STAT679
Computing for Data Science and Statistics

Lecture 17: Databases with SQL
Last lecture: HTML, XML and JSON

Each provided a different (though similar) way of storing data

Key motivation of JSON (and, sort of, HTML and XML): self-description

But we saw that JSON could get quite unwieldy quite quickly…
Example of a more complicated JSON object

What if I have hundreds of different kinds of cakes or donuts? The nestedness of JSON objects makes them a little complicated. Generally, JSON is good for delivering (small amounts of) data, but for storing and manipulating large, complicated collections of data, there are better tools, namely databases.

Note: there are also security and software engineering reasons to prefer databases over JSON for storing data, but that’s beyond the scope of our course.
Why use a database?

Database (DB) software hides the problem of actually handling data
 As we’ll see in a few slides, this is a complicated thing to do!
 Indexing, journaling, archiving handled automatically

Allow fast, concurrent (i.e., multiple users) access to data
 ACID transactions (more on this in a few slides)

Access over the web
 DBs can be run, e.g., on a remote server

Again, JSON/XML/HTML/etc good for delivering data, DBs good for storing
Databases

Information, organized so as to make retrieval fast and efficient

Examples: Census information, product inventory, library catalogue

This course: relational databases
 https://en.wikipedia.org/wiki/Relational_database
 So-named because they capture relations between entities
 In existence since the 1970s, and still the dominant model in use today

Outside the scope of this course: other models (e.g., object-oriented)
Relational DBs: pros and cons

Pros:
- Natural for the vast majority of applications
- Numerous tools for managing and querying

Cons:
- Not well-suited to some data (e.g., networks, unstructured text)
- Fixed schema (i.e., hard to add columns)
- Expensive to maintain when data gets large (e.g., many TBs of data)
Fundamental unit of relational DBs: the record

Each entity in a DB has a corresponding record

- Features of a record are stored in fields
- Records with same “types” of fields collected into tables
- Each record is a row, each field is a column

Table with six fields and three records.

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>UG University</th>
<th>Field</th>
<th>Birth Year</th>
<th>Age at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>University of Wisconsin</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>82</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>ETH Zurich</td>
<td>Physics</td>
<td>1879</td>
<td>76</td>
</tr>
<tr>
<td>21451</td>
<td>Ronald Fisher</td>
<td>University of Cambridge</td>
<td>Statistics</td>
<td>1890</td>
<td>72</td>
</tr>
</tbody>
</table>

Fields can contain different data types

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>UG University</th>
<th>Field</th>
<th>Birth Year</th>
<th>Age at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>University of Wisconsin</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>82</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>ETH Zurich</td>
<td>Physics</td>
<td>1879</td>
<td>76</td>
</tr>
<tr>
<td>21451</td>
<td>Ronald Fisher</td>
<td>University of Cambridge</td>
<td>Statistics</td>
<td>1890</td>
<td>72</td>
</tr>
</tbody>
</table>

Unsigned int, String, String, String, Unsigned int, Unsigned int

Of course, can also contain floats, signed ints, etc. Some DB software allows categorical types (e.g., letter grades).
By convention, each record has a **primary key**

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>UG University</th>
<th>Field</th>
<th>Birth Year</th>
<th>Age at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>University of Wisconsin</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>82</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>ETH Zurich</td>
<td>Physics</td>
<td>1879</td>
<td>76</td>
</tr>
<tr>
<td>21451</td>
<td>Ronald Fisher</td>
<td>University of Cambridge</td>
<td>Statistics</td>
<td>1890</td>
<td>72</td>
</tr>
</tbody>
</table>

Primary key used to uniquely identify the entity associated to a record, and facilitates joining information across tables.

<table>
<thead>
<tr>
<th>ID</th>
<th>PhD Year</th>
<th>PhD University</th>
<th>Thesis Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>1936</td>
<td>Princeton University</td>
<td>Quantum Theory of the Work Function</td>
</tr>
<tr>
<td>314159</td>
<td>1905</td>
<td>University of Zurich</td>
<td>A New Determination of Molecular Dimensions</td>
</tr>
<tr>
<td>21451</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relational Database Management Systems (RDBMSs)

Program that facilitates interaction with database is called RDBMS

Public/Open-source options:
 MySQL, PostgreSQL, SQLite

Proprietary:
 IBM Db2, Oracle, SAP, SQL Server (Microsoft)

We’ll use SQLite, because it comes built-in to Python. More later.

Note: R also has a SQLite package, which largely mirrors the Python one: https://db.rstudio.com/databases/sqlite/
ACID: Atomicity, Consistency, Isolation, Durability

Atomicity: to outside observer, every transaction (i.e., changing the database) should appear to have happened “instantaneously”.

Consistency: DB changes should leave the DB in a “valid state” (e.g., changes to one table that affect other tables are propagated before the next transaction)

Isolation: concurrent transactions don’t “step on each other’s toes”

Durability: changes to DB are permanent once they are committed

Note: some systems achieve faster performance, at cost of one or more of above

SQL (originally SEQUEL, from IBM)

Structured Query Language (Structured English QUEry Language)

Language for interacting with relational databases
Not the only way to do so, but by far most popular
Slight variation from platform to platform (“dialects of SQL”)

Good tutorials/textbooks:
https://www.w3schools.com/sql/sql_intro.asp
O'Reilly books: Learning SQL by Beaulieu
SQL Pocket Guide by Gennick
Examples of database operations

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>GPA</th>
<th>Major</th>
<th>Birth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
</tr>
<tr>
<td>500100</td>
<td>Eugene Wigner</td>
<td>3.2</td>
<td>Physics</td>
<td>1902</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
</tr>
<tr>
<td>214518</td>
<td>Ronald Fisher</td>
<td>3.25</td>
<td>Statistics</td>
<td>1890</td>
</tr>
<tr>
<td>662607</td>
<td>Max Planck</td>
<td>2.9</td>
<td>Physics</td>
<td>1858</td>
</tr>
<tr>
<td>271828</td>
<td>Leonard Euler</td>
<td>3.9</td>
<td>Mathematics</td>
<td>1707</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
</tr>
</tbody>
</table>

- Find names of all physics majors
- Compute average GPA of students born in the 19th century
- Find all students with GPA > 3.0

SQL allows us to easily specify queries like these (and far more complex ones).
Common database operations

Extracting records: find all rows in a table

Filtering records: retain only the records (rows) that match some criterion

Sorting records: reorder selected rows according to some field(s)

Adding/deleting records: insert new row(s) into a table or remove existing row(s)

Adding/deleting tables: create new or delete existing tables

Grouping records: gather rows according to some field

Merging tables: combine information from multiple tables into one table
Common database operations

Extracting records: find all rows in a table

Filtering records: retain only the records (rows) that match some criterion

Sorting records: reorder selected rows according to some field(s)

Adding/deleting records: insert new row(s) into a table or remove existing row(s)

Adding/deleting tables: create new or delete existing tables

Grouping records: gather rows according to some field

Merging tables: combine information from multiple tables into one table

SQL includes keywords for succinctly expressing all of these operations.
Retrieving records: SQL SELECT Statements

Basic form of a SQL SELECT statement:

SELECT [column names] FROM [table]

Example: we have table t_customers of customer IDs, names and companies

Retrieve all customer names: SELECT name FROM t_customers

Retrieve all company names: SELECT company FROM t_customers

Note: by convention (and good practice), one often names tables to be prefixed with “TB_” or “t_”. In our illustrative examples, I won’t always do this for the sake of space and brevity, but I highly recommend it in practice. See https://launchbylunch.com/posts/2014/Feb/16/sql-naming-conventions/ and http://leshazlewood.com/software-engineering/sql-style-guide/ for two people’s (differing) opinions.
Table t_students

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
<th>pets</th>
<th>favorite_color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

```sql
SELECT id, name, birth_year FROM t_students
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>birth_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>1908</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>1879</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>1894</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>1914</td>
</tr>
</tbody>
</table>
Filtering records: SQL **WHERE** Statements

To further filter the records returned by a `SELECT` statement:

`SELECT [column names] FROM [table] WHERE [filter]`

Example: table `t_inventory` of product IDs, unit cost, and number in stock

Retrieve IDs for all products with unit cost at least $1:

```
SELECT id FROM t_inventory WHERE unit_cost>=1
```

Note: Possible to do much more complicated filtering, e.g., regexes, set membership, etc. We'll discuss that more in a few slides.
Table t_students

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
<th>pets</th>
<th>favorite_color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

```sql
SELECT id, name FROM t_students WHERE birth_year > 1900
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
</tr>
</tbody>
</table>
NULL means Nothing!

<table>
<thead>
<tr>
<th>id</th>
<th>phd_year</th>
<th>phd_university</th>
<th>thesis_title</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>1936</td>
<td>Princeton University</td>
<td>Quantum Theory of the Work Function</td>
</tr>
<tr>
<td>314159</td>
<td>1905</td>
<td>University of Zurich</td>
<td>A New Determination of Molecular Dimensions</td>
</tr>
<tr>
<td>214511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>774477</td>
<td>1970</td>
<td>MIT</td>
<td></td>
</tr>
</tbody>
</table>

Table t_thesis

- **id**: column to identify records
- **phd_year**: year of graduation
- **phd_university**: university attended
- **thesis_title**: title of the thesis

SQL Query

```
SELECT id FROM t_thesis WHERE phd_year IS NULL
```

Explanation

NULL matches the *empty string*, i.e., matches the case where the field was left empty. Note that if the field contains, say, ‘ ‘, then NULL will **not** match!
Ordering records: SQL ORDER BY Statements

To order the records returned by a SELECT statement:

SELECT [columns] FROM [table] ORDER BY [column] [ASC|DESC]

Example: table t_inventory of product IDs, unit cost, and number in stock

Retrieve IDs, # in stock, for all products, ordered by descending # in stock:

SELECT id, number_in_stock FROM t_inventory
ORDER BY number_in_stock DESC

Note: most implementations order ascending by default, but best to always specify, for your sanity and that of your colleagues!
Table t_students

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
<th>pets</th>
<th>favorite_color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

```
SELECT id, name, gpa FROM t_students ORDER BY gpa DESC
```
More filtering: DISTINCT Keyword

To remove repeats from a set of returned results:

```sql
SELECT DISTINCT [columns] FROM [table]
```

Example: table `t_student` of student IDs, names, and majors

Retrieve all the majors:

```sql
SELECT DISTINCT major FROM t_student
```
Table t_students

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
<th>pets</th>
<th>favorite_color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

```sql
SELECT DISTINCT pets FROM t_students ORDER BY pets ASC
```

Test your understanding: what should this return?
Table t_students

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
<th>pets</th>
<th>favorite_color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

```sql
SELECT DISTINCT pets FROM t_students ORDER BY pets ASC
```

<table>
<thead>
<tr>
<th>pets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
More on **WHERE** Statements

WHERE keyword supports all the natural comparisons one would want to perform

<table>
<thead>
<tr>
<th>(Numerical) Operation</th>
<th>Symbol/keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal</td>
<td>=</td>
</tr>
<tr>
<td>Not equal</td>
<td><></td>
</tr>
<tr>
<td>Less than</td>
<td><</td>
</tr>
<tr>
<td>Less than or equal to</td>
<td><=</td>
</tr>
<tr>
<td>Greater than</td>
<td>></td>
</tr>
<tr>
<td>Greater than or equal to</td>
<td>=></td>
</tr>
<tr>
<td>Within a range</td>
<td>BETWEEN ... AND ...</td>
</tr>
</tbody>
</table>

Examples:

```
SELECT id from t_student WHERE ...
  ... gpa>=3.2
  ... pets=1
  ... gpa BETWEEN 2.9 AND 3.1
  ... birth_year > 1900
  ... pets <> 0
```

Caution: different implementations define BETWEEN differently (i.e., inclusive vs exclusive)! Be sure to double check!
More on `WHERE` Statements

`WHERE` keyword also allows (limited) regex support and set membership

```
SELECT id, major from t_student WHERE major IN ("Mathematics","Statistics")
SELECT id, major from t_student WHERE major NOT IN ("Physics")
```

Regex-like matching with `LIKE` keyword, wildcards `_` and `\%`

```
SELECT first_name from t_simpsons_characters WHERE first_name LIKE "M%"
```

Matches ‘Maggie’, ‘Marge’ and ‘Moe’

```
SELECT first_name from t_simpsons_characters WHERE first_name LIKE "B_rt"
```

Matches ‘Bart’, ‘Bert’, ‘Bort’...
Aggregating results: \texttt{GROUP BY}

I have a DB of transactions at my internet business, and I want to know how much each customer has spent in total.

SELECT customer_id, \text{SUM}(dollar_amount)
FROM t_transactions
GROUP BY customer_id

<table>
<thead>
<tr>
<th>customer_id</th>
<th>customer</th>
<th>order_id</th>
<th>dollar_amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Amy</td>
<td>0023</td>
<td>25</td>
</tr>
<tr>
<td>200</td>
<td>Bob</td>
<td>0101</td>
<td>10</td>
</tr>
<tr>
<td>315</td>
<td>Cathy</td>
<td>0222</td>
<td>50</td>
</tr>
<tr>
<td>200</td>
<td>Bob</td>
<td>0120</td>
<td>12</td>
</tr>
<tr>
<td>310</td>
<td>Bob</td>
<td>0429</td>
<td>100</td>
</tr>
<tr>
<td>315</td>
<td>Cathy</td>
<td>0111</td>
<td>33</td>
</tr>
<tr>
<td>101</td>
<td>Amy</td>
<td>0033</td>
<td>25</td>
</tr>
<tr>
<td>315</td>
<td>Cathy</td>
<td>0504</td>
<td>70</td>
</tr>
</tbody>
</table>

GROUP BY field_x combines the rows with the same value in the field field_x
More about **GROUP BY**

GROUP BY supports other operations in addition to **SUM**:
- **COUNT**, **AVG**, **MIN**, **MAX**

Called **aggregate** functions

Can filter results *after** **GROUP BY** using the **HAVING** keyword

```sql
SELECT customer_id, SUM(dollar_amount) AS total_dollar FROM t_transactions
GROUP BY customer_id HAVING total_dollar > 50
```

<table>
<thead>
<tr>
<th>customer_id</th>
<th>dollar_amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>50</td>
</tr>
<tr>
<td>200</td>
<td>22</td>
</tr>
<tr>
<td>310</td>
<td>100</td>
</tr>
<tr>
<td>315</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>customer_id</th>
<th>total_dollar</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>100</td>
</tr>
<tr>
<td>315</td>
<td>153</td>
</tr>
</tbody>
</table>
More about **GROUP BY**

GROUP BY supports other operations in addition to **SUM**:
- COUNT, AVG, MIN, MAX

Called **aggregate** functions

Can filter results *after* **GROUP BY** using the **HAVING** keyword

```
SELECT customer_id, SUM(dollar_amount) AS total_dollar FROM t_transactions
GROUP BY customer_id HAVING total_dollar>50
```

<table>
<thead>
<tr>
<th>customer_id</th>
<th>dollar_amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>50</td>
</tr>
<tr>
<td>200</td>
<td>22</td>
</tr>
<tr>
<td>310</td>
<td>100</td>
</tr>
<tr>
<td>315</td>
<td>153</td>
</tr>
</tbody>
</table>

Note: the difference between the **HAVING** keyword and the **WHERE** keyword is that **HAVING** operates *after* applying filters and **GROUP BY**.

The **AS** keyword just lets us give a nicer name to the aggregated field.
Merging tables: JOIN

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>GPA</th>
<th>Major</th>
<th>Birth Year</th>
<th>#Pets</th>
<th>Favorite Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

Join tables based on primary key

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>GPA</th>
<th>Major</th>
<th>Birth Year</th>
<th>#Pets</th>
<th>Favorite Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>
Merging tables: JOIN

Table 1: Student Information

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>GPA</th>
<th>Major</th>
<th>Birth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
</tr>
</tbody>
</table>

Table 2: Pet Information

<table>
<thead>
<tr>
<th>ID</th>
<th>#Pets</th>
<th>Favorite Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

Join tables based on primary key

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>GPA</th>
<th>Major</th>
<th>Birth Year</th>
<th>#Pets</th>
<th>Favorite Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>
Merging tables: **INNER JOIN**

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>pets</th>
<th>favorite color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

Join tables based on primary key

```
SELECT id, name, favorite_color
FROM
t_student INNER JOIN t_personal
ON t_student.id = t_personal.id
```
Merging tables: **INNER JOIN**

t_student

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>gpa</th>
<th>major</th>
<th>birth_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>John Bardeen</td>
<td>3.1</td>
<td>Electrical Engineering</td>
<td>1908</td>
</tr>
<tr>
<td>314159</td>
<td>Albert Einstein</td>
<td>4.0</td>
<td>Physics</td>
<td>1879</td>
</tr>
<tr>
<td>999999</td>
<td>Jerzy Neyman</td>
<td>3.5</td>
<td>Statistics</td>
<td>1894</td>
</tr>
<tr>
<td>112358</td>
<td>Ky Fan</td>
<td>3.55</td>
<td>Mathematics</td>
<td>1914</td>
</tr>
</tbody>
</table>

t_personal

<table>
<thead>
<tr>
<th>id</th>
<th>pets</th>
<th>favorite_color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010</td>
<td>2</td>
<td>Blue</td>
</tr>
<tr>
<td>314159</td>
<td>0</td>
<td>Green</td>
</tr>
<tr>
<td>999999</td>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>112358</td>
<td>2</td>
<td>Green</td>
</tr>
</tbody>
</table>

Join tables based on primary key

```sql
SELECT id, name, favorite_color
FROM t_student INNER JOIN t_personal
ON t_student.id = t_personal.id
```
Other ways of joining tables: **OUTER JOIN**

INNER JOIN: Returns records that have matching values in both tables

LEFT (OUTER) JOIN: Return all records from the left table, and the matched records from the right table

RIGHT (OUTER) JOIN: Return all records from the right table, and the matched records from the left table

FULL (OUTER) JOIN: Return all records when there is a match in either left or right table

Image credit: https://www.w3schools.com/sql/sql_join.asp
Creating/modifying/deleting rows

Insert a row into a table: INSERT INTO

```
INSERT INTO table_name [col1, col2, col3, ...]
VALUES value1, value2, value3, ...
```

Note: if adding values for all columns, you only need to specify the values.

Modify a row in a table: UPDATE

```
UPDATE table_name SET col1=value1, col2=value2, ...
WHERE condition
```

Delete rows from a table: DELETE

```
DELETE FROM table_name WHERE condition
```

Caution: if WHERE clause is left empty, you’ll delete/modify the whole table!
Creating and deleting tables

Create a new table: CREATE TABLE
 CREATE TABLE table_name [col1 datatype, col2 datatype, ...]

Delete a table: DROP TABLE
 DROP TABLE table_name;

Be careful when dropping tables!
Python `sqlite3` package implements SQLite

Connection object represents a database
Connection object can be used to create a Cursor object
Cursor facilitates interaction with database

```python
conn = sqlite3.connect('example.db')
establish connection to given DB file (creating it if necessary)
return Connection object
```

```python
c = conn.cursor()
Creates and returns a Cursor object for interacting with DB
```

```python
c.execute([SQL command])
runs the given command; cursor now contains query results
```
Python `sqlite3` package

Important point: unlike many other RDBMSs, SQLite does not allow multiple connections to the same database at the same time.

So, if you’re working in a distributed environment, you’ll need something else e.g., MySQL, Oracle, etc.
```python
import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()  # create a cursor object.
c.execute('''CREATE TABLE t_student (id, name, field, birth_year)''')
students = [(101010, 'John Bardeen', 'Electrical Engineering', 1908),
            (500100, 'Eugene Wigner', 'Physics', 1902),
            (314159, 'Albert Einstein', 'Physics', 1879),
            (214518, 'Ronald Fisher', 'Statistics', 1890),
            (662607, 'Max Planck', 'Physics', 1858),
            (271828, 'Leonard Euler', 'Mathematics', 1707),
            (999999, 'Jerzy Neyman', 'Statistics', 1894),
            (112358, 'Ky Fan', 'Mathematics', 1914)]
c.executemany('INSERT INTO t_student VALUES (?, ?, ?, ?)', students)
conn.commit()  # Write the changes back to example.db
for row in c.execute('''SELECT * from t_student'''):
    print(row)
```

(101010, 'John Bardeen', 'Electrical Engineering', 1908)
(500100, 'Eugene Wigner', 'Physics', 1902)
(314159, 'Albert Einstein', 'Physics', 1879)
(214518, 'Ronald Fisher', 'Statistics', 1890)
(662607, 'Max Planck', 'Physics', 1858)
(271828, 'Leonard Euler', 'Mathematics', 1707)
(999999, 'Jerzy Neyman', 'Statistics', 1894)
(112358, 'Ky Fan', 'Mathematics', 1914)
Create the database file and set up a `Cursor` object for interacting with it.

```python
import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()  # create a cursor object.

# Create table
conn.execute("CREATE TABLE t_student (id, name, field, birth_year)"")

students = [(
    101010, 'John Bardeen', 'Electrical Engineering', 1908),
    (500100, 'Eugene Wigner', 'Physics', 1902),
    (314159, 'Albert Einstein', 'Physics', 1879),
    (214518, 'Ronald Fisher', 'Statistics', 1890),
    (662607, 'Max Planck', 'Physics', 1858),
    (271828, 'Leonard Euler', 'Mathematics', 1707),
    (999999, 'Jerzy Neyman', 'Statistics', 1894),
    (112358, 'Ky Fan', 'Mathematics', 1914),
)

c.executemany("INSERT INTO t_student VALUES (?, ?, ?, ?)", students)
conn.commit()  # Write the changes back to example.db

for row in c.execute("SELECT * from t_student"):
    print(row)
```
import sqlite3

conn = sqlite3.connect('example.db')

Create the table. Note that we need not specify a data type for each column. SQLite is flexible about this.
c.execute('CREATE TABLE t_student (id, name, field, birth_year)')

students = [(500100, 'Eugene Wigner', 'Physics', 1902),
 (314159, 'Albert Einstein', 'Physics', 1879),
 (214518, 'Ronald Fisher', 'Statistics', 1890),
 (662607, 'Max Planck', 'Physics', 1858),
 (271828, 'Leonard Euler', 'Mathematics', 1707),
 (999999, 'Jerzy Neyman', 'Statistics', 1894),
 (112358, 'Ky Fan', 'Mathematics', 1914)]

c.executemany('INSERT INTO t_student VALUES (?, ?, ?, ?)', students)

conn.commit() # Write the changes back to example.db

for row in c.execute('SELECT * from t_student '):
 print(row)
Python `sqlite3 in action`

```python
import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()  # create a cursor object.
c.executescript('''
CREATE TABLE t_student (id INT, surname, first, major, birth_year);
''')
students = [(101010, 'John Bardeen', 'Electrical Engineering', 1908),
            (500100, 'Eugene Wigner', 'Physics', 1902),
            (314159, 'Albert Einstein', 'Physics', 1879),
            (214518, 'Ronald Fisher', 'Statistics', 1890),
            (662607, 'Max Planck', 'Physics', 1858),
            (271828, 'Leonard Euler', 'Mathematics', 1707),
            (999999, 'Jerzy Neyman', 'Statistics', 1894),
            (112358, 'Ky Fan', 'Mathematics', 1914)]
c.executemany('''
INSERT INTO t_student VALUES (?, ?, ?, ?);
''', students)
for row in c.execute('''
SELECT * from t_student'''):
    print(row)
```

Insert rows in the table.

Note: `sqlite3` has special syntax for parameter substitution in strings. Using the built-in Python string substitution is insecure--vulnerable to SQL injection attack.
The commit() method tells sqlite3 to write our updates to the database file. This makes our changes “permanent.”
import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor() # create a cursor object.
c.execute('CREATE TABLE t_student (id, name, field, birth_year)')
students = [(101010, 'John Bardeen', 'Electrical Engineering', 1908),
 (500100, 'Eugene Wigner', 'Physics', 1902),
 (314159, 'Albert Einstein', 'Physics', 1879),
 (214518, 'Ronald Fisher', 'Statistics', 1890),
 (662607, 'Max Planck', 'Physics', 1858),
 (271828, 'Leonard Euler', 'Mathematics', 1707),
 (999999, 'Jerzy Neyman', 'Statistics', 1894),
 (112358, 'Ky Fan', 'Mathematics', 1914)]
c.executemany('INSERT INTO t_student VALUES (?, ?, ?, ?)', students)
conn.commit() # Write the changes back to example.db
for row in c.execute('SELECT * from t_student '):
 print(row)

Executing a query returns an iterator over query results.
Establishes a connection to the database stored in `example.db`.

`cursor` object is how we interact with the database. Think of it kind of like the cursor for your mouse. It points to, for example, a table, row or query results in the database.

`cursor.execute` will run the specified SQL command on the database.

`executemany` runs a list of SQL commands.

`commit` writes changes back to the file. Without this, the next time you open `example.db`, the table `t_student` will be empty!

Close the connection to the database. Think of this like Python file `close`.

```python
import sqlite3
conn = sqlite3.connect('example.db')

c = conn.cursor()

c.execute('''CREATE TABLE t_student (id, name, field, birth_year)''')

students = [(1, 'John', 'Engineering', 1990), (2, 'Jane', 'Mathematics', 1992)]
c.executemany('INSERT INTO t_student VALUES (?, ?, ?, ?)', students)

conn.commit()  # Write the changes back to example.db

conn.close()
```
Metainformation: sqlite_master

Special table that holds information about the “real” tables in the database

Two tables, named `t_student` and `t_thesis`
Retrieving column names in `sqlite3`

```python
1 c.execute('SELECT * from t_student')
2 c.description

(('id', None, None, None, None, None, None, None),
 ('name', None, None, None, None, None, None, None),
 ('field', None, None, None, None, None, None, None),
 ('birth_year', None, None, None, None, None, None, None))

1 ['desc[0] for desc in c.description']
['id', 'name', 'field', 'birth_year']
```

Note: this is especially useful in tandem with the `mysql_master` table when exploring a new database, like in your homework!