://www.tensorflow.org/guide/keras

https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/estimators.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/premade_estimators.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/estimators/linear.ipynb
https://www.tensorflow.org/guide/keras

