Lecture 8: Functional Programming with itertools and functools
Functional Programming

In the last lecture, we saw ideas from object oriented programming
 “Everything is an object”
 Every operation is the responsibility of some class/object
 Use side effects to our advantage (e.g., modifying attributes)

In **functional programming**, functions are the central concept, not objects
 “Everything is a function”, “data is immutable”
 Avoid side effects at all costs
 Use pure functions (and “meta-functions”) as much as possible
 Iterators (or their equivalents) become hugely important
Iterators

An iterator is an object that represents a “data stream”

Supports method `__next__()`:
- returns next element of the stream/sequence
- raises `StopIteration` error when there are no more elements left
Iterators

An iterator is an object that represents a “data stream”

Supports method `__next__()`:
- returns next element of the stream/sequence
- raises `StopIteration` error when there are no more elements left

```
class Squares:
    '''Iterator over the squares.'''
    def __init__(self):
        self.n = 0
    def __next__(self):
        (self.n, k) = (self.n+1, self.n)
        return(k*k)
s = Squares()
[next(s) for _ in range(10)]
```

`__next__()` is the important point, here. It returns a value, the next square.

`next(iter)` is equivalent to calling `__next__()` . Variable `_` in the list comprehension is a placeholder, tells Python to ignore the value.
Lists are not iterators, but we can turn a list into an iterator by calling `iter()` on it. Thus, lists are iterable, meaning that it is possible to obtain an iterator over their elements. [Link to documentation](https://docs.python.org/3/glossary.html#term-iterable)

From the documentation: “When an iterable object is passed as an argument to the built-in function `iter()`, it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call `iter()` or deal with iterator objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop.”
Iterators

Lists are **not** iterators, so we first have to turn the list `t` into an iterator using the function `iter()`.

Now, each time we call `next()`, we get the next element in the list. **Reminder:** `next(iter)` and `iter.__next__()` are equivalent.

Once we run out of elements, we get an error.
You are already familiar with iterators from previous lectures. When you ask Python to traverse an object `obj` with a for-loop, Python calls `iter(obj)` to obtain an iterator over the elements of `obj`.

These two for-loops are equivalent. The first one hides the call to `iter()` from you, whereas in the second, we are doing the work that Python would otherwise do for us by casting `t` to an iterator.
Iterators

You are already familiar with iterators from previous lectures. When you ask Python to traverse an object obj with a for-loop, Python calls \texttt{iter(obj)} to obtain an iterator over the elements of \texttt{obj}.

These two for-loops are equivalent. The first one hides the call to \texttt{iter()} from you, whereas in the second, we are doing the work that Python would otherwise do for us by casting \texttt{t} to an iterator.

\begin{Verbatim}
\begin{verbatim}
t = [1,2,3]
for x in t:
 print(x)
print()
for x in iter(t):
 print(x)
\end{verbatim}
\end{Verbatim}

\textbf{A useful note from the documentation:} “There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration. When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current item which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the current item will be treated again the next time through the loop.”
Iterators

If we try to iterate over an object that is not iterable, we’re going to get an error.

```python
class dummy:
    '''Class that is not iterable, because it has neither __next__() nor __iter__().'''

d = dummy()
for x in d:
    print(x)
```

Objects of class `dummy` have neither `__iter__()` (i.e., doesn’t support `iter()`) nor `__next__()` , so iteration is hopeless. When we try to iterate, Python is going to raise a `TypeError`.

```
Traceback (most recent call last)
<ipython-input-30-fc084e213893> in <module>()
    5
d = dummy()
----> 7 for x in d:
    8    print(x)

TypeError: 'dummy' object is not iterable
```
Iterators

```
class Squares:
    '''Iterator over the squares.'''
    def __init__(self):
        self.n = 0
    def __next__(self):
        (self.n, k) = (self.n+1, self.n)
        return(k*k)

s = Squares()
for x in s:
    print(x)
```

Merely being an iterator isn’t enough, either! `for X in Y` requires that object `Y` be iterable.
Iterators

Now, `Squares` supports `__iter__()` (it just returns itself!), so Python allows us to iterate over it.

This is an infinite loop. Don’t try this at home.
Iterators

We can turn an iterator back into a list, tuple, etc. **Caution:** if you have an iterator like our `Squares` example earlier, this list is infinite and you'll just run out of memory.

Many built-in functions work on iterators. e.g., `max`, `min`, `sum`, work on any iterator (provided elements support the operation); `in` operator will also work on any iterator. **Warning:** Once again, care must be taken if the iterator is infinite.
List Comprehensions and Generator Expressions

Recall that a list comprehension creates a list from an iterable.

List comprehension computes and returns the whole list. What if the iterable were infinite? Then this list comprehension would never return!

This list comprehension is going to be infinite! But I really ought to be able to get an iterator over the squares of the elements of `Squares` object `s`...

This is the motivation for generator expressions. Generator expressions are like list comprehensions, but they create an iterator rather than a list.

Generator expressions are written like list comprehensions, but with parentheses instead of square brackets.
Generators

Related to generator expressions are **generators**

Provide a simple way to write iterators (avoids having to create a new class)

```python
def harmonic(n):
    return sum([1/k for k in range(1,n+1)])
harmonic(10)
```

2.9289682539682538

Alternatively, we can write **harmonic** as a **generator**. Generators work like functions, but they maintain internal state, and they **yield** instead of **return**. Each time a generator gets called, it runs until it encounters a **yield** statement or reaches the end of the **def** block.

```python
def harmonic():
    (h,n) = (0,1)
    while True:
        (h,n) = (h+1/n, n+1)
        yield h
    h = harmonic()
[next(h) for _ in range(3)]
```

[1.0, 1.5, 1.8333333333333333]

https://en.wikipedia.org/wiki/Harmonic_number
Generators

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

```
def harmonic():
    (h,n) = (0,1)
    while True:
        (h,n) = (h+1/n, n+1)
        yield h
    h = harmonic()
    h
<generator object harmonic at 0x1053b9fc0>

1  next(h)
1.0

1  next(h)
1.5

1  next(h)
1.833333333333333
Generators

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

Create a new `harmonic` generator. Inside this object, Python keeps track of where in the `def` code we are. So far, no code has been run.
Generators

```python
def harmonic():
 (h, n) = (0, 1)
 while True:
 (h, n) = (h+1/n, n+1)
 yield h
 h = harmonic()
 h
<generator object harmonic at 0x1053b9fc0>
```

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

Each time we call `next`, Python runs the code in `h` from where it left off until it encounters a `yield` statement.

```
1.0
1.5
1.8333333333333333
```
Generators

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

```python
def harmonic():
 (h, n) = (0, 1)
 while True:
 (h, n) = (h + 1 / n, n + 1)
 yield h
 h = harmonic()
h
<generator object harmonic at 0x1053b9fc0>
```

Each time we call `next`, Python runs the code in `h` from where it left off until it encounters a `yield` statement.

```text
next(h)
1.0

next(h)
1.5

next(h)
1.8333333333333333
```
Generators

```python
def harmonic():
 (h,n) = (0,1)
 while True:
 (h,n) = (h+1/n, n+1)
 yield h
 h = harmonic()
 h
```

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

Each time we call `next`, Python runs the code in `h` from where it left off until it encounters a `yield` statement.
Generators

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

```python
def harmonic():
 (h, n) = (0, 1)
 while True:
 (h, n) = (h+1/n, n+1)
 yield h
 h = harmonic()
 h
<generator object harmonic at 0x1053b9fc0>
```

Each time we call `next`, Python runs the code in `h` from where it left off until it encounters a `yield` statement.

```
next(h)
```

1.0

```
next(h)
```

1.5

```
next(h)
```

1.8333333333333333
Generators

Python sees the `yield` keyword and determines that this should be a generator definition rather than a function definition.

```
def harmonic():
 (h, n) = (0, 1)
 while True:
 (h, n) = (h+1/n, n+1)
 yield h
 h = harmonic()
```

If/when we run out of `yield` statements (i.e., because we reach the end of the definition block), the generator returns a `StopIteration` error, as required of an iterator (not shown here).
Generators

Generators supply a few more bells and whistles

- Ability to pass values *into* the generator to modify behavior
- Can make generators both produce and consume information
  - Coroutines as opposed to subroutines

See generator documentation for more:

https://docs.python.org/3/reference/expressions.html#generator-iterator-methods
zip, revisited

Recall that `zip` takes two or more iterables and returns an iterator over tuples.

Here are two infinite iterators, and we `zip` them. So `z` should also be an infinite iterator. But this expression doesn’t result in an infinite evaluation...

The trick is that `zip` uses lazy evaluation. Rather than trying to build all the tuples right when we call `zip`, Python is lazy. It only builds tuples as we ask for them! We’ll see this plenty more in this course.

https://en.wikipedia.org/wiki/Lazy_evaluation
Map and Filter

Recall:

**map** operation applies a function to every element of a sequence
Yields a new, transformed sequence

**filter** operation removes from a sequence all elements failing some condition
Again, yields a new, filtered sequence
Map

We saw how to achieve a map operation using list comprehensions

But there’s also the Python `map` function:

```
1 def square_plus1(x):
2 return x**2+1
3 map(square_plus1, range(10))
```

<map at 0x102c084e0>

```
1 list(map(square_plus1, range(10)))
```

[1, 2, 5, 10, 17, 26, 37, 50, 65, 82]

From the documentation:
`map(function, iterable, ...)`
Return an iterator that applies `function` to every item of `iterable`, yielding the results.

`map` and `range` both produce special kinds of iterators.
The first argument to `map` is a function; remaining arguments are one or more iterables.

Number of iterables and number of function arguments must agree!
Aside: lambda expressions

Lambda expressions let you define functions without using a `def` statement. Called an in-line function or anonymous function. Name is a reference to lambda calculus, a concept from symbolic logic.

```
def my_square(x):
 return x**2
list(map(my_square, range(1,10)))
[1, 4, 9, 16, 25, 36, 49, 64, 81]
```

Alternatively, define an equivalent function in-line, using a `lambda` statement.

```
list(map(lambda x: x**2, range(1,10)))
[1, 4, 9, 16, 25, 36, 49, 64, 81]
```

A lambda expression returns a function, so `my_square` and `lambda x: x**2` are, in a certain sense, equivalent.
Aside: lambda expressions

Arguments of the function are listed before the colon. So this function takes a single argument...

...while this one takes four.
Aside: **lambda** expressions

Return value of the function is listed on the right of the colon. So this function returns the square of its input plus 1....

...and this one returns a Boolean stating whether or not the four numbers satisfy Fermat’s last theorem.

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem
Aside: `lambda` expressions

Lambda expressions return actual functions, which we can apply to inputs.

```python
1 lambda x: x**2 + 1
<function __main__.<lambda>>

1 lambda x, y, z, n: x**n + y**n == z**n
<function __main__.<lambda>>

1 (lambda x, y, z, n: x**n + y**n == z**n)(3, 4, 5, 2)
True

1 (lambda x, y, z, n: x**n + y**n == z**n)(13, 17, 19, 42)
False

1 my_square
<function __main__.my_square>
```

Function names are stored in an attribute `__name__`. Since lambda expressions yield anonymous functions, they all have the generic name `<lambda>'.
Aside: lambda expressions

Lambda expressions can be used anywhere you would use a function. Note that the term anonymous function makes sense: the lambda expression defines a function, but it never gets a variable name (unless we assign it to something, like in the ‘goat’ example to the left).

```python
1 f = lambda x : x+'goat'
2 f('cat')
'catgoat'
1 (lambda x : 2*x)(21)
42
1 list(map(lambda x: x**2, range(1,10)))
[1, 4, 9, 16, 25, 36, 49, 64, 81]
```
The fact that we can have variables whose values are functions is actually quite special. We say that Python has **first-class functions**. That is, functions are perfectly reasonable values for a variable to have.

You've seen these ideas before if you've used R's `tapply` (or similar), MATLAB's function handles, C/C++ function pointers, etc.
The list filter expression also has an analogous function, `filter`.

\begin{verbatim}
1 fibo = [1,1,2,3,5,8,13]
2 def is_even(x):
3     return (x%2==0)
4 filter(is_even, fibo)
<filter at 0x10223ef28>
\end{verbatim}

`filter` takes a Boolean function and an iterator and returns an iterator of only the elements that evaluated to `True`.

Returns its own special iterator.

\begin{verbatim}
1 list(filter(is_even, fibo))
[2, 8]
\end{verbatim}

Second argument to `filter` (and `map`) can be any iterator. Here we are filtering a generator.

\begin{verbatim}
1 list(filter(is_even, (x**2 for x in range(10))))
[0, 4, 16, 36, 64]
\end{verbatim}
Filter

It's often more convenient to just use a lambda expression in-line instead of defining a Boolean function elsewhere.

Lambda expressions don't support scatter/gather, so you have to use this kind of pattern to process tuples. Worry not! Another Python module does support this, and we'll see it in a few slides.
What about reduce?

We saw map and filter earlier, but we can’t have MapReduce without reduce

Reduce operations **reduce** an iterator (i.e., a sequence) to a single element. Sum is a good example of a reduce function.

```python
1 sum(range(1,11))
55
```

**functools** contains a bunch of useful functional programming functions, including reduce.

```python
1 import functools
2 functools.reduce(lambda x,y: x+y, range(1,11))
55
```

**functools.reduce** takes a function and an iterator and performs a **reduce** operation on the iterator using the function.

A reduce operation takes a function and a sequence, and returns a single object (typically of the same type as the elements of the sequence). sum() is a good example of a reduce operation, but it’s hardly the only one.
Reduce operations

Three fundamental pieces:

- function: $f(x,y) = x+y$
- iterable: [2, 3, 5, 8, 1, 1, 7]
- initial value: 0
Reduce operations

Three fundamental pieces:

\[ f(x, y) = x + y \]

Python initializes an **accumulator** with the given initial value. Think of the accumulator as a “running total”.

- Function: \( f(x, y) = x + y \)
- Iterable: [2, 3, 5, 8, 1, 1, 7]
- Initial value: 0
Reduce operations

Three fundamental pieces:

- **function**
  \[ f(x,y) = x+y \]

- **iterable**
  \[ 2 \ 3 \ 5 \ 8 \ 1 \ 1 \ 7 \]

- **initial value**
  \[ 0 \]

Now, Python repeatedly updates the accumulator, with
\[
\text{accumulator} = f(\text{accumulator}, y)
\]
where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

- Function: \( f(x,y) = x+y \)
- Iterable: 2 3 5 8 1 1 7
- Initial value: 0

Now, Python repeatedly updates the accumulator, with
\[
\text{accumulator} = f(\text{accumulator}, y)
\]
where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

function
\[ f(x,y) = x+y \]

iterable
\[ 2 \quad 3 \quad 5 \quad 8 \quad 1 \quad 1 \quad 7 \]

initial value
\[ 0 \]

accumulator
\[ 0 \]

\[ f(0,2) = 2 \]

Now, Python repeatedly updates the accumulator, with

\[ \text{accumulator} = f(\text{accumulator}, y) \]

where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

- **function**: \( f(x,y) = x+y \)
- **iterable**: \( [2, 3, 5, 8, 1, 1, 7] \)
- **initial value**: \( 0 \)

Now, Python repeatedly updates the accumulator, with

\[
\text{accumulator} = f(\text{accumulator}, y)
\]

where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

- **function**
  \[ f(x,y) = x+y \]

- **accumulator**
  \[ f(2,3) = 5 \]

- **iterable**
  \[ 2 \quad 3 \quad 5 \quad 8 \quad 1 \quad 1 \quad 7 \]

- **initial value**
  \[ 0 \]

Now, Python repeatedly updates the accumulator, with
\[ \text{accumulator} = f(\text{accumulator},y) \]
where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

function

\[ f(x,y) = x+y \]

iterable

\[ \begin{align*}
2 & \\
3 & \\
5 & \\
8 & \\
1 & \\
1 & \\
7 & \\
\end{align*} \]

initial value

\[ 0 \]

accumulator

\[ 5 \]

Now, Python repeatedly updates the accumulator, with

\[ \text{accumulator} = f(\text{accumulator}, y) \]

where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

\[
f(x,y) = x + y
\]

function

\[
f(5,5) = 10
\]

iterable

Now, Python repeatedly updates the accumulator, with
accumulator = f(accumulator, y)
where \( y \) traverses the sequence
Reduce operations

Three fundamental pieces:

- **function**
  \[ f(x,y) = x + y \]

- **iterable**
  \[
  \begin{array}{cccccc}
  2 & 3 & 5 & 8 & 1 & 1 & 7 \\
  \end{array}
  \]

- **initial value**
  \[
  \begin{array}{c}
  0 \\
  \end{array}
  \]

Now, Python repeatedly updates the accumulator, with

\[
\text{accumulator} = f(\text{accumulator}, y)
\]

where \( y \) traverses the sequence.
Reduce operations

Three fundamental pieces:

- **function**
  \[ f(x,y) = x+y \]

- **iterable**
  \[ 2 \quad 3 \quad 5 \quad 8 \quad 1 \quad 1 \quad 7 \]

- **initial value**
  \[ 0 \]

accumulator

\[ 10 \]

...and so on.
Reduce operations

Three fundamental pieces:

<table>
<thead>
<tr>
<th>function</th>
<th>iterable</th>
<th>initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x,y) = x+y)</td>
<td>2 3 5 8 1 1 7</td>
<td>0</td>
</tr>
</tbody>
</table>

Once Python gets a `StopIteration` error indicating that the iterator has no more elements, it returns the value in the accumulator.
Reduce operations

Three fundamental pieces:

- **function**
  \[ f(x,y) = x+y \]

- **iterable**

- **initial value**

If the initial value isn't supplied, Python initializes the accumulator as \( \text{acc} = f(x, y) \) where \( x \) and \( y \) are the first two elements of the iterator. If the iterator is length 1, it just returns that element. All told, it's best to always specify the initial value, except in very simple cases (like these slides).
Reduce operations

Three fundamental pieces:

function

\[ f(x,y) = x+y \]

iterable

\[ 2 \ 3 \ 5 \ 8 \ 1 \ 1 \ 7 \]

initial value

\[ 0 \]

**Warning**: if the iterator supplied to `reduce` is empty, then we really do need the initial value!
Reduce in Python

`reduce` is not included as a built-in function in Python, unlike `map` and `filter`. Because developers felt that reduce is not “Pythonic”.

The argument is that reduce operations can always be written as a for-loop:

```python
import functools
functools.reduce(lambda x,y: x+y, range(10))
```

```python
acc = 0
for i in range(10):
 acc += i
acc
```
Reduce in Python

`reduce` is not included as a built-in function in Python, unlike `map` and `filter`.

Because developers felt that `reduce` is not “Pythonic”

The argument is that `reduce` operations can always be written as a for-loop:

```python
import functools
functools.reduce(lambda x, y: x+y, range(10))
```

This criticism is mostly correct, but we'll see later in the course when we cover MapReduce that there are cases where we really do want a proper `reduce` function.
Reduce in Python

All of the standard reduce-like functions are easily reimplemented with reduce statements, like this example, with `max`. Note the use of Python’s in-line conditional statement.

More often, one has to implement the pairwise function. For example, here we have implemented a function for entrywise addition of tuples.

Note: there are “more functional” ways to do this. Since tuples are themselves iterable, we could write a clever “function of functions” to do this more gracefully. More on this soon.
Quantifiers over iterables: `any()` and `all()`

- `any()` takes an iterable as its input and returns `True` if and only if one or more elements is `True`.

- `all()` takes an iterable as its input and returns `True` if and only if all elements are `True`.

**Reminder:** 0, 0.0, empty string, empty list, etc all evaluate to `False`. Just about everything else evaluates to `True`. 
Quantifiers over iterables: \texttt{any()} and \texttt{all()}

Here's a nice example of why functional programming is useful. Complicated functions become elegant one-liners!

```python
1 def is_prime(n):
2 return not any((n%x==0 for x in range(2,n)))
3 is_prime(8675309)
```

True

```python
1 is_prime(8675310)
```

False

Of course, sometimes that elegance comes at the cost of efficiency. In this example, we're failing to use a speedup that would be gained from using, e.g., the sieve of Eratosthenes and stopping checking above $\sqrt{n}$.

any and all are lazy

As soon as any finds a True element, it returns True. As soon as all finds a False element, it returns False. This is a simpler (i.e., less general) notion of laziness than lazy evaluation, but the underlying motivation is the same. Do as little work as is necessary to get your answer!
Related: `itertools.accumulate`

`itertools.accumulate` performs a reduce operation, but it returns an iterator over the partial “sums” of its argument. Returns an empty iterator if argument is empty.

```python
1 itertools.accumulate(range(1,10), lambda x,y:x+y)
<itertools.accumulate at 0x10a6aa348>
```

```python
1 list(itertools.accumulate(range(1,10), lambda x,y:x+y))
[1, 3, 6, 10, 15, 21, 28, 36, 45]
```

```python
1 list(itertools.accumulate(((1,2),(1,3),(2,5),(3,7),(5,11)), tuple_add))
[((1, 2), (2, 5), (4, 10), (7, 17), (12, 28))
```

I put “sums” in quotes above, because of course the function need not be addition. The point is that we get an iterator over the values of the accumulator at each step of the reduce operation.
Working with iterators: `itertools`

```python
import itertools

itertools.count(x, y) returns an infinite iterator of numbers starting at x and proceeding in increments of y.
sevens = itertools.count(7, 7)
[next(sevens) for x in range(10)]
[7, 14, 21, 28, 35, 42, 49, 56, 63, 70]

itertools.accumulate(t) returns an iterator of partial sums of t. Or partial "sums" if we specify a different function.
list(itertools.accumulate(range(10)))
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
list(itertools.accumulate(range(1, 10), max))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

itertools.filterfalse(t) is like the opposite of filter.
list(itertools.filterfalse(is_even, fibo))
[1, 1, 3, 5, 13]

itertools.starmap similar to map, but applies multi-argument function to tuples. Name is reference to the *args notation.
list(itertools.starmap(poly, [(1, 1), (1, 2), (2, 1), (3, 4)]))
[-3, -3, -5, -1]
```

https://docs.python.org/3/library/itertools.html#module-itertools
More **itertools**: combinations

```python
1 list(itertools.combinations([1,2,3,4], 2))
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

1 list(itertools.permutations([1,2,3], 2))
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]

1 list(itertools.combinations_with_replacement([1,2,3,4], 2))
[(1, 1),
 (1, 2),
 (1, 3),
 (1, 4),
 (2, 2),
 (2, 3),
 (2, 4),
 (3, 3),
 (3, 4),
 (4, 4)]
```

**itertools** also includes some combinatorial functions that can be useful on occasion.
Aside: Python operator module

It’s awfully annoying to have to write `lambda x,y:x+y` all the time

```
1 import operator
2 functools.reduce(operator.mul,range(1,10))
```

Here is what we’d like to write, but of course it’s a syntax error.

```
1 functools.reduce(lambda x,y:x*y, range(1,10))
```

operator.mul gives us *, but as a function, just as though we wrote a lambda expression.

operator includes many other functions:

- **Math:** add(), sub(), mul(), abs(), etc.
- **Logic:** not(), truth().
- **Bitwise:** and(), or(), invert().
- **Comparison:** eq(), ne(), lt(), le(), etc.
- **Identity:** is(), is_not().

https://docs.python.org/3/library/operator.html#module-operator
More functional patterns: `functools`

`functools` module provides a number of functional programming constructions

`functools.partial` takes a function and a set of arguments to pass to the function. Returns a function with some of its arguments “fixed”.

```
import functools
pow2 = functools.partial(math.pow, 2)
pow2
```

So in this case, it’s like we got a new function,
```
pow2(x) == math.pow(2, x)
```

`functools.partial` also lets us pass keyword arguments.

```
def my_pow(x=1, y=1):
 return math.pow(x, y)
my_square = functools.partial(my_pow, y=2)
list(map(my_square, range(10)))
```

```
[0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0]
```
Higher-order functions and currying

`functools.partial` takes a function (and other stuff), returns a function
Called a **higher-order function**

In most other languages, Python's `functools.partial` is called **currying**

---

```python
f = lambda x,y,z : x*y*z
curry1 = functools.partial(f, 2)
curry2 = functools.partial(curry1, 3)
curry2(4)
```

Currying takes two arguments, returns their product times 2.

```python
par = functools.partial(f, 2, 3)
par(4)
```

Currying takes one argument \( z \), returns \( 2 \times 3 \times z \) (reminder: `partial` fills positional arguments in order).

Equivalently, just pass both arguments in one call to `partial`.

[Currying](https://en.wikipedia.org/wiki/Currying) is named after logician Haskell Curry
Pure functions, again

Recall that a **pure function** is a function that did not have any side effects.

Pure functions are especially important in functional programming.

A pure function is really a function (in the mathematical sense).

Given the same input, it always produces the same output.

(And doesn’t change the state of our program!)

```python
a = 0
def increment_mod():
 global a
 a += 1
def increment_pure(x):
 return x+1
```
Pure functions, again

Recall that a pure function was a function that did not have any side effects.

Pure functions are especially important in functional programming. A pure function is really a function (in the mathematical sense) given the same input, it always produces the same output. (And doesn’t change the state of our program!)

```
1 a = 0
2 def increment_mod():
3 global a
4 a += 1
5 def increment_pure(x):
6 return x+1
```

Pure functions are also crucial to having immutable data. Think about processing the observations in a data set. We don’t want to change the original data file in the process of our analysis! We want to be able to write a pipeline, in which we pass data from one function to another, producing a transformed version of the data at each step.
Pure functions and higher-order functions

Pure functions arise frequently in map/reduce frameworks

A good example of a higher-order function: `compose` takes some functions and produces a new function.

Returning a function is okay, because Python has first-class functions.

You can see why we prefer pure functions for this. If \( f \) and/or \( g \) had side effects, this would be a big mess!

Example credit: D. Mertz, *Functional Programming in Python*
Functional vs Object-oriented Programming

Of course, I'm exaggerating the complexity of this object here, but this really is what object-oriented code ends up looking like in the wild.

Contrast that with the simplicity of this functional version of the same letter-counting operation.
Why use functional programming?

Some problems are especially well-suited to this paradigm

**Example:** quicksort

```python
def quicksort(t):
 if len(t) <= 1:
 return t # list is already sorted.
 else:
 pivot = t[0]
 return (quicksort([x for x in t if x < pivot]) +
 [x for x in t if x == pivot] +
 quicksort([x for x in t if x > pivot]))

quicksort([3,5,4,2,1,6,5,7,4,0,0,2,4])
```

See the quicksort Wikipedia page for examples of what this looks like when written in a non-functional style.

https://en.wikipedia.org/wiki/Quicksort
A note on recursion in Python: tail call optimization


“Tail call optimisation is a programming language feature. Each time a function recurses, a new stack frame is created. A stack frame is used to store the arguments and local values for the current function invocation. If a function recurses a large number of times, it is possible for the interpreter or compiler to run out of memory. Languages with tail call optimisation reuse the same stack frame for their entire sequence of recursive calls. Languages like Python that do not have tail call optimisation generally limit the number of times a function may recurse to some number in the thousands.”

Python doesn’t have tail call recursion, so some functional programing patterns simply aren’t well-suited if we may encounter many thousands of layers of recursion. Recall our memoized function for computing the Fibonacci numbers.
Declarative Programming

Describe what the program **should do**, rather than how it does it
Implementation details are left up to the language as much as possible

Contrast with **imperative/procedural programming**
Sequence of statements describes **how** program should proceed
Most programming you have done in the past is procedural
Program consists of subroutines that get called, change state of program

Don’t worry too much about these distinctions. Most languages are a mix of paradigms, and no single approach is a silver bullet.
**Different applications call for different programming paradigms.**
Congratulations! You know enough functional programming to get the joke in this xkcd comic!

**Alt-text:** Functional programming combines the flexibility and power of abstract mathematics with the intuitive clarity of abstract mathematics.

https://xkcd.com/1270/