TensorFlow

Open source symbolic math library
Popular in ML, especially for neural networks

Developed by GoogleBrain
Google’s AI/Deep learning division
You may recall their major computer vision triumph circa 2012:

TensorFlow is not new, and not very special:
Many other symbolic math programs predate it!
TensorFlow is unique in how quickly it gained so much market share
Open-sourced only in 2015…
…and almost immediately became the dominant framework for NNs
TensorFlow: Installation

Easiest: pip install tensorflow==1.14

Also easy: install in anaconda

More information: https://www.tensorflow.org/install/

Note: if you want to do fancier things (e.g., run on GPU instead of CPU), installation and setup gets a lot harder. For this course, we’re not going to worry about it. In general, for running on a GPU, if you don’t have access to a cluster with existing TF installation, you should consider paying for Amazon/GoogleCloud instances.

TensorFlow updated to version 2.0 over the summer, which introduces a few difficulties for us (more on this on the next slide). So we will use version 1.14.
Aside: TensorFlow, Versions and Upgrading

Over the summer, TensorFlow introduced version 2.0

This new version of TensorFlow made some fundamental changes

- Added tricks for computational speedups such as eager execution https://en.wikipedia.org/wiki/Eager_evaluation
- Streamlined code surrounding running models (more on this soon)

But Google Cloud Platform has not yet implemented support for TensorFlow2.0
So we will continue to use 1.X

Warning: all our slides will be about TensorFlow v1.X. Be careful when you go to read the documentation, because most of the TensorFlow docs will default to 2.0. The TF version 1 documentation is archived here: https://github.com/tensorflow/docs/tree/master/site/en/r1
Fundamental concepts of TensorFlow

Tensor
Recall that a tensor is really just an array of numbers
“Rank” of a tensor is the number of dimensions it has
So, a matrix is a rank-2 tensor, vector is rank 1, scalar rank 0
A cube of numbers is a 3-tensor, and so on

Computational graph
Directed graph that captures the “flow” of data through the program
Nodes are operations (i.e., computations)
Edges represent data sent between operations
Tensors

- 0-tensor (scalar)
- 1-tensor (vector)
- 2-tensor (matrix)
- 3-tensor

Note: most things you read will call this dimension the *rank* of the tensor, but you should know that some mathematicians use *rank* to mean the tensor generalization of linear algebraic rank. These people will usually use the term *order* instead.
Tensors: \texttt{tf.Tensor} objects

Tensors are represented in TensorFlow as \texttt{tf.Tensor} objects.

Every \texttt{tf.Tensor} object has:
- data type (e.g., int, float, string, …)
- shape (e.g., 2-by-3-by-5, 5-by-5, 1-by-1, etc)

 Shape encodes both rank \textbf{and} ‘length’ of each dimension

\texttt{tf.Tensor} objects are, in general, immutable

with slight exceptions, which we’ll talk about soon.
Special `tf.Tensor()` objects

`tf.Constant`: will not change its value during your program.
 Like an immutable tensor

`tf.Placeholder`: gets its value from elsewhere in your program
 E.g., from training data or from results of other Tensor computations

`tf.Variable`: represents a tensor whose value may change during execution
 Unlike above `tf.Tensor` types, `tf.Variables` are mutable
 Useful for ML, because we want to update parameters during training

`tf.SparseTensor`: most entries of a SparseTensor will be zero
 TF stores this differently; saves on memory
 Useful for applications where data is sparse, such as networks
Special `tf.Tensor()` objects

- **`tf.Constant`**: will not change its value during your program. Like an immutable tensor.

- **`tf.Placeholder`**: gets its value from elsewhere in your program. E.g., from training data or from results of other Tensor computations.

- **`tf.Variable`**: represents a tensor whose value may change during execution. Unlike above `tf.Tensor` types, `tf.Variables` are **mutable**. Useful for ML, because we want to update parameters during training.

- **`tf.SparseTensor`**: most entries of a SparseTensor will be zero. TF stores this differently; saves on memory. Useful for applications where data is sparse, such as networks.

For now, these three are the important ones.
Computational Graph

From the “Getting Started” guide: “A computational graph is a series of TensorFlow operations arranged into a graph of nodes.”

Every node takes zero or more tensors as input and outputs one or more tensors.

A TensorFlow program consists, essentially, of two sections:

1) Building the computational graph
2) Running the computational graph

An example of a computational graph that represents the computation $z = a \times x + b$.
TF as Dataflow

Dataflow is a term for frameworks in which computation is concerned with the **pipeline** by which the data is processed. Data transformed and combined via a series of operations. This view makes it clear when parallelization is possible… ...because dependence between operations can be read off the graph. https://en.wikipedia.org/wiki/Dataflow https://en.wikipedia.org/wiki/Stream_processing

This should sound familiar from PySpark!
Building the Computational Graph

Here's a snippet of a TF program, in which we define a computational graph.

```python
# Now we define some variables
a = tf.constant(2, dtype=tf.float32)
b = tf.constant(1, dtype=tf.float32)
x = tf.placeholder(tf.float32)
z = a*x + b
```

Note: depending on what version of numpy you are running, you may get warnings that “Passing (type, 1) or '1type' as a synonym of type is deprecated.” You can safely ignore these warnings.

Equivalent computational graph:
Building the Computational Graph

Here’s a snippet of a TF program, in which we define a computational graph.

```python
# Now we define some variables
a = tf.constant(2, dtype=tf.float32)
b = tf.constant(1, dtype=tf.float32)
x = tf.placeholder(tf.float32)
z = a*x + b
```

Equivalent computational graph:

- `tf.constant` is a TF tensor whose value will not change. This is the TF analogue of an immutable type.
- `tf.placeholder` is a TF tensor whose value will be assigned at runtime, after building the graph.
Building the Computational Graph

Similarly, * is short for the `tf.multiply()` function.

+ Is just short for the `tf.add()` function.

```python
1 sess = tf.Session()
2 a = tf.constant(2, dtype=tf.float32)
3 x = tf.placeholder(tf.float32)
4 adder_node1 = a + x
5 adder_node2 = tf.add(a, x)
6 print(adder_node1)
7 print(adder_node2)

Tensor("add_22:0", dtype=float32)
Tensor("Add_4:0", dtype=float32)

1 print(sess.run(add_node1, {x:10}))
2 print(sess.run(add_node2, {x:10}))

12.0
12.0
```
Building the Computational Graph

Variables don’t have values until you run the graph!

These are all `tf.Tensor` objects.
Operations are defined here, but we still haven’t actually computed anything, yet...

Computation only carried out once we give a value to x and ask TF to run the graph.
Data types in TensorFlow

Every `tf.Tensor()` object has a data type, accessed through the `dtype` attribute.

```python
1 helloworld = tf.constant('hello world!')
2 print helloworld.dtype
3 ramanujan = tf.constant(1729, dtype=tf.int16)
4 print ramanujan.dtype
5 approxpi = tf.constant(3.14159, dtype=tf.float32)
6 print approxpi.dtype
7 imaginary = tf.constant((0.0, 1.0), dtype=tf.complex64)
8 print imaginary.dtype
```

Note: if no `dtype` is specified, TF will do its best to figure it out from context, but this doesn’t always go as expected, such as when you want a vector of complex numbers. When in doubt, specify!

Four basic data types:
- Strings
- Integers
- Floats
- Complex numbers

Some flexibility in specifying precision
Creating Tensors

These are all rank-0 tensors. Yes, `tf.string` is a single item, and so is `tf.complex`.

To create a 1-tensor (i.e., a vector), just pass a list of scalars.

```python
helloworld = tf.constant('hello world!', dtype=tf.string)
ramanujan = tf.constant(1729, dtype=tf.int16)
approxpi = tf.constant(3.14159, dtype=tf.float32)
imaginary = tf.constant((0.0, 1.0), dtype=tf.complex64)
```

```python
fibonacci = tf.constant([0, 1, 1, 2, 3, 5, 8, 13, 21], dtype=tf.int8)
animals = tf.constant(['dog', 'cat', 'bird', 'goat'], dtype=tf.string)
print animals
```

Tensor("Const_143:0", shape=(4,), dtype=string)

Note: All elements of a `tf.Tensor` must be of the same datatype. The one sneaky way around this is to serialize objects to strings and store them in a tensor with `dtype=tf.string`.
Creating Tensors

We can create a 1-by-1 matrix, which is different from a 1-vector, which is different from a scalar.
Creating Tensors

To create a matrix, we can pass a list of its rows.

```python
identity = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=tf.float32)
print(identity)
```

```
Tensor("Const_144:0", shape=(3, 3), dtype=float32)
```

```python
oneThruNine = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=tf.float32)
with sess.as_default():
    print(oneThruNine.eval())
```

```
[[ 1.  2.  3.]
 [ 4.  5.  6.]
 [ 7.  8.  9.]]
```
Creating Tensors

The `eval()` method actually computes a tensor's value and returns it as a numpy array. `eval()` has to be run within a given session designated as "default", so we specify `sess` as the default. More on this in a few slides.

To create a matrix, we can pass a list of its rows.

```python
# Create a 3x3 identity tensor
identity = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=tf.float32)
print(identity)

Tensor("Const_144:0", shape=(3, 3), dtype=float32)

# Create a 3x3 matrix
oneThruNine = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=tf.float32)
with sess.as_default():
    print(oneThruNine.eval())

[[ 1.  2.  3.]
 [ 4.  5.  6.]
 [ 7.  8.  9.]]
```
Creating Tensors

Create a 10-by-10 matrix of all ones

```
J = tf.ones([10, 10])
print(J)
```

Create a 4-tensor, which we could use to represent one second of 720p color video (27 frames per second, 1280x720 resolution, 3 colors)

```
video = tf.zeros([27, 1280, 720, 3])
print(video)
```
Tensor shape

Rank: number of dimensions

Shape: sizes of the dimensions

```python
video = tf.zeros([27, 1280, 720, 3])
print(video)
```

Tensor("zeros_3:0", shape=(27, 1280, 720, 3), dtype=float32)

```python
print(video.shape)
```

(27, 1280, 720, 3)

Note: This looks like a tuple, but it is actually its own special type, `tf.TensorShape`
More about tensor rank

```python
1 video = tf.zeros([27, 1280, 720, 3])
2 print(video)
```
```
Tensor("zeros_4:0", shape=(27, 1280, 720, 3), dtype=float32)
```

```python
1 r = tf.rank(video)
1 len(video.shape)
```

r will only get a value once we run the computational graph. There are good design reasons behind this: if the rank of our tensor depends on other inputs or variables, then we can’t know the rank of the tensor until runtime!

If the tensor is already populated (so that its rank is already established), one can simply look at the length of its shape object to get the rank.
It is often natural to refer to certain subsets of the entries of a tensor. A “subtensor” of a tensor is often called a slice, and the operation of picking out a slice is called slicing the tensor.
Tensor slices

One index is enough to specify a number in a vector (i.e., a 1-tensor).

Need two indices to pick out an entry of a matrix (i.e., a 2-tensor).
Tensor slices

Use `'::'` to pick out all entries along a row or column.

Create a vector from the second (zero-indexing!) row of the matrix.

Create a vector from the third column of the matrix.

Note: result is a “column vector” regardless of whether we slice a row or a column!
Tensor Slices

More complicated example: video processing

Four dimensions:
- Pixels (height-by-width)
- Three colors (RGB)
- Time index (multiple frames)
Tensor Slices

More complicated example: video processing

Four dimensions:
- Pixels (height-by-width)
- Three colors (RGB)
- Time index (multiple frames)

Test your understanding:
What is the rank of the “video” tensor below?
Tensor Slices

More complicated example: video processing

Four dimensions:
- Pixels (height-by-width)
- Three colors (RGB)
- Time index (multiple frames)

Test your understanding:
What is the rank of the “video” tensor below?

Answer: 4, since there are four dimensions; height, width, color and time.
Tensor slices

```python
1 video = tf.zeros([27, 1280, 720, 3])
2 print video

Tensor("zeros_5:0", shape=(27, 1280, 720, 3), dtype=float32)

1 firstframe = video[0,:,:,:]
2 print firstframe

Tensor("strided_slice_19:0", shape=(1280, 720, 3), dtype=float32)

1 bluevideo = video[...,:2]
2 print bluevideo

Tensor("strided_slice_20:0", shape=(27, 1280, 720), dtype=float32)

1 redvideo = video[...,:0]
2 print redvideo

Tensor("strided_slice_21:0", shape=(27, 1280, 720), dtype=float32)
```

Use `:` to pick out all entries along a row or column.

Pick out the 3-color 1280-by-720 image that is the first frame of the video.

Pick out only the blue channel of the video (see RGB on wikipedia).

Pick out only the red channel of the video.
Reshaping tensors

Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?
Reshaping tensors

Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?
A: 3

Q: How many elements are in this x-by-y-by-z 3-tensor?
Reshaping tensors

Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?
A: 3

Q: How many elements are in this x-by-y-by-z 3-tensor?
A: $x*y*z$
Reshaping tensors

```
1 mytensor = tf.zeros([10,20,30])
2 print mytensor
Tensor("zeros_7:0", shape=(10, 20, 30), dtype=zy32

1 newtensor = tf.reshape(mytensor, [125,3,2,8])
2 print newtensor
Tensor("Reshape 2:0", shape=(125, 3, 2, 8), dtype=zy32

1 badtensor = tf.reshape(mytensor, [10,20,40])
```

Reshape a 3-tensor into a 4-tensor. Note that the shapes are consistent with one another.

Reshaping to an inconsistent shape results in an error.
Evaluating Tensors

Evaluating the tensor lets us finally see the tensor's contents rather than only its shape and dtype.

Evaluation requires running a computational graph, so we have to give TF a session to run.
Building a Simple Model: Linear Regression

```python
1  W = tf.Variable([.3], dtype=tf.float32)
2  b = tf.Variable([-.3], dtype=tf.float32)
3  x = tf.placeholder(tf.float32)
4  linear_model = W*x + b
5  
6  linear_model
```

<tf.Tensor 'add_27:0' shape=<unknown> dtype=float32>
Building a Simple Model: Linear Regression

$$y = Wx + b$$

W and b are both rank-1 tensors, with values 0.3 and -0.3, respectively.

```
1 W = tf.Variable([.3], dtype=tf.float32)
2 b = tf.Variable([-3], dtype=tf.float32)
3 x = tf.placeholder(tf.float32)
4 linear_model = W*x + b
5
6 linear_model
```
Building a Simple Model: Linear Regression

From the documentation: The `Variable()` constructor requires an initial value for the variable, which can be a Tensor of any type and shape. The initial value defines the type and shape of the variable. After construction, the type and shape of the variable are fixed, but the value can be changed using one of the assign functions.

You don’t know what these are, yet, but we’ll see them soon.
Building a Simple Model: Linear Regression

Test your understanding: why is the shape unknown, here?
Building a Simple Model: Linear Regression

```
1 W = tf.Variable([.3], dtype=tf.float32)
2 b = tf.Variable([-3], dtype=tf.float32)
3 x = tf.placeholder(tf.float32)
4 linear_model = W*x + b
5
6 linear_model
```

More information: https://www.tensorflow.org/api_docs/python/tf/global_variables_initializer

```
1 init = tf.global_variables_initializer()
2 sess.run(init)

1 print(sess.run(linear_model, {x: [1, 2, 3, 4]}))
```

Model: \(y = Wx + b \)

- **tf.Constant** tensors are initialized immediately when we create them. On the other hand, **tf.Variable** Tensors need to be initialized before we can run the computational graph. init here becomes a pointer to a TF subgraph.
Building a Simple Model: Linear Regression

```python
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W*x + b

linear_model

<tf.Tensor 'add_27:0' shape=unknown dtype=float32>

init = tf.global_variables_initializer()
sess.run(init)

print(sess.run(linear_model, {x: [1, 2, 3, 4]}))

[ 0.30000001  0.60000002  0.90000004]
```

Evaluate the computational graph with x taking the values 1, 2, 3 and 4.
Building a Simple Model: Linear Regression

So far, we have a circuit that computes a linear regression estimate

To train our model, we need:

1) A loss function
2) A placeholder y for the training data dependent values
Building a Simple Model: Linear Regression

```python
1 y = tf.placeholder(tf.float32)
2 sq_err = tf.square(linear_model - y)
3 loss = tf.reduce_sum(sq_err)
4 print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
```

23.66
Building a Simple Model: Linear Regression

```python
1 y = tf.placeholder(tf.float32)
2 sq_err = tf.square(linear_model - y)
3 loss = tf.reduce_sum(sq_err)
4 print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
```

Test your understanding: is `sq_err` a vector or a scalar?
Building a Simple Model: Linear Regression

```python
1 y = tf.placeholder(tf.float32)
2 sq_err = tf.square(linear_model - y)
3 loss = tf.reduce_sum(sq_err)
4 print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
```

Note: `tf.reduce_sum` does just what you think it does!
Building a Simple Model: Linear Regression

Option 1: set \(w \) and \(b \) manually.

We know \(W=-1 \), \(b=1 \) is the correct answer.

To change values of \(tf.\text{Variables} \), use \(tf.\text{assign} \)

Need to tell TF to use the newly-updated variables instead of the old ones.
Building a Simple Model: Linear Regression

```python
1 y = tf.placeholder(tf.float32)
2 sq_err = tf.square(linear_model - y)
3 loss = tf.reduce_sum(sq_err)
4 print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
```

23.66

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.

We know $\hat{w}=-1$, $b=1$ is the correct answer

To change values of `tf.Variables`, use `tf.assign`

Option 2: use closed-form solution for loss-minimizing \hat{w} and b.

...but then what happens when we have a model with no closed-form solution?
Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set \(w \) and \(b \) manually.
 We know \(W=-1, \ b=1 \) is the correct answer
 To change values of \(\text{tf.Variables} \), use \(\text{tf.assign} \)

Option 2: use closed-form solution for loss-minimizing \(W \) and \(b \).
 ...but then what happens when we have a model with no closed-form solution?

Option 3: use the built-in \(\text{tf.train optimizer} \)
 Takes advantage of \textit{symbolic differentiation}
 Allows easy implementation of \textit{gradient descent} and related techniques
Building a Simple Model: Linear Regression

Option 1: set \(w \) and \(b \) manually.

We know \(W=-1, b=1 \) is the correct answer

To change values of \(tf.Variables \), use \(tf.assign \)

Option 2: use closed-form solution for loss-minimizing \(W \) and \(b \).

...but then what happens when we have a model with no closed-form solution?

Option 3: use the built-in \(tf.train \) optimizer

Takes advantage of symbolic differentiation
Allows easy implementation of gradient descent and related techniques

This is why we use TensorFlow!
Training a Simple Model: Linear Regression

Reminder: this is what our model looks like, as a computational graph.
Gradient Descent: Crash Course

Iterative optimization method for minimizing a function
At location x, take gradient of loss function
Take a gradient step in the direction of the gradient
Size of step changes over time
according to learning rate
Gradient Descent: Crash Course

Iterative optimization method for minimizing a function
At location x, take gradient of loss function
Take a gradient step in the direction of the gradient
Size of step changes over time according to learning rate

In short, gradient descent is a method for minimizing a function, provided we can compute its gradient (i.e., derivative). It’s enough for this course to treat this as a black box.

For more information:
Training a Simple Model: Linear Regression

```
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

sess.run(init)  # reset values to incorrect defaults.
for i in range(1000):
    sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
print(sess.run([W, b]))
```

[array([-0.9999969], dtype=float32), array([0.99999082], dtype=float32)]
Training a Simple Model: Linear Regression

```python
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
sess.run(init)  # reset values to incorrect defaults.
for i in range(1000):
    sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
print(sess.run([W, b]))
```

[Array output: `array([-0.9999969, dtype=float32], array([0.9999082], dtype=float32])`]

Each iteration of this loop computes one gradient step and updates the variables accordingly.
Training a Simple Model: Linear Regression

Each iteration of this loop computes one gradient step and updates the variables accordingly.

Note: As you can see below, the computational graph can get very complicated very quickly. TensorFlow has a set of built-in tools, collectively called **TensorBoard**, for handling some of this complexity:

https://www.tensorflow.org/tensorboard/graphs

(These examples are for TF version 2. For TF version 1.X, see https://github.com/tensorflow/tensorboard/blob/master/docs/r1/overview.md)
Training a Simple Model: Linear Regression

```python
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

sess.run(init)  # reset values to incorrect defaults.
losses = range(1000)
for i in range(1000):
sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
losses[i] = sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
plt.xlabel('step'); plt.ylabel('loss'); _ = plt.plot(losses);
```

Note: TensorBoard includes a set of tools for visualization, including for tracking loss, but the approach here is quicker and easier for our purposes.
TensorFlow Estimators API: tf.estimators

tf.estimators is a TF module that simplifies model training and evaluation

Module allows one to run models on CPU or GPU, local or on cloud, etc

Simplifies much of the work of building the graph and estimating parameters

More information:

Note: Keras in TensorFlow v2 serves similar purpose for specifying neural nets

https://www.tensorflow.org/guide/keras