
STAT606: Computing for Data Science and Statistics 1

Homework 3: Working with Files

Due February 24, 11:59 pm

Worth 15 points

Instructions on writing and submitting your homework can be found on the course web-
page at https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw_
instructions.html. Failure to follow these instructions will result in lost points. Please
direct any questions the instructor.

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble or you have questions, it’s best to find those
problems well in advance, not in the hours before your assignment is due!

2. If you have clarifying questions or you run into issues, please do not email the
instructor directly. Instead, post to the discussion board so that your classmates
can benefit as well if they have the same question.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

1 Basics of Files: Reading and Writing (5 points)

This problem will give you some practice with the basics of reading and writing text files
in Python.

1. Write a function reverse_lines, called as reverse_lines(infile, outfile), where
infile and outfile are strings specifying file names. Calling reverse_lines(infile,

outfile) should overwrite outfile so that it is a copy of infile, except that each
line of infile is reversed. So, for example, if the file infile has the contents

hello

tacocat

1 2 3 4 5

then the file outfile should read

olleh

tacocat

5 4 3 2 1

https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw_instructions.html
https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw_instructions.html


STAT606: Computing for Data Science and Statistics 2

You may assume that every line of infile ends with a newline. Likewise, every line
of outfile should end with a newline. Your program should perform type checking
and raise an appropriate error in the event that either of infile or outfile are
not strings. reverse_lines should open infile for reading and open outfile for
writing (and raise an error if either of these operations fail). Your program should
overwrite outfile if it already exists.

Hint: you may find it useful to write a function reverse_string that takes a single
string argument and returns that string, reversed.

Second hint: be careful about the newlines at the ends of lines! When you read
a line from input, what happens to the newline at the end? Read the Python
documentation carefully and check your code on simple test cases!

2. There are at least two obvious ways (to me, anyway) of implementing reverse_lines:

� Option 1: Open infile for reading and outfile for writing. Read the
lines of infile one at a time, and save them in the entries of a list, say,
line_list. Then, once we have finished reading infile, iterate over the en-
tries of line_list, reversing each one and writing it to outfile.

� Option 2: Open infile for reading and outfile for writing. Read the lines
of infile one at a time, and each time we read a line, reverse it and write it
to outfile immediately.

There is at least one good reason to prefer Option 2 over Option 1. What is that
reason? Hint: if infile is especially large, what happens to the list line_list?

Define two new functions, revlines_storage and revlines_direct, that have the
same signature (i.e., take the same arguments) and perform the same function
as reverse_lines. revlines_storage should follow the design in Option 1 and
revlines_direct should follow the design outlined in Option 2. If you happened
to follow one of these designs in your solution for reverse_lines, you are free to
copy-paste your code (or, better yet, just have your new function call your already-
written function), but make sure you are still defining both revlines_direct and
revlines_storage. There is no need to perform error checking in these two func-
tions.

3. To compare revlines_direct and revlines_storage, we need a file to test on.
Write a function generate_test_file that takes three arguments: a string filename,
a non-negative integer nlines and another non-negative integer nchars, in that or-
der. Your function should open filename for writing, and write nlines lines of
text, with each line containing nchars characters, each chosen uniformly at random
from the lower-case letters (a,b,c,...,z). Your function should raise an appropri-
ate error in the event that filename is not a string, or in the event that either of
nlines or nchars is not a non-negative integer. Hint: you can choose a random
integer in a given range using the randint function in the random module.1 Then
you can use that random integer to index into string.ascii_lowercase, which is
a string consisting of the lower-case letters of the English alphabet.

4. Now, let’s use the Python time module to compare how fast revlines_direct and
revlines_storage are. Write a function called time_trial that takes two non-

1See https://docs.python.org/3/library/random.html#random.randint for documentation.

https://docs.python.org/3/library/random.html#random.randint


STAT606: Computing for Data Science and Statistics 3

negative integers, nlines and nchars, as its arguments, and returns a 2-tuple of
floats. Your function should

(a) Use generate_test_file to generate a test file of nlines lines of text, each
containing nchars random characters.

(b) Run revlines_storage on the test file, using the Python time module to
measure how long the program took.

(c) Run revlines_direct on the test file, using the Python time module to mea-
sure how long the program took.

(d) Return a tuple (t1, t2) where t1 is a float representing the number of sec-
onds that it took to run revlines_storage on the test file and t2 is a float
representing the number of seconds that it took to run revlines_direct on
the test file.

Hint: to time an operation, you can modify the following code (I assume that you
have imported the time module with import time).

start_time = time.time()

do_operation()

end_time = time.time()

t1 = end_time - start_time

5. Use time_trial to compare the runtimes of revlines_storage and revlines_direct.
By choosing suitable values of nlines and nchars, you should be able to see a no-
table difference between the two runtimes. What do you think would account for
this difference? Note: there is no need to make a plot or anything like that for
this. Just run the program for a few different choices of arguments, describe the
difference you see, and try to explain the difference. Note also: you may need
to set the arguments to be quite large before you see a difference between the two
different methods, especially on newer, faster machines or if you have many other
processes running on your computer (e.g., many browser tabs open).

2 Counting Word Bigrams (5 points)

In your previous homework, you wrote a function for counting character bigrams. Now,
let’s write a function for counting word bigrams. That is, for each pair of words, say, cat
and dog, we want to count how many times the word “cat” occurred immediately before
the word “dog”. We will represent this bigram by a tuple, (’cat’, ’dog’). For our
purposes, we will ignore all newlines, punctuation and capitalization in our counting. So,
as an example, the fragment of poem,

Half a league, half a league,
Half a league onward,
All in the valley of Death
Rode the six hundred.

includes the bigrams (’half’, ’a’) and (’a’, ’league’) both three times, the bigram
(’league’, ’half’) appears twice, while the bigram (’in’, ’the’) appears only once.



STAT606: Computing for Data Science and Statistics 4

1. Write a function count_bigrams_in_file that takes a filename as its only argument.
Your function should read from the given file, and return a dictionary whose keys
are bigrams (given in the tuple form above), and values are the counts for those
bigrams. Again, your function should ignore punctuation, spaces, newlines and
capitalization. The strings in your key tuples should be lower-case. Your function
should use a try-catch statement to raise an error with an appropriate message to
alert the user in the event that the given file cannot be opened, and a different
error in the event that the provided argument isn’t a string at all. Hint: you will
find the Python function str.strip(), along with the string constants defined in
the string documentation (https://docs.python.org/3/library/string.html),
useful in removing punctuation. Hint: be careful to check that your function handles
newlines correctly. For example, in the poem above, one of the (’league’, ’half’)

bigrams spans a newline, but should be counted nonetheless. Note: be careful that
your function does not accidentally count the empty string as a word (this is a
common bug if you aren’t careful about splitting the input text). Solutions that
merely delete “bad” keys from the dictionary at the end will not receive full credit.

2. Download the file WandP.txt from the course webpage: https://pages.stat.

wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw/WandP.txt. This is an
ASCII copy of all of Tolstoi’s novel War and Peace. Run your function on this file,
and pickle the resulting dictionary in a file called WandP.bigrams.pickle. Please
include this file in your submission, along with WandP.txt, so that we can run your
notebook directly from your submission.

3. We say that word A is collocated with word B in a text if words A and B occur
immediately one after another (in either order). That is, words A and B are collo-
cated if and only if either of A B or B, A are present in the text. Write a function
collocations that takes a filename as its only argument and returns a dictionary.
Your function should read from the given file (raising an appropriate error if the file
cannot be opened or if the argument isn’t a string at all) and return a dictionary
whose keys are all the strings appearing in the file (again ignoring case and stripping
away all spaces, newlines and punctuation) and the value of word A is a Python set
object2 containing all the words collocated with A. Again using the poem fragment
above as an example, the string ’league’ should appear as a key, and should have
as its value the set {’a’, ’half’, ’onward’}, while the string ’in’ should have
the set {’all’, ’the’} as its value. Hint: we didn’t discuss Python sets in lecture,
because they are essentially just dictionaries without values. See the documentation
for more information.

4. Run your function on the file WandP.txt and pickle the resulting dictionary in a file
called WandP.colloc.pickle. Please include this pickle file in your submission.

3 Implementing wc in Python (5 points)

On UNIX/Linux systems, the shell command wc (short for “word count”) counts the
number of lines, words and characters in a file. In this context, a line is any amount of
text followed by a return (i.e., a “newline”; basically the “enter” key). A word is a group
of one or more non-whitespace characters delimited by (i.e., immediately preceded and

2https://docs.python.org/3/library/stdtypes.html#set

https://docs.python.org/3/library/string.html
https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw/WandP.txt
https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw/WandP.txt
https://docs.python.org/3/library/stdtypes.html#set


STAT606: Computing for Data Science and Statistics 5

followed by) whitespace characters (basically, space, tab and newlines). A character is,
well, a character– a string of length 1 in Python. As an example, consider a file called
hw3example.txt with contents

In the town where I was born

There lived a man who sailed the seas

and he told us of his life

in the land of submarines

You can download a copy of this file at this link:

https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw/hw3example.txt

Alternatively, you can download this file directly from your command line using the
command wget X, where X is the URL listed above.

Running the command wc hw3example.txt on the command line yields the following:

keith@Steinhaus$ wc hw3example.txt

4 27 120 hw3example.txt

That is to say, this file consists of 4 lines, 27 words and 120 characters. You sould be able
to count that there are indeed four lines, 27 words (7 on the first line, 8 on the second,
7 on the third and 5 on the fourth) and 120 characters. Note that the newline at the
end of each of the four lines all count toward this character count! That is, there are 26
characters on the last line– 25 that you can see and count, and an invisible newline at the
end.

This problem will walk you through implementing your own version of wc that you
can run from the command line. This will involve writing a bunch of code in a script
called wc.py. Please do not forget to include this file in your homework submission!

1. In a file called wc.py, define a function called count_chars that takes a string as
its only arguments and returns the number of characters in that string. There is
no need to perform any error checking in this function. Hint: this one is kind of a
freebie– the number of characters is just the length of a string!

2. Continuing to work in the file called wc.py, define a function called count_words

that takes a string as its only argument and returns the number of words in that
string. As an example, count_words(’hello’), count_words(’ hello ’) and
count_words(’ hello!goodbye!’) should all return 1. count_words(’ hello

goodbye ’) should return 2. count_words(’ ’) and count_words(’ ’) should
both return zero. You may find it useful to use the Python string method split,
about which you can read here: TODO.

3. Modify your file wc.py so that it can be called from the command line, taking a
single command line argument. This command line argument should be interpreted
as a filename, which your script should open, and print, one per line,

� the number of lines in the file

� the number of words in the file

� the number of characters in the file

� the name of the file.

https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw/hw3example.txt


STAT606: Computing for Data Science and Statistics 6

Hint: you may find it useful to use a text editor to create files of your own to test
on. You can try running the UNIX/Linux command line program wc on those files
to check that your script yields the same output (with slightly different formatting,
of course). For example, running your script on hw3example.txt above should look
like the following:

keith@Steinhaus$ python3 wc.py hw3example.txt

4

27

120

hw3example.txt

You do not need to perform any error checking in your script. That is, you may
assume that the user will always call the script correctly, with a single command
line argument that names a file that actually exists. Of course, in practice, it would
be a very good idea to include error checking to make sure that nothing weird is
happening, and you are welcome to include error checking if you wish to do so.


