
STAT606
Computing for Data Science

and Statistics
Lecture 13-14: pandas

Pandas
Open-source library of data analysis tools

Low-level ops implemented in Cython (C+Python=Cython, often faster)
Database-like structures, largely similar to those available in R
Well integrated with numpy/scipy
Optimized for most common operations

E.g., vectorized operations, operations on rows of a table

From the documentation: pandas is a Python package providing
fast, flexible, and expressive data structures designed to make
working with “relational” or “labeled” data both easy and intuitive. It
aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python.

Installing pandas
Using conda:

conda install pandas

Using pip:
pip install pandas

From binary (not recommended):
http://pypi.python.org/pypi/pandas

Warning: a few recent updates to pandas have been API-breaking changes,
meaning they changed one or more functions (e.g., changed the number of
arguments, their default values, or other behaviors). This shouldn’t be a problem for
us, but you may as well check that you have the most recent version installed.

http://pypi.python.org/pypi/pandas

Basic Data Structures
Series: represents a one-dimensional labeled array

Labeled just means that there is an index into the array
Support vectorized operations

DataFrame: table of rows, with labeled columns
Like a spreadsheet or an R data frame
Support numpy ufuncs (provided data are numeric)

pandas Series

By default, indices are
integers, starting from 0,
just like you’re used to.

But we can specify a
different set of indices if
we so choose.

Can create a pandas Series from
any array-like structure (e.g.,
Python list, numpy array, dict).

pandas tries to infer this data
type automatically.

Warning: providing too few or too
many indices is a ValueError .

pandas Series

Can create a series from a
dictionary. Keys become indices.

Index ‘cthulu’ doesn’t appear in the
dictionary, so pandas assigns it NaN, the
standard “missing data” symbol.

pandas Series Indexing works like you’re used
to and supports slices, but not
negative indexing.

This object has type np.int64

This object is another
pandas Series.

pandas Series

Caution: indices need not be unique in pandas Series.
This will only cause an error if/when you try to perform
an operation that requires unique indices.

pandas Series
Series objects are like np.ndarray
objects, so they support all the same
kinds of slice operations, but note that
the indices come along with the slices.

Series objects even support most numpy
functions that act on arrays.

pandas Series

Series objects are dict-like,
in that we can access and
update entries via their keys.

Like a dictionary, accessing
a non-existent key is a
KeyError.

Note: I cropped out a bunch of the
error message, but you get the idea.

Not shown: Series also support the
in operator: x in s checks if x
appears as an index of Series s.
Series also supports the dictionary
get method.

pandas Series

Entries of a Series can be of
(almost) any type, and they may
be mixed (e.g., some floats,
some ints, some strings, etc), but
they can not be sequences.

More information on indexing:
https://pandas.pydata.org/pandas-d
ocs/stable/indexing.html

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html

pandas Series

Series support universal
functions, so long as all their
entries support operations.

Series operations require
that keys be shared.
Missing values become
NaN by default.

To reiterate, Series objects support most numpy ufuncs. For
example, np.sqrt(s) is valid, so long as all entries are positive.

pandas Series

Series have an optional
name attribute.

After it is set, name
attribute can be changed
with rename method.

This will become especially useful
when we start talking about
DataFrames, because these name
attributes will be column names.

Note: this returns a new
Series. It does not
change s.name.

Mapping and linking Series values

Series map method works
analogously to Python’s map
function. Takes a function and
applies it to every entry.

Mapping and linking Series values

Series map also allows us to change
values based on another Series. Here,
we’re changing the fruit/animal category
labels to binary labels.

pandas DataFrames
Fundamental unit of pandas

Analogous to R data frame

2-dimensional structure (i.e., rows and columns)
Columns, of potentially different types
Think: spreadsheet (or, better, database, but we haven’t learned those, yet)

Can be created from many different objects
Dict of {ndarrays, Python lists, dicts, Series}
2-dimensional ndarray
Series

pandas DataFrames
Creating a DataFrame from a dictionary, the
keys become the column names. Values
become the columns of the dictionary.

Each column may have its own indices, but the
resulting DataFrame will have a row for every
index (i.e., every row name) that appears.

Indices that are unspecified for a
given column receive NaN.

Note: in the code above, we specified the two columns
differently. One was specified as a Series object, and the other as
a dictionary. This is just to make the point that there is flexibility in
how you construct your DataFrame. More options:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.
DataFrame.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

pandas DataFrames: creating DataFrames
Dictionary has 4 keys, so 4 columns.

Note: Dictionary includes both
text and numeric columns

By default, rows and columns
are ordered alphabetically.

pandas DataFrames: row/column names

Row and column names accessible as
the index and column attributes ,
respectively, of the DataFrame.

Both are returned as pandas Index objects.

pandas DataFrames: accessing/adding columns
DataFrame acts like a dictionary whose keys
are column names, values are Series.

Like a dictionary, we can create
new key-value pairs.

Note: technically, this isn’t quite correct,
because Ford did not serve a full term.
https://en.wikipedia.org/wiki/Gerald_Ford

https://en.wikipedia.org/wiki/Gerald_Ford

pandas DataFrames: accessing/adding columns

Since the row labels are ordered, we
can specify a new column directly from
a Python list, numpy array, etc. without
having to specify indices.

Note: by default, new column are
inserted at the end. See the insert
method to change this behavior:
https://pandas.pydata.org/pandas-d
ocs/stable/generated/pandas.DataFr
ame.insert.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html

pandas DataFrames: accessing/adding columns

Scalars are broadcast across the rows.

Deleting columns

Delete columns identically to
deleting keys from a
dictionary. One can use the
del keyword, or pop a key.

Indexing and selection

df.loc selects rows by their labels.
df.iloc selects rows by their integer
labels (starting from 0).

Indexing and selection

Select columns by their names.

Indexing and selection

Select rows by their numerical
indices (again 0-indexed). This
supports slices.

Note: one can also select slices
with lists of column names, e.g.,
presidents[[‘JD’,’PhD’]] .

Indexing and selection

Select rows by
Boolean expression.

Indexing and selection

These expressions
return Series objects.

Indexing and selection

These expressions
return Series objects.

These expressions
return DataFrames.

More on indexing:
https://pandas.pydata.org/pandas-doc
s/stable/indexing.html

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html

Arithmetic with DataFrames

pandas tries to align the DataFrames as best it
can, filling in non-alignable entries with NaN.

In this example, rows 0 through 4 and columns
A through C exist in both DataFrames, so these
entries can be successfully added. All other
entries get NaN, because x + NaN = NaN .

Arithmetic with DataFrames

By default, Series are aligned to
DataFrames via row-wise broadcasting.

df.iloc[0] is a Series representing the 0-th row
of df. When we try to subtract it from df, pandas
forces dimensions to agree by broadcasting the
operation across all rows of df.

Arithmetic with DataFrames

Scalar addition and multiplication
works in the obvious way.
DataFrames also support scalar
division, exponentiation…
Basically every numpy ufunc.

DataFrames also support
entrywise Boolean operations.

Arithmetic with DataFrames

pandas DataFrames support
numpy-like any and all methods.

Just like numpy, direct
Boolean operations are
not supported.

Arithmetic with DataFrames

values attribute stores the entries of the table in a
numpy array. This is occasionally useful when you
want to stop dragging the extra information around
and just work with the numbers in the table.

Arithmetic with DataFrames

DataFrames support entrywise
multiplication. The T attribute is the
transpose of the DataFrame.

DataFrames also support matrix
multiplication via the numpy-like dot
method. The DataFrame dimensions
must be conformal, of course. Note: Series also

support a dot method,
so you can compute
inner products.

Removing NaNs
DataFrame dropna method
removes rows or columns that
contain NaNs.

how=’any’ will remove all
rows/columns that contain
even one NaN. how=’all’
removes rows/columns that
have all entries NaN.

axis argument controls
whether we act on rows,
columns, etc.

Reading/writing files

https://pandas.pydata.org/pandas-docs/stable/io.html

pandas supports read/write for a wide range
of different file formats. This flexibility is a
major advantage of pandas.

https://pandas.pydata.org/pandas-docs/stable/io.html

Reading/writing files

Table credit: https://pandas.pydata.org/pandas-docs/stable/io.html

pandas supports read/write for a wide range
of different file formats. This flexibility is a
major advantage of pandas.

pandas file I/O is largely similar to R read.table
and similar functions, so I’ll leave it to you to read the
pandas documentation as needed.

https://pandas.pydata.org/pandas-docs/stable/io.html

Summarizing DataFrames

info() method prints summary data
about the DataFrame. Number of rows,
column names and their types, etc.

Note: there is a separate to_string()
method that generates a string representing the
DataFrame in tabular form, but this usually
doesn’t display well if you have many columns.

pd.read_csv() reads a
comma-separated file into a DataFrame.

Summarizing DataFrames
head() method displays just the first few rows of the
DataFrame (5 by default; change this by supplying an
argument). tail() displays the last few rows.

Note: R and pandas both supply head/tail
functions, named after UNIX/Linux commands
that displays the first/last lines of a file.

Comparing DataFrames

These two DataFrames
ought to be equivalent...

...but they aren’t.

Comparing DataFrames

These two DataFrames
ought to be equivalent...

...but they aren’t.

The problem comes from the fact that
NaNs are not equal to one another.

Solution: DataFrames have a separate
equals() method for checking the kind
of equality that we meant above.

Comparing DataFrames

Solution: DataFrames have a separate
equals() method for checking the kind
of equality that we meant above.

There is a solid design principle behind this. If
there are NaNs in our data, we want to err on the
side of being overly careful about what
operations we perform on them. We see similar
ideas in numpy and in R.

Statistical Operations on DataFrames
Getting means of DataFrame
rows/columns using numpy is
possible, but tedious.

DataFrame.mean method is a cleaner way to
do the same thing. Argument picks out which axis
to take means on: rows (1) or columns (0).

Statistical Operations on DataFrames
Getting means of DataFrame
rows/columns using numpy is
possible, but tedious.

Of course, DataFrames also support a bunch of related
functions, that work similarly: sum, min, max, std, var etc.
All of these functions take an optional Boolean argument
skipna. If True, NaNs are not included in the
computation. If False, NaNs are included (which can
mean either that the computation doesn’t work at all, or
changes the value only slightly). More information:
https://pandas.pydata.org/pandas-docs/stable/basics.html#
descriptive-statistics

DataFrame.mean method is a cleaner way to
do the same thing. Argument picks out which axis
to take means on: rows (1) or columns (0).

https://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics
https://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics

Summarizing DataFrames

DataFrame.describe() is similar to the R
summary() function. Non-numeric data will
get statistics like counts, number of unique
items, etc. If a DataFrame has mixed types
(both numeric and non-numeric), the
non-numeric data is excluded by default.

Details and optional arguments:
https://pandas.pydata.org/pandas-docs/stable/basics.ht
ml#summarizing-data-describe

https://pandas.pydata.org/pandas-docs/stable/basics.html#summarizing-data-describe
https://pandas.pydata.org/pandas-docs/stable/basics.html#summarizing-data-describe

Row- and column-wise functions: apply()

DataFrame.apply() takes a function and
applies it to each column of the DataFrame.

Axis argument is 0 by default (column-wise).
Change to 1 for row-wise application.

Row- and column-wise functions: apply()

Numpy ufuncs take vectors and spit out
vectors, so using df.apply() to apply a
ufunc to every row or column in effect ends up
applying the ufunc to every element.

Row- and column-wise functions: apply()

We can pass positional and keyword arguments
into the function via df.apply . Args is a tuple
of the positional arguments (in order), followed
by the keyword arguments.

Note: “apply() takes an argument raw which is False by default,
which converts each row or column into a Series before applying the
function. When set to True, the passed function will instead receive
an ndarray object, which has positive performance implications if
you do not need the indexing functionality.” This can be useful if your
function is meant to work specifically with Series.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html#pandas.DataFrame.apply

Element-wise function application

This causes an error, because
apply thinks that its argument
should be applied to Series
(i.e., columns), not to individual
entries.

Element-wise function application

applymap works similarly to Python’s
map function (and the Series map
method). Applies its argument function
to every entry of the DataFrame.

Tablewise Function Application

Here we have a function composition
applied to a DataFrame. This is
perfectly valid code, but pandas
supports another approach.

Tablewise Function Application

The DataFrame pipe method is built for a
pattern called method chaining. The pipe
method has better support for passing
additional arguments around than does the
function composition to the right. This
pattern using pipe is also more conducive
to functional programming patterns.

Recap
Previously: basics of pandas

Series and DataFrames
Indexing, changing entries
Function application

Next: more complicated operations
Statistical computations
Group-By operations
Reshaping, stacking and pivoting

Recap
Previously: basics of pandas

Series and DataFrames
Indexing, changing entries
Function application

Next: more complicated operations
Statistical computations
Group-By operations
Reshaping, stacking and pivoting

Caveat: pandas is a large, complicated
package, so I will not endeavor to mention
every feature here. These slides should be
enough to get you started, but there’s no
substitute for reading the documentation.

Percent change over time

pct_change method is supported by both Series and
DataFrames. Series.pct_change returns a new
Series representing the step-wise percent change.

Note: pandas has extensive support for time series
data, which we mostly won’t talk about in this course.
Refer to the documentation for more.

Percent change over time

pct_change operates on columns of a DataFrame, by
default. Periods argument specifies the time-lag to use
in computing percent change. So periods=2 looks at
percent change compared to two time steps ago.

pct_change includes control over how missing
data is imputed, how large a time-lag to use, etc.
See documentation for more detail:
https://pandas.pydata.org/pandas-docs/stable/ge
nerated/pandas.Series.pct_change.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html

Computing covariances
cov method computes covariance
between a Series and another Series.

cov method is also supported by DataFrame,
but instead computes a new DataFrame of
covariances between columns.

cov supports extra arguments for further specifying behavior:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.cov.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.cov.html

Pairwise correlations

DataFrame corr method computes
correlations between columns (use axis
keyword to change this behavior).
method argument controls which
correlation score to use (default is
Pearson’s correlation.

Ranking data

rank method returns a new Series
whose values are the data ranks.

Ties are broken by assigning the
mean rank to both values.

Ranking data
By default, rank ranks columns
of a DataFrame individually.

Rank rows instead by supplying
an axis argument.

Note: more complicated ranking of whole rows (i.e., sorting
whole rows rather than sorting columns individually) is possible,
but requires we define an ordering on Series.

Aggregating data

This command creates time
series data, with rows indexed
by year-month-day timestamps.

agg is an alias for the
method aggregate . Both
work exactly the same.

Supplying a list of functions to
agg will apply each function to
each column of the DataFrame,
with each function getting a row
in the resulting DataFrame.

Aggregating data

agg can, alternatively, take a
dictionary whose keys are column
names, and values are functions.

Note that the values here are strings, not
functions! pandas supports dispatch on strings.
It recognizes certain strings as referring to
functions. apply supports similar behavior.

Aggregating data

df contains mixed data types.

agg (and similarly apply) will
only try to apply these functions
on the columns of types
supported by those functions.

pandas doesn’t know
how to compute a mean
string, so it doesn’t try.

Note: the DataFrame transform
method provides generally similar
functionality to the agg method.

Iterating over Series and DataFrames

Iterating over a Series gets an iterator
over the values of the Series.

Iterating over a DataFrame gets an
iterator over the column names.

Iterating over Series and DataFrames

iteritem() method is supported by both Series and
DataFrames. Returns an iterator over the key-value pairs. In
the case of Series, these are (index,value) pairs. In the case
of DataFrames, these are (colname, Series) pairs.

Iterating over Series and DataFrames

DataFrame iterrows() returns an
iterator over the rows of the DataFrame
as (index, Series) pairs.

Iterating over Series and DataFrames

DataFrame iterrows() returns an
iterator over the rows of the DataFrame
as (index, Series) pairs.

Note: DataFrames are designed to make certain
operations (mainly vectorized operations) fast. This
implementation has the disadvantage that iteration over a
DataFrames is slow. It is usually best to avoid iterating
over the elements of a DataFrame or Series, and instead
find a way to compute your quantity of interest using a
vectorized operation or a map/reduce operation.

Group By: reorganizing data
“Group By” operations are a concept from databases

Splitting data based on some criteria
Applying functions to different splits
Combining results into a single data structure

Fundamental object: pandas GroupBy objects

Group By: reorganizing data

DataFrame groupby method
returns a pandas groupby object.

Group By: reorganizing data

Every groupby object has an attribute groups,
which is a dictionary with maps group labels to
the indices in the DataFrame.

In this example, we are splitting on the
column ‘A’, which has two values:
‘plant’ and ‘animal’ , so the groups
dictionary has two keys.

Group By: reorganizing data

Every groupby object has an attribute groups,
which is a dictionary with maps group labels to
the indices in the DataFrame.

In this example, we are splitting on the
column ‘A’, which has two values:
‘plant’ and ‘animal’ , so the groups
dictionary has two keys.

The important point is that the groupby object is
storing information about how to partition the rows
of the original DataFrame according to the
argument(s) passed to the groupby method.

Group By: aggregation

Split on group ‘A’, then compute the means
within each group. Note that columns for which
means are not supported are removed, so
column ‘B’ doesn’t show up in the result.

Group By: aggregation

Here we’re building a hierarchically-indexed
Series (i.e., multi-indexed), recording (fictional)
scores of students by major and handedness.

Suppose I want to collapse over handedness to get
average scores by major. In essence, I want to group by
major and ignore handedness.

Group By: aggregation
Suppose I want to collapse over handedness to get
average scores by major. In essence, I want to group by
major and ignore handedness.

Group by the 0-th level of the hierarchy
(i.e., ‘major’), and take means.

We could have equivalently written
groupby(‘major’) , here.

Group By: examining groups

groupby.get_group lets us pick out
an individual group. Here, we’re
grabbing just the data from the ‘econ’
group, after grouping by ‘major’.

Group By: aggregation

Similar aggregation to what we did a
few slides ago, but now we have a
DataFrame instead of a Series.

Group By: aggregation

Similar aggregation to what we did a
few slides ago, but now we have a
DataFrame instead of a Series.

Groupby objects also support the aggregate
method, which is often more convenient.

Transforming data
From the documentation: “The transform
method returns an object that is indexed the
same (same size) as the one being grouped.”

Building a time series,
indexed by year-month-day.

Suppose we want to
standardize these scores
within each year. Group the data according to the output

of the key function, apply the given
transformation within each group, then
un-group the data.

Important point: the result of groupby.transform has
the same dimension as the original DataFrame or Series.

Filtering data From the documentation: “The
argument of filter must be a function
that, applied to the group as a whole,
returns True or False.”

So this will throw out all the
groups with sum <= 2.

Like transform , the
result is ungrouped.

Combining DataFrames

pandas concat function concatenates
DataFrames into a single DataFrame.

Repeated indices remain repeated
in the resulting DataFrame.

Missing values
get NaN.

pandas.concat accepts numerous
optional arguments for finer control over
how concatenation is performed. See the
documentation for more.

Merges and joins
pandas DataFrames support many common database operations

Most notably, join and merge operations

We’ll learn about these when we discuss SQL later in the semester
So we won’t discuss them here

Important: What we learn for SQL later has analogues in pandas

If you are already familiar with SQL, you might like to read this:
https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

Pivoting and Stacking Data in this format is usually called stacked. It
is common to store data in this form in a file, but
once it’s read into a table, it often makes more
sense to create columns for A, B and C. That is,
we want to unstack this DataFrame.

Pivoting and Stacking
The pivot method takes care of unstacking
DataFrames. We supply indices for the new
DataFrame, and tell it to turn the variable
column in the old DataFrame into a set of
column names in the unstacked one.

https://en.wikipedia.org/wiki/Pivot_table

https://en.wikipedia.org/wiki/Pivot_table

Pivoting and Stacking

How do we stack this? That is, how do we get a
non-pivot version of this DataFrame? The answer
is to use the DataFrame stack method.

Note: we could also construct the
index set tuples using itertools .

Pivoting and Stacking

The DataFrame stack method makes a stacked version
of the calling DataFrame. In the event that the resulting
column index set is trivial, the result is a Series. Note that
df.stack() no longer has columns A or B. The column
labels A and B have become an extra index.

Pivoting and Stacking

Here is a more complicated example.
Notice that the column labels have a
three-level hierarchical structure.

There are multiple ways to stack this data. At
one extreme, we could make all three levels
into columns. At the other extreme, we could
choose only one to make into a column.

Pivoting and Stacking
Stack only according to level 1
(i.e., the animal column index).

Missing animal x cond x hair_length
conditions default to NaN.

Pivoting and Stacking

Stacking across all three levels
yields a Series, since there is no
longer any column structure. This is
often called flattening a table.

Notice that the NaN entries are not
necessary here, since we have an
entry in the Series only for entries of
the original DataFrame.

Plotting DataFrames

cumsum gets partial sums,
just like in numpy.

Note: this requires that you
have imported matplotlib.

Note that legend is automatically
populated and x-ticks are
automatically date formatted.

