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Pandas
Open-source library of data analysis tools

Low-level ops implemented in Cython (C+Python=Cython, often faster)
Database-like structures, largely similar to those available in R
Well integrated with numpy/scipy
Optimized for most common operations

E.g., vectorized operations, operations on rows of a table

From the documentation: pandas is a Python package providing 
fast, flexible, and expressive data structures designed to make 
working with “relational” or “labeled” data both easy and intuitive. It 
aims to be the fundamental high-level building block for doing 
practical, real world data analysis in Python.



Installing pandas
Using conda:

conda install pandas

Using pip:
pip install pandas

From binary (not recommended):
http://pypi.python.org/pypi/pandas

Warning: a few recent updates to pandas have been API-breaking changes, 
meaning they changed one or more functions (e.g., changed the number of 
arguments, their default values, or other behaviors). This shouldn’t be a problem for 
us, but you may as well check that you have the most recent version installed.

http://pypi.python.org/pypi/pandas


Basic Data Structures
Series: represents a one-dimensional labeled array

Labeled just means that there is an index into the array
Support vectorized operations

DataFrame: table of rows, with labeled columns
Like a spreadsheet or an R data frame
Support numpy ufuncs (provided data are numeric)



pandas Series

By default, indices are 
integers, starting from 0, 
just like you’re used to.

But we can specify a 
different set of indices if 
we so choose.

Can create a pandas Series from 
any array-like structure (e.g., 
Python list, numpy array, dict).

pandas tries to infer this data 
type automatically.

Warning: providing too few or too 
many indices is a ValueError .



pandas Series

Can create a series from a 
dictionary. Keys become indices.

Index ‘cthulu’  doesn’t appear in the 
dictionary, so pandas assigns it NaN, the 
standard “missing data” symbol.



pandas Series Indexing works like you’re used 
to and supports slices, but not 
negative indexing.

This object has type np.int64

This object is another 
pandas Series.



pandas Series

Caution: indices need not be unique in pandas Series. 
This will only cause an error if/when you try to perform 
an operation that requires unique indices.



pandas Series
Series objects are like np.ndarray  
objects, so they support all the same 
kinds of slice operations, but note that 
the indices come along with the slices.

Series objects even support most numpy 
functions that act on arrays.



pandas Series

Series objects are dict-like, 
in that we can access and 
update entries via their keys.

Like a dictionary, accessing 
a non-existent key is a 
KeyError.

Note: I cropped out a bunch of the 
error message, but you get the idea.

Not shown: Series also support the 
in operator: x in s checks if x 
appears as an index of Series s. 
Series also supports the dictionary 
get method.



pandas Series

Entries of a Series can be of 
(almost) any type, and they may 
be mixed (e.g., some floats, 
some ints, some strings, etc), but 
they can not be sequences.

More information on indexing: 
https://pandas.pydata.org/pandas-d
ocs/stable/indexing.html

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html


pandas Series

Series support universal 
functions, so long as all their 
entries support operations.

Series operations require 
that keys be shared. 
Missing values become 
NaN by default.

To reiterate, Series objects support most numpy ufuncs. For 
example, np.sqrt(s)  is valid, so long as all entries are positive.



pandas Series

Series have an optional 
name attribute.

After it is set, name 
attribute can be changed 
with rename method.

This will become especially useful 
when we start talking about 
DataFrames, because these name 
attributes will be column names.

Note: this returns a new 
Series. It does not 
change s.name.



Mapping and linking Series values

Series map method works 
analogously to Python’s map 
function. Takes a function and 
applies it to every entry.



Mapping and linking Series values

Series map also allows us to change 
values based on another Series. Here, 
we’re changing the fruit/animal category 
labels to binary labels.



pandas DataFrames
Fundamental unit of pandas

Analogous to R data frame

2-dimensional structure (i.e., rows and columns)
Columns, of potentially different types
Think: spreadsheet (or, better, database, but we haven’t learned those, yet)

Can be created from many different objects
Dict of {ndarrays, Python lists, dicts, Series}
2-dimensional ndarray
Series



pandas DataFrames
Creating a DataFrame from a dictionary, the 
keys become the column names. Values 
become the columns of the dictionary.

Each column may have its own indices, but the 
resulting DataFrame will have a row for every 
index (i.e., every row name) that appears.

Indices that are unspecified for a 
given column receive NaN.

Note: in the code above, we specified the two columns 
differently. One was specified as a Series object, and the other as 
a dictionary. This is just to make the point that there is flexibility in 
how you construct your DataFrame. More options:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.
DataFrame.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html


pandas DataFrames: creating DataFrames
Dictionary has 4 keys, so 4 columns.

Note: Dictionary includes both 
text and numeric columns

By default, rows and columns 
are ordered alphabetically.



pandas DataFrames: row/column names

Row and column names accessible as 
the index and column attributes , 
respectively, of the DataFrame.

Both are returned as pandas Index objects.



pandas DataFrames: accessing/adding columns
DataFrame acts like a dictionary whose keys 
are column names, values are Series.

Like a dictionary, we can create 
new key-value pairs.

Note: technically, this isn’t quite correct, 
because Ford did not serve a full term.
https://en.wikipedia.org/wiki/Gerald_Ford

https://en.wikipedia.org/wiki/Gerald_Ford


pandas DataFrames: accessing/adding columns

Since the row labels are ordered, we 
can specify a new column directly from 
a Python list, numpy array, etc. without 
having to specify indices.

Note: by default, new column are 
inserted at the end. See the insert 
method to change this behavior: 
https://pandas.pydata.org/pandas-d
ocs/stable/generated/pandas.DataFr
ame.insert.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html


pandas DataFrames: accessing/adding columns

Scalars are broadcast across the rows.



Deleting columns

Delete columns identically to 
deleting keys from a 
dictionary. One can use the 
del keyword, or pop a key.



Indexing and selection

df.loc selects rows by their labels. 
df.iloc selects rows by their integer 
labels (starting from 0).



Indexing and selection

Select columns by their names.



Indexing and selection

Select rows by their numerical 
indices (again 0-indexed). This 
supports slices.

Note: one can also select slices 
with lists of column names, e.g., 
presidents[[‘JD’,’PhD’]] .



Indexing and selection

Select rows by 
Boolean expression.



Indexing and selection

These expressions 
return Series objects.



Indexing and selection

These expressions 
return Series objects.

These expressions 
return DataFrames.

More on indexing: 
https://pandas.pydata.org/pandas-doc
s/stable/indexing.html

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html


Arithmetic with DataFrames

pandas tries to align the DataFrames as best it 
can, filling in non-alignable entries with NaN.

In this example, rows 0 through 4 and columns 
A through C exist in both DataFrames, so these 
entries can be successfully added. All other 
entries get NaN, because x + NaN = NaN .



Arithmetic with DataFrames

By default, Series are aligned to 
DataFrames via row-wise broadcasting.

df.iloc[0]  is a Series representing the 0-th row 
of df. When we try to subtract it from df, pandas 
forces dimensions to agree by broadcasting the 
operation across all rows of df.



Arithmetic with DataFrames

Scalar addition and multiplication 
works in the obvious way. 
DataFrames also support scalar 
division, exponentiation… 
Basically every numpy ufunc.

DataFrames also support 
entrywise Boolean operations.



Arithmetic with DataFrames

pandas DataFrames support 
numpy-like any and all methods.

Just like numpy, direct 
Boolean operations are 
not supported.



Arithmetic with DataFrames

values attribute stores the entries of the table in a 
numpy array. This is occasionally useful when you 
want to stop dragging the extra information around 
and just work with the numbers in the table.



Arithmetic with DataFrames

DataFrames support entrywise 
multiplication. The T attribute is the 
transpose of the DataFrame.

DataFrames also support matrix 
multiplication via the numpy-like dot 
method. The DataFrame dimensions 
must be conformal, of course. Note: Series also 

support a dot method, 
so you can compute 
inner products.



Removing NaNs
DataFrame dropna method 
removes rows or columns that 
contain NaNs.

how=’any’  will remove all 
rows/columns that contain 
even one NaN. how=’all’  
removes rows/columns that 
have all entries NaN.

axis argument controls 
whether we act on rows, 
columns, etc.



Reading/writing files

https://pandas.pydata.org/pandas-docs/stable/io.html

pandas supports read/write for a wide range 
of different file formats. This flexibility is a 
major advantage of pandas.

https://pandas.pydata.org/pandas-docs/stable/io.html


Reading/writing files

Table credit: https://pandas.pydata.org/pandas-docs/stable/io.html

pandas supports read/write for a wide range 
of different file formats. This flexibility is a 
major advantage of pandas.

pandas file I/O is largely similar to R read.table  
and similar functions, so I’ll leave it to you to read the 
pandas documentation as needed.

https://pandas.pydata.org/pandas-docs/stable/io.html


Summarizing DataFrames

info() method prints summary data 
about the DataFrame. Number of rows, 
column names and their types, etc.

Note: there is a separate to_string()  
method that generates a string representing the 
DataFrame in tabular form, but this usually 
doesn’t display well if you have many columns.

pd.read_csv()  reads a 
comma-separated file into a DataFrame.



Summarizing DataFrames
head() method displays just the first few rows of the 
DataFrame (5 by default; change this by supplying an 
argument). tail() displays the last few rows.

Note: R and pandas both supply head/tail 
functions, named after UNIX/Linux commands 
that displays the first/last lines of a file.



Comparing DataFrames

These two DataFrames 
ought to be equivalent...

...but they aren’t.



Comparing DataFrames

These two DataFrames 
ought to be equivalent...

...but they aren’t.

The problem comes from the fact that 
NaNs are not equal to one another.

Solution: DataFrames have a separate 
equals()  method for checking the kind 
of equality that we meant above.



Comparing DataFrames

Solution: DataFrames have a separate 
equals()  method for checking the kind 
of equality that we meant above.

There is a solid design principle behind this. If 
there are NaNs in our data, we want to err on the 
side of being overly careful about what 
operations we perform on them. We see similar 
ideas in numpy and in R.



Statistical Operations on DataFrames
Getting means of DataFrame 
rows/columns using numpy is 
possible, but tedious.

DataFrame.mean  method is a cleaner way to 
do the same thing. Argument picks out which axis 
to take means on: rows (1) or columns (0).



Statistical Operations on DataFrames
Getting means of DataFrame 
rows/columns using numpy is 
possible, but tedious.

Of course, DataFrames also support a bunch of related 
functions, that work similarly: sum, min, max, std, var etc. 
All of these functions take an optional Boolean argument 
skipna. If True, NaNs are not included in the 
computation. If False, NaNs are included (which can 
mean either that the computation doesn’t work at all, or 
changes the value only slightly). More information:
https://pandas.pydata.org/pandas-docs/stable/basics.html#
descriptive-statistics

DataFrame.mean  method is a cleaner way to 
do the same thing. Argument picks out which axis 
to take means on: rows (1) or columns (0).

https://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics
https://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics


Summarizing DataFrames

DataFrame.describe()  is similar to the R 
summary()  function. Non-numeric data will 
get statistics like counts, number of unique 
items, etc. If a DataFrame has mixed types 
(both numeric and non-numeric), the 
non-numeric data is excluded by default.

Details and optional arguments: 
https://pandas.pydata.org/pandas-docs/stable/basics.ht
ml#summarizing-data-describe

https://pandas.pydata.org/pandas-docs/stable/basics.html#summarizing-data-describe
https://pandas.pydata.org/pandas-docs/stable/basics.html#summarizing-data-describe


Row- and column-wise functions: apply()

DataFrame.apply()  takes a function and 
applies it to each column of the DataFrame.

Axis argument is 0 by default (column-wise). 
Change to 1 for row-wise application.



Row- and column-wise functions: apply()

Numpy ufuncs take vectors and spit out 
vectors, so using df.apply()  to apply a 
ufunc to every row or column in effect ends up 
applying the ufunc to every element.



Row- and column-wise functions: apply()

We can pass positional and keyword arguments 
into the function via df.apply . Args is a tuple 
of the positional arguments (in order), followed 
by the keyword arguments.

Note: “apply() takes an argument raw which is False by default, 
which converts each row or column into a Series before applying the 
function. When set to True, the passed function will instead receive 
an ndarray object, which has positive performance implications if 
you do not need the indexing functionality.” This can be useful if your 
function is meant to work specifically with Series.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html#pandas.DataFrame.apply


Element-wise function application

This causes an error, because 
apply thinks that its argument 
should be applied to Series 
(i.e., columns), not to individual 
entries.



Element-wise function application

applymap  works similarly to Python’s 
map function (and the Series map 
method). Applies its argument function 
to every entry of the DataFrame.



Tablewise Function Application

Here we have a function composition 
applied to a DataFrame. This is 
perfectly valid code, but pandas 
supports another approach.



Tablewise Function Application

The DataFrame pipe method is built for a 
pattern called method chaining. The pipe 
method has better support for passing 
additional arguments around than does the 
function composition to the right. This 
pattern using pipe is also more conducive 
to functional programming patterns.



Recap
Previously: basics of pandas

Series and DataFrames
Indexing, changing entries
Function application

Next: more complicated operations
Statistical computations
Group-By operations
Reshaping, stacking and pivoting



Recap
Previously: basics of pandas

Series and DataFrames
Indexing, changing entries
Function application

Next: more complicated operations
Statistical computations
Group-By operations
Reshaping, stacking and pivoting

Caveat: pandas is a large, complicated 
package, so I will not endeavor to mention 
every feature here. These slides should be 
enough to get you started, but there’s no 
substitute for reading the documentation.



Percent change over time

pct_change  method is supported by both Series and 
DataFrames. Series.pct_change  returns a new 
Series representing the step-wise percent change.

Note: pandas has extensive support for time series 
data, which we mostly won’t talk about in this course. 
Refer to the documentation for more.



Percent change over time

pct_change  operates on columns of a DataFrame, by 
default. Periods argument specifies the time-lag to use 
in computing percent change. So periods=2 looks at 
percent change compared to two time steps ago.

pct_change  includes control over how missing 
data is imputed, how large a time-lag to use, etc. 
See documentation for more detail: 
https://pandas.pydata.org/pandas-docs/stable/ge
nerated/pandas.Series.pct_change.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html


Computing covariances
cov method computes covariance 
between a Series and another Series.

cov method is also supported by DataFrame, 
but instead computes a new DataFrame of 
covariances between columns.

cov supports extra arguments for further specifying behavior: 
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.cov.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.cov.html


Pairwise correlations

DataFrame corr method computes 
correlations between columns (use axis 
keyword to change this behavior). 
method argument controls which 
correlation score to use (default is 
Pearson’s correlation.



Ranking data

rank method returns a new Series 
whose values are the data ranks.

Ties are broken by assigning the 
mean rank to both values.



Ranking data
By default, rank ranks columns 
of a DataFrame individually.

Rank rows instead by supplying 
an axis argument.

Note: more complicated ranking of whole rows (i.e., sorting 
whole rows rather than sorting columns individually) is possible, 
but requires we define an ordering on Series.



Aggregating data

This command creates time 
series data, with rows indexed 
by year-month-day timestamps.

agg is an alias for the 
method aggregate . Both 
work exactly the same.

Supplying a list of functions to 
agg will apply each function to 
each column of the DataFrame, 
with each function getting a row 
in the resulting DataFrame.



Aggregating data

agg can, alternatively, take a 
dictionary whose keys are column 
names, and values are functions.

Note that the values here are strings, not 
functions! pandas supports dispatch on strings. 
It recognizes certain strings as referring to 
functions. apply supports similar behavior.



Aggregating data

df contains mixed data types.

agg (and similarly apply) will 
only try to apply these functions 
on the columns of types 
supported by those functions.

pandas doesn’t know 
how to compute a mean 
string, so it doesn’t try.

Note: the DataFrame transform  
method provides generally similar 
functionality to the agg method.



Iterating over Series and DataFrames

Iterating over a Series gets an iterator 
over the values of the Series.

Iterating over a DataFrame gets an 
iterator over the column names.



Iterating over Series and DataFrames

iteritem()  method is supported by both Series and 
DataFrames. Returns an iterator over the key-value pairs. In 
the case of Series, these are  (index,value) pairs. In the case 
of DataFrames, these are (colname, Series) pairs.



Iterating over Series and DataFrames

DataFrame iterrows()  returns an 
iterator over the rows of the DataFrame 
as (index, Series) pairs.



Iterating over Series and DataFrames

DataFrame iterrows()  returns an 
iterator over the rows of the DataFrame 
as (index, Series) pairs.

Note: DataFrames are designed to make certain 
operations (mainly vectorized operations) fast. This 
implementation has the disadvantage that iteration over a 
DataFrames is slow. It is usually best to avoid iterating 
over the elements of a DataFrame or Series, and instead 
find a way to compute your quantity of interest using a 
vectorized operation or a map/reduce operation.



Group By: reorganizing data
“Group By” operations are a concept from databases

Splitting data based on some criteria
Applying functions to different splits
Combining results into a single data structure

Fundamental object: pandas GroupBy objects



Group By: reorganizing data

DataFrame groupby method 
returns a pandas groupby object.



Group By: reorganizing data

Every groupby object has an attribute groups, 
which is a dictionary with maps group labels to 
the indices in the DataFrame.

In this example, we are splitting on the 
column ‘A’, which has two values: 
‘plant’ and ‘animal’ , so the groups 
dictionary has two keys.



Group By: reorganizing data

Every groupby object has an attribute groups, 
which is a dictionary with maps group labels to 
the indices in the DataFrame.

In this example, we are splitting on the 
column ‘A’, which has two values: 
‘plant’ and ‘animal’ , so the groups 
dictionary has two keys.

The important point is that the groupby object is 
storing information about how to partition the rows 
of the original DataFrame according to the 
argument(s) passed to the groupby method.



Group By: aggregation

Split on group ‘A’, then compute the means 
within each group. Note that columns for which 
means are not supported are removed, so 
column ‘B’ doesn’t show up in the result.



Group By: aggregation

Here we’re building a hierarchically-indexed 
Series (i.e., multi-indexed), recording (fictional) 
scores of students by major and handedness.

Suppose I want to collapse over handedness to get 
average scores by major. In essence, I want to group by 
major and ignore handedness.



Group By: aggregation
Suppose I want to collapse over handedness to get 
average scores by major. In essence, I want to group by 
major and ignore handedness.

Group by the 0-th level of the hierarchy 
(i.e., ‘major’), and take means.

We could have equivalently written 
groupby(‘major’) , here.



Group By: examining groups

groupby.get_group  lets us pick out 
an individual group. Here, we’re 
grabbing just the data from the ‘econ’ 
group, after grouping by ‘major’.



Group By: aggregation

Similar aggregation to what we did a 
few slides ago, but now we have a 
DataFrame instead of a Series. 



Group By: aggregation

Similar aggregation to what we did a 
few slides ago, but now we have a 
DataFrame instead of a Series. 

Groupby objects also support the aggregate  
method, which is often more convenient.



Transforming data
From the documentation: “The transform 
method returns an object that is indexed the 
same (same size) as the one being grouped.”

Building a time series, 
indexed by year-month-day.

Suppose we want to 
standardize these scores 
within each year. Group the data according to the output 

of the key function, apply the given 
transformation within each group, then 
un-group the data.

Important point: the result of groupby.transform  has 
the same dimension as the original DataFrame or Series.



Filtering data From the documentation: “The 
argument of filter must be a function 
that, applied to the group as a whole, 
returns True or False.”

So this will throw out all the 
groups with sum <= 2.

Like transform , the 
result is ungrouped.



Combining DataFrames

pandas concat function concatenates 
DataFrames into a single DataFrame. 

Repeated indices remain repeated 
in the resulting DataFrame.

Missing values 
get NaN.

pandas.concat  accepts numerous 
optional arguments for finer control over 
how concatenation is performed. See the 
documentation for more.



Merges and joins
pandas DataFrames support many common database operations

Most notably, join and merge operations

We’ll learn about these when we discuss SQL later in the semester
So we won’t discuss them here

Important: What we learn for SQL later has analogues in pandas

If you are already familiar with SQL, you might like to read this:
https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html


Pivoting and Stacking Data in this format is usually called stacked. It 
is common to store data in this form in a file, but 
once it’s read into a table, it often makes more 
sense to create columns for A, B and C. That is, 
we want to unstack this DataFrame.



Pivoting and Stacking
The pivot method takes care of unstacking 
DataFrames. We supply indices for the new 
DataFrame, and tell it to turn the variable 
column in the old DataFrame into a set of 
column names in the unstacked one.

https://en.wikipedia.org/wiki/Pivot_table

https://en.wikipedia.org/wiki/Pivot_table


Pivoting and Stacking

How do we stack this? That is, how do we get a 
non-pivot version of this DataFrame? The answer 
is to use the DataFrame stack method.

Note: we could also construct the 
index set tuples using itertools .



Pivoting and Stacking

The DataFrame stack method makes a stacked version 
of the calling DataFrame. In the event that the resulting 
column index set is trivial, the result is a Series. Note that 
df.stack()  no longer has columns A or B. The column 
labels A and B have become an extra index.



Pivoting and Stacking

Here is a more complicated example. 
Notice that the column labels have a 
three-level hierarchical structure.

There are multiple ways to stack this data. At 
one extreme, we could make all three levels 
into columns. At the other extreme, we could 
choose only one to make into a column.



Pivoting and Stacking
Stack only according to level 1 
(i.e., the animal column index).

Missing animal x cond x hair_length 
conditions default to NaN.



Pivoting and Stacking

Stacking across all three levels 
yields a Series, since there is no 
longer any column structure. This is 
often called flattening a table.

Notice that the NaN entries are not 
necessary here, since we have an 
entry in the Series only for entries of 
the original DataFrame.



Plotting DataFrames 

cumsum gets partial sums, 
just like in numpy.

Note: this requires that you 
have imported matplotlib.

Note that legend is automatically 
populated and x-ticks are 
automatically date formatted.


