
STAT606: Computing for Data Science and Statistics 1

Homework 5: Functional Programming

Due March 10, 11:59 pm

Worth 15 points

Instructions on writing and submitting your homework can be found on the course web-
page at https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw_
instructions.html. Failure to follow these instructions will result in lost points. Please
direct any questions the instructor.

1 Iterators and Generators (4 points)

In this exercise, you’ll get some practice working with iterators and generators. Note:
in this problem, the word enumerate is meant in the sense of returning elements, not in
the sense of the Python function enumerate. So, if I say that an iterator enumerates a
sequence a0, a1, a2, . . . , I mean that these are the elements that it returns upon calls to
the __next__ method, not that it returns pairs (i, ai) like the enumerate function.

1. Define a class Fibo of iterators that enumerate the Fibonacci numbers. For the
purposes of this problem, the Fibonacci sequence begins 0, 1, 1, 2, 3, . . . , with the
n-th Fibonacci number Fn given by the recursive formula Fn = Fn−1 + Fn−2. Your
solution should not make use of any function aside from addition (i.e., you should
not need to use the function fibo() defined in lecture a few weeks ago). Your class
should support, at a minimum, an initialization method, a __iter__ method (so
that we can get an iterator) and a __next__ method. Note: there is an especially
simple solution to this problem that can be expressed in just a few lines using tuple
assignment.

2. We can generalize the Fibonacci sequence by following the same recursive procedure
Fn = Fn−1+Fn−2, but using a different choice of initial two values for F0 and F1. For
example, if we take F0 = 2 and F1 = 1, then we obtain the Lucas numbers, which
are closely related to the Fibonacci numbers.1 Define a class GenFibo of iterators
that enumerate generalized Fibonacci numbers. Your class should inherit from the
Fibo class defined in the previous subproblem. The initialization method for the
GenFibo class should take two optional arguments that specify the values of F0 and
F1, in that order, and their values should default so that F = GenFibo() results
in an iterator that enumerates the same sequence as if you had called F = Fibo().
That is, GenFibo() should produce an iterator over the Fibonacci numbers.

3. Define a generator squared_primes that enumerates the squares of the prime num-
bers. Recall that a prime number is any integer p > 1 whose only divisors are p and

1https://en.wikipedia.org/wiki/Lucas_number

https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw_instructions.html
https://pages.stat.wisc.edu/~kdlevin/teaching/Spring2023/STAT606/hw_instructions.html
https://en.wikipedia.org/wiki/Lucas_number

STAT606: Computing for Data Science and Statistics 2

1. Note: you may use the function is_prime that we defined in lecture (or some-
thing similar to it), but such solutions will not receive full credit, as there is a more
graceful solution that avoids declaring a separate function or method for directly
checking primality. Hint: consider a pattern similar to the one seen in lecture using
the any and/or all functions.

4. This one is good practice for coding interview questions. The Ulam numbers are
a sequence u1, u2, u3, . . . of positive integers, defined in the following way: u1 = 1,
and u2 = 2. For all n > 2, un is the smallest integer that is expressible as a sum
of two distinct terms from earlier in the sequence in exactly one way.2 Define a
generator ulam that enumerates the Ulam numbers. Hint: it will be helpful to try
and break this problem into smaller, simpler subproblems. In particular, you may
find it helpful to write a function that takes a list of integers t and one additional
integer u, and determines whether or not u is expressible as a sum of two distinct
elements of t in exactly one way.

2 List Comprehensions and Generator Expressions (4 points)

In this exercise you’ll write a few simple list comprehensions and generator expressions.
Again in this problem we use the term enumerate to mean that a list comprehension
or generator expression returns certain elements, rather than in the sense of the Python
function enumerate.

1. Write a list comprehension that enumerates the sequence 2n−1 for n = 0, 1, 2, 3, . . . , 20.
For ease of grading, please assign this list comprehension to a variable called pow2minus1.

2. The Lazy Caterer’s sequence is a sequence of numbers that counts, for each n =
0, 1, 2, . . . , the largest number of pieces that can be cut from a disk with at most
n cuts.3 The n-th number in this sequence is given by pn = (n2 + n + 2)/2, where
n = 0, 1, 2, Write a generator expression that enumerates the Lazy Caterer’s
sequence. For ease of grading, please assign this generator expression to a variable
called caterer. Hint: you may find it useful to define a generator that enumerates
the non-negative integers.

3. Write a generator expression that enumerates the tetrahedral numbers. The n-th
tetrahedral number (n = 1, 2, . . .) is given by Tn =

(
n+2
3

)
, where

(
x
y

)
is the binomial

coefficient (
x

y

)
=

x!

y!(x− y)!
.

For ease of grading, please assign this generator expression to a variable called tetra.
Hint: you may find it useful to define a generator that enumerates the positive
integers.

3 Map, Filter and Reduce (3 points)

In this exercise, you’ll learn a bit about map, filter and reduce operations. We will revisit
these operations in a few weeks when we discuss MapReduce and related frameworks in

2See the Examples section of the Wikipedia page for an illustration: https://en.wikipedia.org/wiki/Ulam_
number.

3https://en.wikipedia.org/wiki/Lazy_caterer’s_sequence

https://en.wikipedia.org/wiki/Ulam_number
https://en.wikipedia.org/wiki/Ulam_number
https://en.wikipedia.org/wiki/Lazy_caterer's_sequence

STAT606: Computing for Data Science and Statistics 3

distributed computing. In this problem, I expect that you will use only the functions map,
filter and functions from the functools and itertools modules, along with the range
function (and similar list-related functions) and a sprinkling of lambda expressions.

1. Write a one-line expression that computes the sum of the first 10 even square num-
bers (starting from 4). For ease of grading, please assign the output of this expression
to a variable called sum_of_even_squares.

2. Write a one-line expression that computes the product of the first 13 primes. You
may use (a modification of) the squared_primes generator that you defined above.
For ease of grading, please assign the output of this expression to a variable called
product_of_primes.

3. Write a one-line expression that computes the sum of the squares of the first 31
primes. You may use the squared_primes generator that you defined above. For
ease of grading, please assign the output of this expression to a variable called
sum_of_squared_primes.

4. Write a one-line expression that computes a list of the first twenty harmonic numbers.
Recall that the n-th harmonic number is given by Hn =

∑n
k=1 1/k. For ease of

grading, please assign the output of this expression to a variable called harmonics.

5. Write a one-line expression that computes the geometric mean of the first 12 tetra-
hedral numbers. You may use the generator that you wrote in the previous problem.
Recall that the geometric mean of a collection of n numbers a1, a2, . . . , an is given
by (

∏n
i=1 ai)

1/n. For ease of grading, please assign the output of this expression to a
variable called tetra_geom.

4 Fun with Polynomials (4 points)

In this exercise you’ll get a bit of experience writing higher-order functions.

1. Write a function make_poly that takes a list of numbers (ints and/or floats) coeffs
as its only argument and returns a function p. The list coeffs encodes the co-
efficients of a polynomial, p(x) = a0 + a1x + a2x

2 + · · · + anx
n, with ai given by

coeffs[i]. The function p should take a single number (int or float) x as its argu-
ment, and return the value of the polynomial p evaluated at x. Your function should
raise an appropriate error in the event that coeffs or one of its entries is not of the
appropriate type.

2. Write a function eval_poly that takes two lists of numbers (ints and/or floats),
coeffs and args. coeffs encodes the coefficients of polynomial p, and your function
should return the list of numbers (ints and/or floats) representing the result of
evaluating the polynomial p on each of the elements in args, in order of appearance.
You should be able to express the solution to this problem in a single line (not
including the function definition header and error checking, of course). Your function
should make use of make_poly from the previous part to receive full credit. Your
function should raise an appropriate error in the event that coeffs, args or one of
their entries is not of the appropriate type.

