STAT679: Computing for Data Science and Statistics 1

Homework 1: Data Types, Functions and Conditionals
Due February 9, 11:59 pm
Worth 10 points

Instructions on writing and submitting your homework can be found on the course
webpage at http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2022/STAT679/
hw_instructions.html. Fuailure to follow these instructions will result in lost points.
Please direct any questions the instructor.

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble or you have questions, it’s best to find those
problems well in advance, not in the hours before your assignment is due!

2. If you have clarifying questions or you run into issues, please do not email the
instructor directly. Instead, post to the discussion board so that your classmates
can benefit as well if they have the same question.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

1 Warm up: Defining Simple Functions (2 points)
In this problem, you will get practice defining simple functions in Python.

1. Define a function called kitten, which takes no arguments and prints the string meow
when called. Note: be careful about the difference between print and return in
Python!

2. Define a function called bird_pad, which takes a string as its only argument, and
prints that string, prepended and appended with the string bird. So, bird_pad(’goat’)
should produce the output

birdgoatbird ,

bird_pad(’_’) should produce the output

bird_bird

and so on. You may assume that the input is a string, so there is no need to perform
any error checking in your function.

3. Define a function called print_n, which takes two arguments, a string s and a non-
negative integer n (in that order), and prints the string n times, each on a separate

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2022/STAT679/hw_instructions.html
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2022/STAT679/hw_instructions.html

STAT679: Computing for Data Science and Statistics 2

line. You may assume that s is a string and that n is a non-negative integer. So, for
example, print_n(’cat’, 3) should produce the output

cat
cat
cat

Hint: be careful of the case where n is 0.

2 Euclid’s algorithm (2 points)

Euclid’s algorithmﬂ is a method for finding the greatest common divisor (GCD) of two
numbers. Recall that the GCD of two numbers m and n is the largest number that divides
both m and n.

1. The Wikipedia page above includes several pseudocode implementations of Euclid’s
algorithm. Choose one of these, and use it to implement a function gcd, which takes
two integers as its arguments and returns their GCD. You may assume that both
inputs are integers, so there is no need to include any error checking in your function.
Note: this is one of the rare occasions where you have my explicit permission to
look up your answer. Unless otherwise stated (e.g., as in this problem), looking up
solutions on Wikipedia or in any other non-class resource will be considered cheating!
Another note: many Python novices confuse print and return. Be careful of the
difference!

2. Use your function to evaluate the GCDs of the following pairs of numbers (the first
three are simple enough that you should be able to compute the correct answers by
hand, so it’s an easy way to verify that your function is working correctly):

(a) 1200, 300
(b) 5040, 60
(c) 29, 31

(d) 2021, 2022

3. What does your function do if one or both of its arguments are negative? Does this
behavior make sense? Try running gcd with one or both arguments negative and
write a sentence or two in a text block discussing what you see.

3 Approximating Euler’s number e (4 points)

The base of the natural logarithm, e, is typically defined as the infinite sum

=1 1 1 1
e:ZH:1+1+§+6+ﬁ+..., (1)
k=0

where k! denotes the factorial of k,

Kl=k-(k—1)-(k—2)-----3-2-1,

"https://en.wikipedia.org/wiki/Euclidean_algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm

STAT679: Computing for Data Science and Statistics 3

where we define 0! = 1 by conventionf] In this problem, we will explore different ap-
proaches to approximating this number. You may assume that all inputs are as specified,
so there is no need for error checking.

1.

An early characterization of Euler’s number, due to Jacob Bernoulli, was as the limit

. (1Y o

as x — 00. Define a function called euler_limit that takes as its only argument an
integer n, and returns a float that approximates e by taking x = n in Equation .

To compute the sum in Equation , we need to be able to compute factorials.
Recall that for non-negative integer k, we define

Lo ith=0
k- (k—1)! otherwise.

Define a function factorial that takes a non-negative integer k as its only argument
and returns the factorial of k. You may assume that k is a non-negative integer, so
there is no need for error checking. Your function should use recursion— namely the
fact that k! = k- (kK — 1)!. You may not use the built-in math.factorial function
in your function, but you are free to use it to check that your function is working
correctly.

. Define a function called euler_infinite_sum that takes a single non-negative in-

teger argument n, and returns an approximation to e based on the first n terms
of the sum in Equation . Your function should return a float. As an example,
euler_infinite_sum(4) should return the sum of the first four terms in Equation [I}
14+14+1/2+1/6 ~ 2.667. Note: the sum in Equation [1| starts counting with k = 0
(i.e., it is “O-indexed”), while our function starts counting with n = 1 (i.e., it is
“l-indexed”). euler_infinite_sum(1) should use one term from Equation , SO
that euler_infinite_sum(1) returns 1. Similarly, euler_infinite_sum(0) should
return 0, since by convention an empty sum is equal to zero. Note: if you did not
complete the previous part of the problem, or if you are not sure your implementation
is correct, you may use the math.factorial function to compute k!.

. Define a function called euler_approx that takes a single argument, a positive float

epsilon, and returns the smallest number of terms in the sum in (1)) required to
obtain an approximation of e that is within epsilon of the true value of e. Hint:
use a while-loop. Note: you can use the Python math module to get the true value
of e (up to floating point accuracy): math.exp(1).

. Define functions called print_euler_sum_table and print_euler_lim_table, each

of which takes a single positive integer n as an argument and prints the successive
values obtained from euler_infinite_sum(k) or euler_limit (k) as k ranges from
1 to n, one per line.

Compare these two approximations. Which one approaches the true value of e faster?
A single sentence will do, here.

2For more on Euler’s number, see https://en.wikipedia.org/wiki/E_(mathematical_constant).

https://en.wikipedia.org/wiki/E_(mathematical_constant)

STAT679: Computing for Data Science and Statistics 4

4 Testing Properties of an Integer (2 points)

In this problem, you’ll get a bit more practice working with conditionals, and a first
exposure to the kind of thinking that is required in a typical “coding interview” question.
An integer n is a power of 2 if n = 2P for some integer p. There is no need for error
checking in this problem.

1. Write a function is_power_of_2 that takes an integer as its only argument and
returns a Boolean indicating whether or not the input is a power of 2. That is,
is_power_of_2(n) should return True if n is a power of 2 and False otherwise.
You may not use the built-in math.sqrt function or any other functions from
the math module in your solution. Indeed, you should need only the division and
modulus (%) operations (and there is a solution that uses only division). Hint: the
simplest solution to this problem makes use of recursion, though recursion is not
strictly necessary.

2. Generalize your previous solution to a function is_power that takes two integers, b
and n, as arguments, and returns a Boolean. is_power (b,n) should return True if
n is a power of b (i.e., n = b for some integer p) and False otherwise. You may
assume that b is non-negative. Hint: Be careful of the edge case where b=0. By
convention, 0° = 1, and 0 = 0- 0! for k& > 1.

	Warm up: Defining Simple Functions (2 points)
	Euclid's algorithm (2 points)
	Approximating Euler's number e (4 points)
	Testing Properties of an Integer (2 points)

