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1 Probability

In talking about probabilities, the fundamental object is 2, the sample space.
Points (elements) in €2 are denoted (generically) by w.

We assign probabilities to subsets of (2.

Assume for the moment that € is finite or countably infinite. Thus (2
could be the space of all possible outcomes when a coin is tossed three times
in a row or say, the set of positive integers.

A probability P is then a function from the power set (the class of all
possible subsets) of Q, which we will denote by A, to the interval [0,1]
satisfying the following properties:

o (i) P(N) =1.
e (ii) P(¢) =0.
e (ii) If {A,,} is a sequence of mutually disjoint subsets of €, then,

In general however 2 can be uncountably infinite (for example when Q is
[0,1]) in which case (for certain technical reasons that we do not need to go
into) A is not taken to be the entire power set, but is chosen to be a smaller
class. Thus we do not assign probabilities to all subsets of (2, but only to



those that belong to A. The class A is assumed to contain 2 and to be
closed under complementation and countable union. P is then, a function
from A to [0, 1] with the same properties as above. The properties (i), (ii)
and (iii) are called the basic axioms of probability.

From these properties, it is easy to deduce the following;:

e (a) For finitely many disjoint sets A1, Ag,..., Ay,

n

P(Uf, A) =) P(Aj).

i=1
e (b) P(A) =1— P(A°).
e (c) If AC B, then P(A) < P(B).
e (d) For any two sets A and B (not necessarily disjoint),

P(AUB)=P(A)+ P(B) - P(ANnB).
Exercise: Using (i), (ii), (iii), deduce (a), (b), (c) and (d).

There is an interesting generalization of (d) to the case of more than 2
sets.

Proposition: For (not necessarily disjoint) sets A, Ag, ... Ay,
P(UA4;)) = > P(4) - > PANA) + Y P(ANA;NA)
1<j 1<j<k
— .. + (—D)"T PN, A;).
A general proof of this will be skipped. It can be done using induction.

However, a proof of the above equality, when (Q is a finite set and each ele-
ment in ) is equally likely follows from a slick combinatorial argument.

So, let @ = {1,2,...,N} and let P be a probability such that for any 4,
P(i) = 1/N. Then, clearly for any subset A, P(A) = #(A)/N . Proving the
above proposition then boils down to establishing that,

#UA) = Y #(A) = ) #ANA) + D #(AiNA;NA)
i< i<j<k
. F (=) (D Ay).



So consider some element s belonging to U A;. We need to show that s is
counted exactly once on the right side of the above expression. Suppose that
s belongs to k of the n sets. Then, on the right side of the above expression

s is counted
e ()0 (5) - e ()

times. Call this number m. Then,

j=1
= 1—1+]Z;(—1)j+1 (’;)
= 1- 2:(’;) (-1)7 (1)}
= 1-(1-1)
= 1.

This finishes the proof.

In statistical/practical contexts it helps to think of © as the set of all
possible outcomes of a chance (random) experiment. Probabilities assigned
to subsets of Q are governed by the nature of the chance mechanism (like
tossing a coin, throwing a die, shuffling a pack of cards etc.)

Conditional probability: Consider a fixed event B with P(B) > 0. The
conditional probability of A | B (read, A given B) is,
P(ANB)

P(A4|B) =55

It is not difficult to show that this defines a valid probability. In other words
if we define a function Pg from A to [0, 1] as follows:

Pp(A) = P(A| B),



then Pp satisfies the basic axioms of probability.

The key idea behind defining conditional probabilities is to update the
probabilities of events given the knowledge that B happened. Note that for
any event C C B¢, P(C | B) = 0, which is in accordance with common
sense. On the other hand, for any C' C B,

P(C|B) =z P(C);

in other words, the conditional probability of a sub-event of B, given that
B happened is generally higher than the unconditional probability.

Joint probabilities can be expressed in terms of conditional and marginal
probabilities in the following manner:

P(ANnB)=P(A| B)P(B),
provided P(B) > 0. Also,
P(ANnB)=P(B|A)P(4),
provided P(A) > 0. More generally, for sets Ay, As,... Ay, we have,
P(NP_1A;) = P(A)) P(Ay | A)) P(A3 | AN Ap) ... P(A, | NP Ay

One of the most important consequences of the notion of conditional
probability is Bayes Rule. Simple as it looks, its ramifications are pro-
found. Bayes Rule gives us a way of obtaining the conditional probability of
one event given another, when we know the marginal probabilities and the
conditional probability of the second event given the first. We state Bayes
Rule in the form of the following theorem.

Theorem: Suppose that {B;} is a (finite/infinite) partition of Q and A
is any event with P(A) > 0. Also suppose that P(B;) > 0 for each ¢ (with-
out any loss of generality). Then,

P(B;nA)  P(A|Bj)P(B))

P(B; | A) = P(A) Y P(A|B)P(B;)’

Illustrating Bayes Rule: There are three cabinets, A, B and C, each
of which has two drawers. Each drawer has one coin. A has two gold coins,
B has two silver coins and C has one gold and one silver coin. A cabinet is



chosen at random; one drawer is opened and a silver coin found. What is
the chance that the other drawer also has a silver coin ?

To fit this in the framework of the above theorem, take the B;’s to be
the events that A is chosen, B is chosen and C is chosen. For brevity we
shall denote the events by A, B and C. Note that these events are indeed a
partition of the sure event that a cabinet is chosen, and furthermore

3
=
I
3
3
I

P(C) =1/3.

Let S1 denote the event that the opened drawer of the chosen cabinet has
a silver coin. Clearly, we are required to find P(B | S1). Now, using Bayes
Rule, we have

P(S1| B)P(B)
P(S1| A)P(A)+ P(S1| B)P(B)+ P(S1|C)P(C)
1x1/3
0x1/34+1x1/34+1/2x1/3
1
1+1/2
= 2/3.

P(B|S1) =

Independence of events: Events A and B are said to be independent
if PLAN B) = P(A) x P(B). In general, events A, As,..., A, are said
to be mutually independent if for any subcollection {4; , 4;,,...,4; } of
{A1,As,..., Ay}, it is the case that,

P(A;; NA;,N...A;) = P(A;;).P(Ai,).--- P(A;) -
Exercise: If Ay, As,..., A, are independent, then so are Bi,Bs,... B,

where each B; is either A; or A{.

Consider events A and B with P(A) > 0, P(B) > 0. Then the independence
of A and B is equivalent to saying that,

P(A|B) = P(4),
and equivalently,
P(B|A)=P(B).

In other words knowledge about B does not affect the probability of the
event A and vice-versa, which is intuitively compatible with the notion of
(stochastic) independence.



2 Random Variables

A random variable X is a function from 2 to the real numbers. Thus,
for each w, X (w) is a real number. In talking about the value of a random
variable at a particular sample point, the argument w is usually suppressed.

Most of probability and statistics deals with the study of random vari-
ables. Random variables can broadly be classified into two types. These are
(i) Discrete and (ii) Continuous. Discrete random variables are those that
assume finitely many or countably many values with positive probability.
On the other hand, for a continuous random variable X the probability that
X assumes a particular value z is 0 for any x. However, the probability
that X lives in some interval [a,b] can be positive; in fact, the probability
that X lives in R is 1. This apparently smells paradoxical; if the chance of
any particular value in [a, b] being realized is 0, how can the probability of
an interval [a, b] even be positive? This is where the subtlety of the theory
lies. An interval contains uncountably many points and the addition rule
for probabilities only holds for finitely or countably many events; thus the
probability of an interval cannot be computed by adding up the probability
of each point in that interval, namely 0. Yet chances can be meaningfully
assigned to subsets of R and be meaningfully interpreted. If we couldn’t do
this, there wouldn’t have been much use for the theory.

Example 1: This is an example of a discrete random variable. Consider
the coin-tossing experiment, where a coin is flipped once. The sample space
2 ={0,1}. Let X be the random variable that assumes the value 1 if heads
comes up, and 0 if tails comes up. Thus X(H) = 1 and X(T') = 0. If the
chance of the coin landing heads up is p, then clearly,

P(X=1)=pand P(X=0)=¢g=1-p.
The random variable X is called a Bernoulli random variable.

Example 2: This is also a discrete random variable that is composed by
adding independent Bernoulli random variables. Suppose you flip a coin n
times and record the outcomes of each toss. The space of all possibilities is
the sample space {2 and is made up of sequences of length n where each slot
is either H (heads) or T (tails). What is the size of Q ?

The random variable X records the number of heads in a sequence. Thus
if w denotes a sequence, then X (w) = number of heads in w. Thus X can



assume any value between 0 and n. It is easy to see that,
P({w}) = p*®) g~ X ),
and consequently,
P(X =m) = (n) Pt
m

Note that X is the sum of n independent Bernoulli random variables.

Example 3: This is a discrete random variable that takes infinitely many
values unlike the previous two. Suppose, we keep on flipping a coin, till we
get a heads and then stop. Let the probability of the coin landing heads up
in a flip be p. The sample space is then given by

Q= {H,TH,TTH,TTTH,---}.

Let X denote the number of flips needed to get the first head. Clearly X
can be any positive integer. Then X is clearly a random variable and it is

easily seen that,
P(X=m)=¢"""p.

The geometric distribution has an interesting property called the memory-
less property. This can be stated as follows: Let X be a geometric random
variable. Given any two positive integers m and n,

P(X>m+n|X >m)=P(X >n).

The reason why the above is referred to as the memoryless property is fairly
clear. Given the information that you haven’t seen a head in the first m
tosses, the chance that you won’t see a head in n further tosses, is the same
as the probability that you don’t see a head in the first n tosses. So in a
sense you are starting from square one, from the m + 1’st toss onwards.

A distribution that arises very naturally from the geometric is the nega-
tive binomial distribution. Often useful in analyzing discrete data, it can be
described very simply, in terms of the following random experiment: Sup-
pose I keep tossing a coin till I get the r’th heads (success). Let X be the
number of tails that I get before the r’th heads. Clearly X is a random
variable. What is the chance that X = 7 To compute this, note that for X
to be equal to z, there must have been a total of x + r tosses including the
r’th heads and in the first £ +r — 1 tosses there must have been r — 1 heads.
Now, the total number of (distinct) sequences of H’s and T’s that are x + r



long and end in an H and have r — 1 heads in the first z +r — 1 slots is just

(zjizl) = (IJF;_I). The chance than any such sequence is actually realized

is just p" ¢*. Hence,

~1
P(X =z) = ($+; )p’"qz-

Note that X can assume any value greater than or equal to 0 with positive
probability.

Exercise: If W = X + r is the total number of tosses needed to get r
heads, write down the p.m.f. of W and show that X; + X5 + ...+ X, where
the X;’s are i.i.d. geometric (as defined above) is distributed like W'.

Exercise: Prove that the geometric distribution satisfies the memoryless
property.

The interesting fact is that among all discrete random variables sup-
ported on {1,2,3,...} the geometric distribution is the only one that sat-
isfies the memoryless property. In other word, the memoryless property
completely characterizes the geometric distribution.

Other examples of discrete random variables include Poisson, Negative
Binomial, etc.

The probability mass function of a discrete random variable z taking
values in, say, {0,1,2,3,...} is the function p from the set {0,1,2,3,...} to
the set [0, 1] defined by,

Example 4: This is an example of a continuous random variable. Let
the sample space Q = (0,1) and let P be a probability defined (uniquely)
on  in the following way. For any 0 < = < 1,

P((0,z]) =x.

This is a good probability model for drawing a point at random from the
interval (0,1). What it says is that the chance of a randomly chosen point
belonging to an interval is precisely given by the length of the interval. Let



U be a random variable defined as follows:
Ulw)=w.
Then, it is easy to see that,
P(U <u)=u,

for any 0 < u < 1. The random variable U is said to have the uniform
distribution on (0,1). In some sense, U is the most basic or fundamental
random variable, because, as we shall see presently, all random variables can
be generated from U.

The probabilistic behavior of a random variable is captured completely
by its distribution function. If X is a random variable, it’s distribution
function F’x, henceforth denoted by F', is defined by,

F(z)=P(X <1z).
F has the following properties.
e i))0< F(z)<1.
e (ii) If z < y, then F(z) < F(y). Also,

S Fly) = F(z).

In other words F' is monotone increasing and right continuous.
e (iii) limy,_oo F(z) = 0 and lim, o, F(z) = 1.

F need not be left-continuous as can be shown by counter-example. For-
mally, a continuous random variable is defined as one whose distribution
function is continuous.

For any 0 < p < 1, the p’th quantile of F' is any number z, such that

F(zp—)= lim F(y)=P(X <zp) <p< P(X <z,) =F(zp).
Y= Tp—
Clearly, the p’th quantile need not be unique. However, if F' is a strictly
increasing continuous function, in which case it is one-one, it’s inverse func-
tion F~! is well defined on (0,1). For any 0 < p < 1, F~!(p) is the unique
number z, such that F(z) = p, and F~!(p) is the unique p’th quantile of F.



When p = 0.5, we refer to the quantile as the median.

Fortunately, there is a neat way to define the inverse function F~! even
when F' is not strictly increasing and continuous. For any 0 < ¢ < 1, we set,

F~1(t) = smallest element of {z : F(z) > t}.

The fact that the above set does indeed have a smallest element can be
shown. It is now easy to see that F~(¢) is indeed a #'th quantile of F,
though not necessarily the unique one. Note that,

Flt)<z o F(z) >t.

We can now state a very crucial theorem.

10



Theorem: Let X be a random variable with distribution function F'.
Let U be a Uniform random variable on (0,1). Then Y = F~1(U) is also a
random variable and its distribution function is F'.

Proof: We have,
P(FY(U)<z)=P(F(z) >U)=P(U < F(z)) = F(z).

Thus, by knowing F, and hence in principle F~!, one can generate a ran-
dom variable with distribution function F, provided one can generate from
a U(0,1) distribution. Another related theorem follows.

Theorem: If X is a continuous random variable, then F(X) has the
uniform distribution.

The proof of this theorem, in the case that F' is strictly increasing and
continuous, is given in Rice. The general case is omitted.

For discrete random variables, we can obtain the distribution function
F from the mass function p in the following way: Suppose that X is a
discrete random variable taking on the values z1, 2, z3, . . . with probabilities
P1,P2,P3,---, - If p denotes the probability mass function, then p(z;) = p;.
The distribution function F' of X is then given by,

Flo)= 3 pla).

Many continuous distribution functions (and in fact, the vast majority of
those which we deal with in statistics) possess a probability density func-
tion, which is basically the analogue of the probability mass function in the
discrete case. A continuous distribution function F' is said to possess a den-
sity f if there exists a non-negative real-valued function f, such that for all
a<b,

b
F(b) — F(a) = Pla < X <) :/ (o) da.

If f is continuous, then it is easy to see that f(xz) is the derivative of F at
z. Also, note that the integral of f over the entire line must be 1; i,e.

/_Z f(5)ds=1.

11



The uniform distribution on (0, 1) is easily seen to have density function
f, given by f(z) = 1 whenever 0 < z < 1 and 0 elsewhere. Note that if
f is a density function for a distribution function F', and g is obtained by
changing the values of f at finitely many points, then ¢ is also a density
function.

Many distributions are specified using density functions rather than the
distribution functions themselves. In particular, one of the most crucial
distributions in statistics, the normal distribution, which arises all over the
place, is specified through it’s density. The distribution function of the
normal cannot be written in closed form. Recall that a normal random
variable with mean y and standard deviation o has density,

Pu,o(T) = ﬁ exp <_$(w _ M)2) .

The exponential distribution, which is used to model waiting times, has
density function given by,

f(z) = Nexp(=Az),

where ) is some positive constant. Its distribution function is available in
closed form as,
F(z) =1—exp(-Az).

Among all continuous distributions on (0,00), the exponential distribution
is the only one that has the memoryless property.

Exercise: Show that the exponential distribution has the memoryless
property; i.e. if X is an exponential random variable and s,¢ > 0, then,

PX>s+t| X >s)=P(X >t).

The converse is more difficult to prove, but a fun exercise. We’ll skip it for
now.

Exercise: Given a uniform random variable U, how would you generate
from an exponential distribution with parameter A\ 7

Transforming Random Variables: In statistics, we are often interested

in deriving the distribution of a given function of a random variable. Thus,
if X is a random variable, we might be interested in finding the distribution

12



of g(X), where g is a fixed pre-specified function. We consider, first, the
case when X is discrete.

Theorem: Suppose X is a discrete random variable assuming values
{z1,z9,x3,...} with probabilities {p1,p2,p3,...}. Let Y = g(X), where g is
a given function and let {y1,¥2,ys,...} be the values assumed by Y. Then
the p.m.f. of Y is given by:

PY=y)= ) »

J:9(zj)=yi

The proof is immediate.

For continuous random variables with a density f, the Jacobian Theorem
gives us the distribution of a transformed variable under some regularity
conditions on the transformation g. We state the theorem below (without
proof).

Change of variable theorem: Let X be a continuous random variable
with density function f and g be a real-valued function defined on some open
interval I, such that P(X € I) = 1. Assume further that g is continuously
differentiable and that g (z) # 0 for z € I(these assumptions actually entail
that ¢ is a strictly monotone transformation on I). Let Y = g(X). Then
the density function of Y can be computed as,

fr@) = Fa ') d%gl(m = o) | -

mh y€g(l),

and 0 otherwise.

Proof: Suppose I = (a,b) and g is increasing. Then a < X < b with
probability 1 and the density f can be taken to be identically 0, outside of
I. Also g(a) <Y = g(X) < g¢(b) with probability 1 and the density fy
of Y can be taken to be identically 0 outside of g(I). Let Fy denote the
distribution function of Y. Let g(a) < y < g(b). Then,

Fy(y)=P(Y <y)=P(gla) <Y =g(X)<y)=Pla<g "(Y)<g '(y).

Since, X =g 1(Y),

Fy(y) =Pla<X <g7'(y) =P(X <g7'(y) =Fx(g7'(v)-

13



On differentiating the above, with respect to y, we obtain,

d

@g‘l(y) = flg~*())

fr(y) = Fla~ (v) ! ‘ ,

o

where the last equality follows from the chain rule and the fact that g and
g~ ! have positive non-vanishing derivatives. O

The equality in the above display clearly implies that for any subset S of I:

_ -1 1
/S f(z) d = / o T |y L (1)

In fact, the above formula is valid very generally; f does not need to be
a density function. Any non-negative function, or for that matter, any
function, with a well-defined (finite) integral will do. Let’s see how we can
apply this formula to compute an integral, that one might come across in
calculus. Suppose we wish to compute,

1
8:/ usinu’ du.
0

We write . .
1
/ u sinu? du = / ~ 2u sin(u?) du,
0 0o 2

and then set w = u?, noting that as w runs from 0 t0 1, so does w in the

same direction. But w = u? means that dw = 2u du and thus
t1 t1
/ — 2u sin(u?) du = / —sinwdw,
0o 2 0o 2
by direct substitution and we obtain,
1
S§=—-(1-cosl).
2
Basically, what we have done here is use (1) informally. To see this, let
1 2 2
flx) = §2xsm:v I=(0,1) and g(x) = z*.

Clearly, g is continuously differentiable on I and g' is non-vanishing (since
g (z) = 2z)). Now, the inverse transformation g~! from g(I) = (0,1) to I is

9 y) =Y.

14



Also,

167 W) = 5 2w sinw.

Thus,

s = /If(:z:)dx

— -1 1

/1 L2 g sing —
= —2/ysiny ——
0o 2 2y

1 1
= 5/0 sinydy

1
= —(1-— 1) .
2( cos 1)

| dy

There is an useful extension of the Jacobian theorem to the case where the
transformation is not one-one. This is stated below.

Extension of the change of variable theorem: Let X be a continu-
ous random variable with density function f and g be a real-valued func-
tion (but not necessarily one-one) defined on some open set I, such that
P(X € I) = 1. Let V = g(I). Suppose that there exist open-intervals
Iy, I, ... I which are mutually disjoint, with I = I1 U I, U ... U I, such
that the restriction of g to I;, say g¢; is a one-one continuously differentiable
function from I; onto g(I) with non-vanishing derivative g;. Let ¥ = g(X).
Then the density function of Y can be computed as,

k
friy) = Z floi ' (w) %gfl(y) |, yeV =g()

and 0 otherwise.

We can use the above theorem to obtain the density of Y = X? where X is
a random variable with density f on (—o00,00). We let I = (—o0,0) U (0, 00)
and note that P(X € I) = 1. Note that g(z) = z? is not one-one but g
restricted to I; = (—00,0) is and so is g restricted to Is = (0, 00). Let g; be
the restriction of g to I;. Note that V = g(I) = (0,00) . Now,

g (y) =~y

15



and
9 (W) = V3.

The density of Y is thus given by,

fr(y) = f(=v¥)

(V) y >0,

1 1
=+ VD) 5
2.\/y 2.\/y
and 0 otherwise. Alternatively, the density can be computed from first
principles as in Rice.

3 Multidimensional Random Variables

By a multidimensional random variable we mean a (2 or more dimensional)
vector, such that each component of the vector is a real-valued random vari-
able. Each component of the random vector must be defined on the same
probability space. In other words, the components of the vector represent
numerical features of the same underlying random experiment. Consider,
for example, two consecutive (independent) throws of a die. Let X denote
the sum of the numbers on the two throws and Y denote the absolute magni-
tude of the difference of the numbers on the two throws. Thus X = X7 + X5
and Y =| X; — X5 | where X; and X5 are the outcomes of the two throws.
Then both (X1, X2) and (X,Y") are 2 dimensional random variables.

We can talk about the joint distribution of (X1, X2) or (X,Y’). The random
vectors we are concerned with here are discrete random vectors which assume
finitely many values with positive probability and the joint distribution is de-
scribed completely by the joint probability mass function. Consider, firstly,
(X1, X2). This assumes values in the set S; = {1,2,...,6} x {1,2,...,6}
and the p.m.f. is,

Px1, X2 (%1, %2) = P(X1 = 21, Xy = x2) = P(X1 = x1) P(X3 = x2) =

for (z1,22) € 81 and is 0 otherwise. Here, we have used the independence
of the random variables X; and X,. However, the random variables X and
Y are not independent. This is readily seen on noting that,

P(X=12Y =1)=0#£P(X =12).P(Y =1) > 0.

The random vector (X, Y") takes values in the set {2,3,...,12}x{0,1,2,3,4,5}
though not all pairs of values have positive probability. The p.m.f. of (X,Y)

16



is obtained readily as,

n
pX,Y(:E,y) = P(X =z,Y = y) = % (‘T,y) € S,

where n; 4 is the total number of pairs (i,7) € Si such that i +j = z and

| i — j |= y. To find the marginal probability mass functions of X and Y,

we proceed thus. For z € {2,3,...,12},

px(z)=P(X =2)= > PX=zY=y= >  pxy(zy.
ye{0,1,...,5} ye{0,1,...,5}

Similarly, for y € {0,1,...,5},

py(y) =P(Y =y)= Y  PX=zY=y)= >  pxy(zy.
z€{2,3,...,12} 2€{2,3,...,12}

The joint distribution function of (X,Y") is obtained as,

Fxy(z,y) =P(X <z,Y <y) = Z px,y (u,v).
(u,v):u<z,w<y

Let (X,Y) be a two-dimensional continuous random vector. Thus P(X =
z,Y =y) =0 for all (z,y). Also assume that (X,Y’) has a density function
f(z,y). What this means is the following: There exists a non-negative
function f(z,y), such that for any nice (“measurable”) subset of R?, the
probability that (X,Y) assumes values in R? can be represented as

P((X,Y) € A) :/A flz,y)dzdy.

Thus, the volume enclosed by the surface {z,y, f(z,y)} in x—y—z space over
the area A gives the chance that (X,Y’) takes values in A. The distribution
function of (X,Y’) can be computed as

Fxy(z,y) =P(X <z,Y <y) = / flu,v)dudv.

(—00,2]x (—00,y]

Let’s discuss a concrete example. Consider a helicopter landing randomly
inside a circular helipad. Take the center of the helipad to be the origin
(0,0) and assume that we scale the unit of distance in such a way, that the
circular helipad is the unit circle, given by the equation z2+y? < 1. Then the
point (X,Y’) at which the helicopter lands is a two-dimensional continuous

17



random variable that is distributed uniformly inside the unit circle and has
density,

1
Ixy(z,y) = p 1{z* + y* < 1},

where 1{z? +y? < 1} is the indicator function of the unit circle, and assumes
the value 1 if (z,y) lies in the unit circle (which is the same as saying that
22 + 92 < 1) and 0 otherwise. The chance that (X,Y) lies in a subregion R
of the unit circle is simply Area(R)/w. To find the marginal densities of X
and Y, which are denoted by fx and fy respectively, we proceed thus:

fx(a) = /_°° flay)dy for (-1<z<1).

Since f(z,y) is non-zero only when z? + y? < 1, the values of y that con-
tribute to the integral above are —v/1 — z2 < y < v/1 — z2. Thus,

@) = [ sy
—1{x +9? <1} dy

/.

= / —1{ V1-122 <y </1-2122%}
- Lo
2

88

1— 22

So we can write down the marginal density of X as,

2
z)==V1-221{-1<z<1}.
m

By symmetry, we can immediately write down the marginal density of Y as,

2
=—v1—-9y?21{-1<y<1}.
s

You can deduce quite easily that X and —X have the same distribution and
also that Y and —Y have the same distribution by using Problem (1) from
Homework 2. Thus X and Y are both symmetrically distributedaround 0
and therefore have 0 means. In fact, using Problem (2) from Homework
2, you can also deducethat (X,Y’) has the same distribution as (e; X,e2Y)
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where e1 is 1 or -1 and ey is also 1 or -1. It follows that X and Y are
uncorrelated (once again, from Problem (2)). The fact that X and Y have
the same marginal distributions is tied to the fact that you can swap the
values of z and y in f(z,y) without changing the value of the density. If the
helipad was elliptic instead of being circular, this would no longer be the case,
since f(z,y) would no longer necessarily equal f(y, z). For example, consider
the uniform distribution on the ellipse with major axis having length 2 and
minor axis having length 1. The density function is given by,

2
g(@,y) = %1 {%ﬂf < 1} :
If (X,Y) has the uniform distribution on this ellipse, then you can still show
that changing the sign of one or more of the components will not change the
distribution; thus (—X,Y), (X,-Y),(—X,—-Y) all have the same distribu-
tion as (X,Y’), and consequently X and Y are uncorrelated as in the previous
case. However X and Y no longer have the same marginal distribution; you
can figure this out by simply looking at the shape of the ellipse and not-
ing that it is more stretched out along the horizontal axis than the vertical
(which is NOT the case with the circle). See Figure 1 where the elliptical
helipad is sketched. If you think a bit, you’ll also see that the marginal
distribution of X must concentrate on (—2,2) whereas the marginal distri-
bution of (—Y,Y’) concentrates on (—1,1). I would advise working out the
marginal distributions as an exercise. Choosing (z,y) = (1.5,0) we see that

Let’s return to the circular helipad example. We want to compute the con-
ditional distribution of X given Y = y; so, contingent on the information
that the Y co-ordinate of the point where the helicopter landed is ¢, what
is the chance that the X co-ordinate is less than some specificied value, say
z? In other words, what is P(X <z |Y =y) = Fxjy_,(z)? Here Fxy_,
is the conditional distribution function of X given that Y = y. We find this
by evaluating the conditional density of X given Y = y, which is

_ fzy)
fX\Y:y(J?) = )

we only define the conditional density of X given Y = y for y such that the
marginal density of Y at y is positive. In this case, for example, Y never lies
outside of (—1,1), so it does not make sense to condition on Y being equal
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Figure 1: The uniform distribution on the ellipse 22/4 + y? < 1.

to 1.5. For —1 < y < 1, we have,

fX\Y:y('T) = ];(j(’j))

1 1
™ (2/m) /1 - 2

1
= — — 1{-/1-p2<z</1-92}.
W

Thus, X given Y = y has the uniform distribution on (—+/1 — 32, /1 — ¢2).

Hz? <1 —4%}

We extend this example a little. Suppose now that two helicopters land
randomly inside the circular helipad. The chance that they land at the same
point is 0, so we’ll ignore that event. Let (X1,Y7) and (X3, Y>) denote their
landing points. If we assume that the helicopters land independently of each
other (may not sound too realistic, but then this is more of a thought ex-
periment!! A helicopter seldom occupies only a single point..but a point can
be a good approximation for a helicopter if the dimensions of the helipad
are much much larger than the helicopter itself.) then (X7,Y7) and (X5, Y53)
are i.i.d. and each is distributed uniformly on the unit circle. Let D denote
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the distance between the copters. Then

D =+/(X] — X2)2+ (Y1 — Y2)2.

We want to find the average squared distance between the copters. Thus,
we seek to compute,

E(D?*) = E[(X1 — X)’] + E[(V1 - Y2)?].

Noting that E(X; — X2) = E(Y1 — Y2) = 0, and that for a random variable
Z,Var(Z) = E(Z?) — (EZ)?, we get,

E(D?) = Var(X; — X3) + Var(Y; — Y2).

Note that (X7, X5) and (Y7,Y3) are two pairs of independent observations
from the marginal distribution of X or Y, and therefore the joint distribution
of (X1, X5) is the same as the joint distribution of (Y7,Y3). Thus,

Var(X1 — XQ) = Var(Y1 — YQ)
and consequently,
E(D?*) = 2Var(X; — Xo)
= 2(Var(X;) 4+ Var(X3) — 2 Cov (X7, Xo)

= 2(Var(X;) 4+ Var(X3)) (since X; independent of Xs)
= 4Var(X,),

on using the fact that X; and X, are identically distributed. It remains to
compute the variance of X; and this is slightly involved (though not really
messy). We have,

Var(X1) = E(X})

—1 T
™
-1 2cos?(0) sin?(0) dO (setting z = sin(h))
™ Jo
1 K
= — / sin®(20)d@ since 2sinfcosf = sin26
27 0
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1 27
= 8_/ (1—cos2¢)) d¢ (since 1 —2sin*(¢) = cos2¢)
T Jo
1 1 27
= Z_g/o cos2¢ d¢
1 1 4
= Z—m o COS’I,bd’l,b
_ 1
=

this follows on noting that the integral on the penultimate line of the above
display is 0 by the periodicity of the cosine function.

We will now discuss the change of variable theorem, which enables us to
find the density of the random vector (U, V') which is a “nice” transforma-
tion of (X,Y). Nice will be made precise in what follows.

Change of variable theorem: Let (X,Y’) be jointly distributed contin-
uous random variables with density function fx(z,y). Let S be an open
subset of R2, such that P((X,Y) € S) =1 (so the density f can be assumed
to be concentrated on S). Let g be a transformation from S to R%2. Thus
we can write,

(Y1,Y2) = g(X1, X2) = (91(X1, X2), 92(X1, X2)),
where g; and go are both real-valued. Now assume that,

(1) g has continuous first partial derivatives on S.
(2) gis a 1-1 function.

(3) Let A(z1,z2) be the 2 X 2 matrix whose first row is

and whose second row is

991 (1, z2) 992 (x1,22) | = oyt (1, x2) 9y (z1,22) ) -
8.’172 ’ ’8.’172 ’ 8.732 ’ ’3.’132 ’

Let

Jo(z1,22) = abs (det A(z1,22))
_|owm 0yo 0yo dy1
sl (z1,72) D2g (71,72) °Es (71, 72) g (71, 72)
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be the Jacobian of g. Then, Jy(z1,z2) does not vanish for any (z1,z2) €
S.

Let h denote the inverse transformation of g. Thus A is defined on g(S) and

h(y1,y2) = (h1(y1,42), ha(y1,y2)) for (y1,42) in g(S) is the unique (z1, z2) in
S such that (g1(z1,22), g2(z1,22)) = (y1,y2)- Then h itself has continuous
first partial derivatives on g(.S) and is clearly 1-1. Also, if B(y;,y2) denotes
the matrix of first partial derivatives of A, then the Jacobian of h,

oz oz oz oz
Jn(y1,92) = 8—yi (Y1, 92) B—:gi (Y1, y2) — 8—; (y1,92) B—y; (y1,92)|

where 21 = hi(y1,y2) and x2 = ha(y1,y2), does not vanish on g(S) and in
fact

Tn(y1,y2) = Jo(h1(y1,92), ha(y, 2)) ™"
Also, the density of the random vector (Y7,Y2) is given by,

fy(wi,y2) = f(h1(y1,y2), ha(y1,92)) Jn(y1,92) » (y1,92) € 9(S)

fv(y1,y2) = 0 otherwise.

Thus, for any nice subset I of S, we have,

/Ifx(wl,mg)d.’lild.’bz = P((Xl,XQ)EI)
= P((Y1,Y2) € g(1))
= [, S et ) o).

We now do an application of the change of variable theorem, that will clearly
illustrate what is going on. The theorem looks big and messy at first shot
but really has a nice pattern, once you keep staring at it. Those of you who
remember your advanced calculus well, will probably spot resemblances to
the change of variable theorem in calculus (for two variables). In fact, this is
precisely what the above theorem, which we will subsequently refer to as the
Jacobian theorem, is, but in a different garb. The theorem extends readily
to the case of more than 2 variables but we shall not discuss that extension.

Suppose that (X7, X5) are i.i.d. Exponential(A) random variables. Thus,

fx (@1,m2) = Xe ™ e 2™ = N2e M@t (g g9) € 8,
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where S is the open set {z1 > 0,z2 > 0}. Consider the following transfor-
mation, g, of (X1, X3).

(Y1,Y2) = g(X1, X2) = (91(X1, X2), g2(X1, X2)) = (X1+X2, X1 /(X1+X2)) .

Then, g(S), the open set in which the random vector (Y7,Y3) assumes values
is,

9(S) ={(y1,92) : 0 < 1,0 < yo < 1}.

Computing the partial derivatives of g we have,

o0 _, 992 m

o0z " Oz (.’L‘1 + :E2)2 ’
and

o9 _, 09 _ =

(9.’E2 ’ 3.%‘2 (£E1+3,‘2)2 '

Clearly, the partial derivatives are continuous functions of (z1,z2); also, g
is clearly a 1-1 function on S and furthermore,

1

= >0,
1+ T2

T1+ 22
z1 + x2)?

=

for every (z1,z9) in S. Thus, all conditions of the Jacobian theorem are
satisfied.

To obtain the density function of (Y1,Y3) we need to find the inverse trans-
formation. This amounts to expressing (X1, X2) in terms of (Y1,Y2). Note
that, Yo (X1 + X9) = X3; but Y1 = X7 + X5. Thus Y5 Y; = X;. Conse-
quently, X2 = Y1 - X1 = Y1 - Y1Yé = Y1(1 - Yg) Thus, we obtain the
function A from g(S) to S as,

hi(y1,y2) =v1y2 5, he(y1,92) =v1 — Y192

The density of (Y7,Y3) at the point (y1,y2) in g(S) is then computed as,

fr(w,y2) = fx(hi(yr,y2), h2(y1,v2)) Jn(y1, y2)
= A Ay thalurw)) 1o (hy (y1, ya), ha(y1,92)) 7

A2 e~ A W1 y2+y1—y112) Y1,

on noting that
Jg(xl,:z;z)*l =1z + 9.
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Thus we can rewrite the density of (Y7,Y3) as

fry,ye) = (W e M y) 1{yr > 0} 1{0 <y < 1}.

The above shows immediately that Y; and Y, are independent and that Y;
follows I'(2,A) while Y5 follows U(0,1). Here I am tacitly using proposi-
tions on factorization of joint densities as a product of marginal densities as
a necessary and sufficient condition for independence of random variables,
a fact you must have learnt in Stat/Math 425. See, Example 7c on page
233 of Sheldon and Ross’s book for a related (and more general) example.
Verify that we would have gotten the same answer (as we must!!) had we
computed Jp(y1,y2) directly and plugged that in to the expression for the
joint density of (Y1,Y3).

Here is another application of the Change of Variable Theorem and one
that gives a way of generating observations from a Normal distribution. Let
(X,Y) be i.i.d. N(0,1) random variables. Let R be the radius vector cor-
responding to the point (X,Y) and let © be the angle that R subtends
with the positive direction of the x—axis. Thus (R, ©) represents the vector
(X,Y) in polar co-ordinates and we have the following equations:

X =Rcosf and Y = Rsinf.

(Recall the picture that I drew in class). We want to find the joint den-
sity of (R,6). Note that (R,©) lives, with probability 1, in the open set
(0o0) x (0,2II). When we express X and Y in terms of R and © we are
looking at the inverse transformation h; the transformation g that maps
(X,Y) to (R, ©) is a “nice” transformation in the sense that it satisfies the
assumptions (1), (2) and (3) of the Change of Variable Theorem.

We first write down the joint density of X,Y).

2 2 2 9

Now,

(z,y) = (h1(r,0), ho(r,0)) = (rcosf,r sinf).
We next compute the Jacobian of h at the point (r,8). This is,
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= |cosO rcos@ —sin 0 (—r sin0)]
= |rcos*(0) + r sin®(0)|

r.

Thus the joint density of (R, 6) is,

1 2 2
fre(r,0) = 5—exp <—h1(T’ %) +2+h2(T’ %) ) Ju(r,0)1{r > 0}1{0 < 0 < 27}
2 2 2 ainn2
_ 2iexp (-T cos”(9) ;Lr ki (9)) r1{r>0}1{0 < 0 < 27}
T

= 2i 1{0 < 0 < 27} rexp (—r?/2) 1{r > 0}.
s

This immediately shows that R and © are independent, and that © has the
uniform distribution on (0,2 IT) with marginal density,

fo(0) = %1{0<9< 27}

The density of R is,

fr(r) =rexp (—r?/2) 1{r > 0}.

Thus, if we generate R and © independently, with marginal distributions
given as above, then X = Rcosf and Y = Rcos 8 are i.i.d. N(0,1) random
variables. To generate R and © we proceed as follows: Recall that if F
is the distribution function of a random variable X, then F~!(U) has the
same distribution as X, where U is a random variable distributed uniformly
on (0,1). Now, it is easy to show (by using the change of variable theorem
in 1 dimension discussed in the previous section) that R? follows exponen-
tial(1/2) (this is left as an exercise). If F' denotes the distribution function
of exp(1/2), we have,

F(w) =1 —exp(-w/2),

so that
F~'(p) = =2 log(1 —p).
Thus if U; and U, be i.i.d U(0,1) random variables, then —2 log(1 — Uy)

follows exp(1/2) and 27 Uy has a uniform distribution on (0,2). Conse-
quently, we can take,

—2log(l—=U;) and © =27U,.

You can use this example to solve Problem 6(i) of Homework 1 quite easily.
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4 Some inequalities, Law of Large Numbers, Cen-
tral Limit Theorem

We first introduce some very useful probability inequalities.

Markov’s inequality: Let X be a non-negative random variable and let
g be a increasing non-negative function defined on [0,00). Suppose that
E(g(X)) is finite. Then, for any € > 0,

P(X > ¢) <

Proof: The proof is fairly straightforward. We will prove the inequality
assuming that X is a continuous random variable with density functionf;
an analogous proof holds in the discrete case. The theorem of course holds
more generally, but a completely rigorous proof is outside the scope of this
course. Note that ,

z2e=g(r) 2g(e) (x)

since g is increasing. Now,

Be(x) = [ o) fle)ds
- A@mwﬂmw+ﬁmﬂwmex
z‘L@mwﬂmm
> jﬁﬂw)g(e)f(w)dw by *

= gle) P(X >¢).
This is equivalent to the assertion of Markov’s inequality.
Note that Markov’s inequality gives us an upper bound on the “tail-probailities”
of X and is more useful for smaller values of ¢ (and consequently smaller
values of g(e)). Since probabilites are always bounded above by 1, the in-
equality will not be useful for €’s for which g(e) is larger than E(g(X)). By

choosing g carefully, Markov’s inequality can be employed to deduce other
important results, like Chebyshev’s inequality, which we discuss below.
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Chebyshev’s inequality: Let Y be a random variable such that E(Y?) is
finite. Let u = E(Y) and let 0 = Var(Y). Then, for any € > 0,

0.2

P(|Y—u|>e)<e—2.

The proof of this is almost immediate from Markov’s inequality. Let,
X =Y —p| and g(z) =a?,
and note that by the definition of variance,
E(9(X)) = o>

The assumption that E(Y?) is finite enables us to talk meaningfully about
the variance. There are random variables which do not have finite variance;
for example, if X is Cauchy (with p.d.f. (7 (1+22))~!) then X has neither a
mean, nor a variance. Chebyshev’s inequality is important in that it gives an
upper bound on the chance that a random variable Y deviates to a certain
extent away from the mean. Among its numerous applications is the (weak)
law of large numbers that we will discuss currently. Often, in statistics, we
standardize a variable, by centering around its mean and dividing by o, the
standard deviation of the variable. The resulting variable,
Z = Y-ou ,

g

is free of the underlying unit of measurement and has mean 0 and variance 1.
By standardizing two variables (and thereby getting rid of the original units
in which they were measured), we can meaningfully define mathematical
measures of association between these variables, like the correlation. The
correlation between two random variables U and V is simply the average
value of the product of the standardized versions of U and V; thus,

U-EUV-EV
Wy:E(SDﬂDSﬂUO)'

Chebyshev’s inequality leads to an upper bound on the chance that the
standardized version of any random variable assumes a large value. If Yy
denotes the standardized version of Y, then from Chebyshev’s inequality,

g €

Y - 1
me>d=PQ %>%g7.
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Thus the chance that Y deviates from its mean by more than k standard
deviations is less than 1/k? for any random variable Y. For k = 1 this is
non-informative, since k? = 1. For k = 2 this is 0.25 — in other words, the
chance is less than a quarter that Y deviates by more than 2 standard devia-
tions from its mean. If we knew that Y was normal, so that Yy was N(0,1),
then the chance that | Y |> 1 is .32 (appx), and the chance that | Yy |[> 2
is .05 (appx). Thus, the bounds provided by Chebyshev’s inequality are
not very sharp in this case. Thus, it does not make sense to use Cheby-
shev’s inequality if the underlying variable is approximately normal (as is
the case, in general, with sums and averages). Nevertheless, the inequality
is useful, since the distribution is allowed to be arbitrary and can therefore
be applied in a variety of very general situations to deduce important results.

Law of Large Numbers: To formulate the law of large numbers, we
first introduce the concepts of convergence in probability and almost sure
convergence. Consider a probability space (€2, A, P), where 2, the sample
space is the set of all outcomes of a random experiment, A is a class of
subsets of {2 on which P is a probability. For A € A, the quantity P(A) is
the chance that the event A happens. A generic point in 2 is denoted by w.
Let T1,T5,T3,... be an infinite sequence of random variables defined on €.
Thus, each T; is a function from @ — R and T;(w) is the value of T; at the
point w.

The sequence {1,} is said to converge in probability to the random vari-
able T' (which is also defined on 2) if, for every € > 0,

lim P (T, —T|>¢) =0.
n—,oo

In particular T' can be some constant c; in that case, T;, converges in prob-
ability to c if,
lim P (|T, —¢c|>¢€)=0.

n—oo

The sequence T}, is said to converge almost surely to T (or c) is there is a set
Qo C Q, with P(Qp) = 1, such that for each w € Qy, the sequence {T},(w)}
converges to T'(w) (or c).

Almost sure convergence implies convergence in probability but we will not
bother about this here.

Example 1: Suppose that {7} is a sequence of random variables, such
that P(T, = 1/n) = 1/n? and P(T,, = 1) = 1 — 1/n?. Then, clearly T,
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converges in probability to the constant 1.

Example 2: Counsider an infinite sequence of flips of a fair coin and let
X, denote what you get (1 if Heads and 0 if Tails) on the n’th flip. Then
X1, Xo,... are i.i.d. Bernoulli(1/2). Define a sequence 7}, in the following
way:

n

Ty

Thus T,, = X,, is the proportion of Heads in the first n tosses of the coin.
It can be shown that X,, converges in probability to 1/2 (we will prove this
in a more general context). We write

— 1
Xn_)pia

to denote this phenomenon. In fact, a stronger result holds. The sequence
{Xn} actually converges almost surely to 1/2.

We now formally state the laws of large numbers.

WLLN — Weak Law of Large Numbers: Let X, Xs,... be an infinte
sequence of i.i.d. random variables, such that F(| X1 |) < co. Let p = E X;.
Then,

E(|X,—pl)—0.

It follows from an easy application of Markov’s inequality that X, converges
in probability to u. We will not prove the WLLN as stated above. Instead,
we will deduce a weaker conclusion, that is also referred to as WLLN. We
state this formally.

WLLN (weaker version): Let X1, Xo,... be an infinite sequence of i.i.d.
random variables, such that E(| X; |) < co. Let u = E(X;) and let o2, the
variance of Xi, be finite. Then X, converges in probability to .

Proof: We will use Chebyshev’s inequality. Choose and fix any € > 0.
Note that, o
E ((Xn - p)?)

P(‘yﬂ_“‘>€)§ 2

€
But note that E (X,,) is p, so that,

E ((Yn - N)Q) = Var(yn) .
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But,
. Var(X1 +Xo+...+ Xn) . Va,r(X1) + Var(Xg) +...+ Var(Xn)

Var(X,) 3 2 3
Thus,
— 2 0'2
E((Xn_lj') ) =
n
and we get,

— 0'2
P (|Xn—p|>¢€) <—— =0,

which finishes the proof.

Strong Law of Large Numbers (SLLN): Let X, X5,...,X,,... be
i.i.d. random variables such that E(] X1 |) < co and let u = E(X;). Then,

EYTL —a.s M-

(In words, X,, converges almost surely to u.) The strong law of large num-
bers, as its name suggests, is a strong results — it says that, outside of a set
of probability 0 (and therefore a negligible one), the sample average, in the
long run, is going to hit the population average. To see the strong law “in
action” we perform a computer simulation experiment:

We “tossed a fair coin 100 times” independently (on a computer) and recorded
the sequence of outcomes (X1, Xo, ..., X100). Thus each X; takes the value
1 or 0 with probability 0.5. How does one simulate a coin tossing experi-
ment on a computer? Statistical software packages or standard C or Fortran
compilers have a uniform random number generator, which can be used to
generate observations from the uniform distribution. So, to simulate 100 in-
dependent coin flips, you generate 100 observations using the random num-
ber generator; call these Uy, Us,...,Uigy. Then, the U;’s are i.i.d. uniform
random variables and define X; to be 1 if U; < 0.5 (this happens with prob-
ability 1/2) and 0 otherwise. Then X; has a Bernoulli(1/2) distribution.
And of course, the X;’s are independent.

Having obtained the X;’s, we computed the proportion of heads at each
stage ¢ from 1 to 100. Thus, for each i, we obtained

— X X ¢
X, = 1+ 2—'i- + X;

)
1
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Figure 2: The behavior of the sample proportion of heads in 100 tosses of a
fair coin.
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Figure 3: The behavior of the sample proportion of heads in 10000 tosses of
a fair coin.
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and then plotted {i, X; 112%. The plot is shown in 2. The horizontal line
sketched in the figure is the line y = 0.5. It is clearly seen that the sam-
ple proportion of tosses approaches the population proportion (0.5) with
an increasing number of tosses, in accordance with the strong law of large
numbers. Of course, the higher the number of tosses, the closer is the sam-
ple proportion going to be to the population proportion. Figure 3 shows
the behavior of the sample proportion of heads with increasing sample size
for 10000 tosses. Once again, it is clear that the sample proportion in the
long run is very close to 0.5. With 100 tosses, the largest absolute deviation
between the sample proportion and the population proportion (0.5) for the
last 30 stages (the last 30%) is around .04; with 10000 tosses the largest
absolute deviation between the sample proportion and the population pro-
portion for the last 3000 stages (the last 30%) is around .008. Increasing n
leads to higher precision.

We will discuss some applications of the strong law shortly. But before
that, we discuss a motivation for the Central Limit Theorem (CLT). In the
above example, we have seen that p,, the sample proportion at stage n,
converges to p = 0.5, the chance of heads on a single toss (as the SLLN tells
us). However, the SLLN does not tell us anything about the behavior of
the (random) fluctuations p,, — p, with increasing n (sample size). However,
an idea of this behavior is often needed to gauge the accuracy of p, as an
estimate of p. This is where the Central Limit Theorem (CLT) comes in.
Very broadly, what the CLT tells us is that, under appropriate conditions,
sums or averages of a large number of random variables is approximately
normally distributed. We have referred to the CLT above, but this is not
strictly correct. There are many CLT’s formulated under various different
situations, but the unifying theme in all these theorems is the appearance of
a normal distribution as a limit. We will deal in this course, with the most
ubiquitous (and the most famous) CLT of all — the Lindeberg Levy Central
Limit Theorem.

We quickly define the concept of convergence in distribution or weak con-
vergence in what follows. Let X7, X5, ... be a sequence of random variables
(note that we do not require these to be independent or identically dis-
tributed; indeed, these need not be even defined on the same probability
space). Let F,, be the distribution function of X,,. Let X be a random
variable with distribution function F. Then, X,, is said to converge in dis-
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tribution to X if for all z, such that x is a continuity point of F', we have,

lim F,(z) = F(z).

n—oo
Note that, though a distribution function F' is right continuous, it is not
necessarily continuous at all points. Distributional convergence requires the
above limit to hold only at those points x where F' is continuous. If X
assumes a certain value, say xg with positive probability, then F' is not con-
tinuous at zy and the above convergence is not required to hold. You can
easily convince yourself that the points at which the distribution function F
fails to be continuous are precisely those values that X assumes with posi-
tive probability. For example, if X is Bernoulli(1/2), X assumes the values
0 and 1, each with probability 1/2 and the distribution function F(z) is 0
for z < 0, F(z) is 0.5 for 0 < z < 1 and F(z) is 1 for 1 < z < oo and the
points of (jump) discontinuity of F' are just 0 and 1 where F jumps by 0.5.
We next formally state the Lindeberg-Levy CLT.

Central Limit Theorem (de Moivre 1706, Laplace 1812, Lindeberg
1922): Let X7, Xo,... be i.i.d. random variables with ANY common distri-
bution, with finite mean p and variance 62 > 0. Let S, = X1 +Xo+...+X,,.
Let Sy denote the standardized version of S,. Thus,

Sn _E(Sn) _ Sn —nu

Sr = -
Var(Sy,) a+/n

Then S} converges in distribution to N(0,1). In other words, for every z,
we have,

lim P (S} < z)=®(x) :/ \/%e_ﬁﬂ dt .
—00 T

n—oQ

Thus the CLT tells us that in the long run, the standardized sum S} behaves
approximately like a N(0,1) random variable. It follows, that the actual sum
Sp, behaves like a N(n u, o /n) random variable, since,

P(Sp <y) = P(S; < (y—nu)/ovn) = &((y—nu)/ov/n) = Prob(N(np,0v/n) <y).
Here are some other comments/observations about the CLT.

e A. Note that the sample average X, is also approximately normal,
with parameters u,o/+/n, by the CLT. Since,

Sn—nu yn_/i <%
*

= = =X

Sn o+/n o/+/n "’
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where Y; is the standardized version of X,. Indeed, the CLT could
be stated equivalently, in terms of the sample average, rather than the
sum.

e B. Since @ is a continuous distribution function, the convergence of
the distribution function of S} at the point z to ®(z) needs to happen
at every point z.

What does the CLT look like in pictures? Once again, we illustrate with
our favorite independent sequence of coin flips example. Suppose, we toss a
coin n times, where n is fairly large. If X1, Xy, ..., X, denote the outcomes,

then check that,
Y:L _ ﬁn — 1/ 2 .
1/2

By the CLT, this should have an approximately standard normal distribu-
tion. To check this, we draw a large number of observations (say N) from
the distribution of Y,‘; Each observation is generated by flipping a fair
coin n times (independently) and computing Y:L from the sequence of n
flips. These N values from the distribution of X are then plotted as a
histogram, drawn to a probability scale. A histogram is a graphical device
that pictorially represents the distribution of values of a variable. We first
partition the range of the observed values (in this case, of 7;) into a number
of mutually disjoint (and contiguous) intervals (generally these are all taken
to have equal length) . We then count the number of observations that fall
in each interval and compute the relative frequency (in this case, dividing
by N). We then erect a rectangle on each interval, such that the area of
the rectangle above that interval gives the relative frequency of that interval
(so the height of each rectangle is the relative frequency in that interval per
unit length). Thus, the histogram looks like a series of rectangles of varying
heights and the total area under the histogram is 1. As we increase the
number of observations from the underlying distribution, and increase the
number of intervals to use for the histogram at an appropriate rate, we get a
better and better idea of the distribution in the population. In fact, at each
stage the histogram can be thought of as a piecewise constant approxima-
tion to the density of the underlying random variable. In Figure 4 we show
the histogram for X 5, based on 10000 replicates from the distribution and
in Figure 5 we show the histogram for 7;000 based on N = 10000 replicates.
In each of these plots the N(0,1) density is superimposed. It is seen that
the shape of the histogram matches up well with the superimposed density,
as it should, by the CLT. With n = 1000, the fit is seen to be (expectedly)
better than with n = 200.
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Figure 4: The histogram of the standardized proportion for 200 tosses of a
fair coin and the superimposed limit.
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Figure 5: The histogram of the standardized proportion for 1000 tosses of a
fair coin and the superimposed limit.
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We now discuss a few applications of the SLLN and the CLT. The SLLN
is used widely to do, what is called “Monte-Carlo” integration. Suppose we
wish to evaluate, the integral,

1
|t
0

if the function f has a very complicated form, then it might not be possible
to obtain an analytic expression for the integral. However, good approxima-
tions to the value of the integral can be obtained by using the strong law.
Note, that,

1
/0 f(z)dz = B(f(U)).

where U is a uniform random variable on (0,1). Now, suppose we have an
i.i.d. sequence of uniform random variables, Uy, Us, . ... Then, f(Uy), f(Us),...
are i.i.d. and each has the same distribution as f(U). By the SLLN, we know
that with probability 1,

fU) +fU2) + ... + f(Un)

Jim ” = E(f(U)).
Thus to compute the integral, we generate Uy, Us,...,U, from Uniform

(0,1), independently, and for a very large n and use, (f(U1) + f(Uz) + ...+
f(Uy))/n to estimate the integral. Note that this is an extremely powerful
trick; we did not resort to any complicated numerical integration procedure
or a tricky maths exercise. We simply worked out an average of a function
of uniforms. Since uniforms can be generated on any decent computer, this
gives us an efficient way of computing.

In general, how about computing an integral g over a finite interval of the
form (a,b)? In this case, we want to evaluate,

b

b
| s@ds=0-0) [ g(a) 7= dz = (- ) Blo(x)).

a

where X has the uniform distribution on (a,b). Thus in this case, all that
we need to do is generate X1, Xo,..., X, from Uniform(a,b), for a large
n and estimate E(g(X)) as n ! (g(X1) + g(X2) + ... + g(X,)). How do
you generate X from Uniform(a,b)? Check that if U is Uniform(0,1), then
a+ (b—a)* U is Uniform(a,b).

The CLT is of paramount importance in statistics. We shall encounter
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it a lot in this course, in various different contexts. Right now, let’s see
how it provides good approximations, to some very standard distributions
in practice. In Homework 2, you have encountered/will encounter the Pois-
son process and Gamma, distributions. We show here that both Poisson and
Gamma distributions can be approximated by normal distributions through
the CLT. Let X1, Xo,..... be i.i.d. Exponential(A) random variables. The
CLT then tells us that for large enough n,

NP

here S, = X; + Xo + ...+ X, and E(S,) = n A ! and Var(S,) = n A 2.
But S, is distributed as I'(n, ), as you have shown/will show in Homework
2. Thus, it follows, that for large n, S, is approximately, N(nA~!,n A72).
In other words, for large n, the Gamma distribution can be approximated
by the N(n A~!,n A~2) distribution.

~appx N(O, 1) 3

A similar approximation works for the Poisson random variable. Let X7, Xo,. ..
be i.i.d. Poisson(A) random variables. Let S, = X; + X9 + ...+ X,,. Then,
from Homework 1, we know that S,, is itself, a Poisson random variable,
with mean and variance both equal to n A. By CLT,

S, —nA
vVn

so that S, is approximately distributed as N(n A, n A). In other words, the
Poisson(n A) distribution, for large n can be approximated by the N(n A, n \)
distribution. Figure 6 provides a histogram of 10000 observations drawn
from the Poisson n = 100 distribution and the corresponding normal ap-
proximation.

~appzx N(O, 1) ’
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Figure 6: Histogram from the Poisson(n = 100) distribution and the super-
imposed Normal(100,100) density.
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