STAT606: Computing for Data Science and Statistics 1

Homework 2: Iteration, Sequences, and Dictionaries
Due February 16, 11:59 pm
Worth 15 points

Instructions on writing and submitting your homework can be found on the course
webpage at http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2024/STAT606/
hw_instructions.html. Fuailure to follow these instructions will result in lost points.
Please direct any questions the instructor.

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble or you have questions, it’s best to find those
problems well in advance, not in the hours before your assignment is due!

2. If you have clarifying questions or you run into issues, please do not email the
instructor directly. Instead, post to the discussion board so that your classmates
can benefit as well if they have the same question.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

1 Fun with Strings (2 points)

In this problem, you’ll implement a few simple functions for dealing with strings. You
need not perform any error checking in any of the functions for this problem. Note:
Think carefully about what your functions should do on edge cases (e.g., the empty
string, strings of length 1, etc.).

1. A palindrome is a word or phrase that reads the same backwards and forwards[f] So,
for example, the words “level”, “kayak” and “pop” are all English palindromes, as are
the phrases “rats live on no evil star” and “Was it a car or a cat I saw?”, provided we
ignore the spaces and punctuation. Write a function called is_palindrome, which
takes a string as its only argument, and returns a Boolean. Your function should
return True if the argument is a palindrome, and False otherwise. For the purposes
of this problem, you may assume that the input is a string and will consist only of
alphanumeric characters (i.e., the letters, either upper or lower case, and the digits
0 through 9) and spaces. Your function should ignore spaces and capitalization in
assessing whether or not a string is a palindrome, so that the strings ’tacocat’ and
T A C 0 cat’ are both considered palindromes.

"https://en.wikipedia.org/wiki/Palindrome


http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2024/STAT606/hw_instructions.html
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2024/STAT606/hw_instructions.html
https://en.wikipedia.org/wiki/Palindrome

STAT606: Computing for Data Science and Statistics 2

2. Let us say that a word is “abecedarian” if its letters appear in alphabetical order
(repeated letters are okay). That is, for every letter in the word, all letters before
that letter are the same or earlier in the alphabet, and all letters after are the same or
later in the alphabet. So, for example, “adder” and “beet” are abecedarian, whereas
“dog” and “cat” are not. Write a function is_abecedarian, which takes a single
argument in the form of a string and returns True if the argument is abecedarian and
False otherwise. You may assume that the input string consists only of alphabetic
characters and spaces. Your function should ignore spaces and capitalization, so
that the string >abCd efgGgh xyz’ is considered abecedarian.

3. Write a function called remove_vowels that takes a string as its only argument
and returns that string with all the vowels removed. For the purposes of this
question, the vowels are the letters a e i o u. Your function should handle both
upper- and lower-case letters. Thus, remove_vowels(’cat?’) should return ’>ct?’,
remove_vowels(’goAT!’) should return ’gT!’, remove_vowels(’Audio’) should
return ’d’, etc. Take care that your function correctly handles a string of all vow-
els. You may not use any of the built-in string methods (e.g., str.replace) for this
problem. You should be able to solve this problem using only equality checks and
string concatenation. Hint: there is a particularly elegant solution to this prob-
lem that makes use of the accumulator pattern we saw in lecture and the fact that
Python strings implement the addition operation as string concatenation.

2 Fun with Lists (2 points)

In this problem, you’ll implement a few very simple list operations.

1. Write a function 1list_reverse that takes a list as its only argument and returns that
list, reversed. So, for example, 1ist_reverse([1,2,3]) should return [3,2,1] and
list_reverse([’a’,1,3.14]) should return [3.14,1,’a’]. Your function should
raise an appropriate error in the event that the input is not a list (though note that in
principal, we could implement this function to support any sequence-like data type)
Note: review the material on the distinction between ValueError and TypeError
to determine which is the appropriate error to raise.

2. Write a function is_sorted that takes a sequence seq as its only argument and
returns True if the sequence is sorted in non-decreasing order and returns False
otherwise. Your function should require a single traversal of the list, and inefficient
solutions (i.e., ones that require more than one traversal) will not receive full credit.
You may assume that the input sequence seq is indeed a sequence (i.e., supports
indexing by integers) and all elements in the input sequence seq support the com-
parison operations (==, </> >= etc), so that there is no need for error checking.
Indeed, if you try to index x[0] for a non-sequence x or try to make the comparison,
say, 1 < ’cat’, Python will raise an error for you. Note: this problem illustrates
a particularly useful aspect of Python’s dynamic typing. As with list_reverse
above, it is possible to write this function while being agnostic as to the type of the
input variable. It requires only that seq supports indexing and that the elements in
seq support the comparison operations.

3. This one is a common coding interview question. Write a function called binary_search
that takes two arguments: a list of integers t (which is guaranteed to be sorted in



STAT606: Computing for Data Science and Statistics 3

non-decreasing order) and an integer elmt, and returns True if elmt appears in list
t and False otherwise. Of course, you could do this with the in operator, but that
will be slow when the list is long, for reasons that we discussed in class. Instead,
you should use binary search: To look for elmt, first look at the “middle” element
of the list t. If it’s a match, return True . If it isn’t a match, compare elmt against
the “middle” element, and recurse, searching the first or second half of the list de-
pending on whether elmt is bigger or smaller than the middle element. Hint: be
careful of the base cases: What should you do when t is empty, length 1, length 2,
etc.? Note: your solution must actually make use of binary search to receive credit.
You may not use any built-in sorting or searching functions. Note: we could, if we
wanted, use the function is_sorted that we wrote above to do error checking here,
but there is a good reason not to do so. This reason will become clear when we
discuss the topic of runtime analysis later in the semester.

3 More Fun with Strings (2 points)

In this problem, you’ll implement some very simple counting operations that are common
in fields like biostatistics and natural language processing. You need not perform any
error checking in the functions for this problem.

1. Write a function called char_hist that takes a string as its only argument and
returns a dictionary whose keys are characters and values are the number of times
each character appears in the input. So, for example, given the string “gattaca”,
your function should return a dictionary {’g’:1, ’a’:3, ’t’:2,’c’:1 } . Your
function should count all characters in the input (including spaces, tabs, numbers,
etc). The dictionary returned by your function should have as its keys all and only
the characters that appeared in the input (i.e., you don’t need to have a bunch of
keys with value 0). Your function should count capital and lower-case letters as the
same, and key on the lower-case version of the character, so that G and g are both
counted as the same character, and the corresponding key in the dictionary is g.
You should perform error checking to verify that the input is a string, and raise an
appropriate error if not. Hint: you may find the dictionary get method useful in
this problem.

2. In natural language processing and bioinformatics, we often want to count how often
characters or groups of characters appear. Pairs of words or characters are called
bigrams. For our purposes in this problem, a bigram is a pair of characters. As an
example, the string ‘mississippi’ contains the following bigrams, in order:

)mi7’ )is)’ JSSJ, Jsi), )iSJ, )Ss)’ )Si)’ JipJ, Jpp), )pi)

Write a function called bigram_hist that takes a string as its only argument and
returns a dictionary whose keys are length-2 strings representing ordered pairs of
characters and values are the number of times each pair of characters appeared in
the string. So, for example, when called on the string mississippi’, your function
should return a dictionary with keys

)miJ’ )is), )SS), )Si), 7ip), )ppJ’)pi7

and respective count values
1,2,2,2,1,1, 1.



STAT606: Computing for Data Science and Statistics 4

As another example, if the two-character string ’ab’ occurred four times in the
input, then your function should return a dictionary that includes the key-value
pair (’ab’,4). Your function should handle all characters (alphanumerics, spaces,
punctuation, etc). So, for example, the string ’cat, dog’ includes the bigrams
’t,2, 2, > and ’ d’. As in the previous subproblem, the dictionary produced by
your function should only include pairs that actually appeared in the input, so that
the absence of a given key implies that the corresponding two-character string did
not appear in the input. Also as in the previous subproblem, you should count
upper- and lower-case letters as the same, so that *GA’, ’Ga’, *gA’ and ’ga’ all
contribute to the same count.

4 Tuples as Vectors (4 points)

In this problem, we’ll see how we can use tuples to represent vectors. Later in the semester,
we’ll see the Python numpy and scipy packages, which provide objects specifically meant
to enable matrix and vector operations, but for now tuples are all we have. So, for this
problem we will represent a d-dimensional vector by a length-d tuple of floats.

1. Implement a function called vec_scalar_mult, which takes two arguments: a tuple
of numbers (floats and/or integers) t and a number (float or integer) s and returns
a tuple of the same length as t, with its entries equal to the entries of t multiplied
by the scalar s. That is, vec_scalar_mult implements multiplication of a vector
by a scalar. Your function should check to make sure that the types of the input are
appropriate (e.g., that s is a float or integer), and raise a TypeError with a suitable
error message if the types are incorrect. Your function should gracefully handle the
case where the input s is an integer rather than a float, or the case where some or
all of the entries of the input tuple are integers rather than floats. Hint: you may
find it useful for this subproblem and the next few that follow it to implement a
function that checks whether or not a variable is a “valid” vector (i.e., checks if its
input is a tuple and checks that its entries are all floats and/or integers). We call a
function like this a helper function.

4

2. Implement a function called vec_inner_product that takes two “vectors” (i.e., tu-
ples of floats and/or ints) as its inputs and returns a float corresponding to the inner
product of these two vectors. Recall that the inner product of vectors z,y € R? is
given by Z?Zl x;y;. Your function should check whether or not the two inputs are
of the correct type (i.e., both “valid” vectors), and raise an appropriate error with
an informative error message if not. Your function should also check whether or
not the two inputs agree in their dimension (i.e., length, so that the inner product
is well-defined), and raise an appropriate error with an informative error message
if not. Note: think carefully about what type of error should be raised in each of
these two error conditions.

3. It is natural, following the above, to extend our scheme to the case of matrices.
Recall that a matrix is simply an array of numbers. If you are not already familiar
with matrices, feel free to look them up on Wikipedia or in any linear algebra
textbook. We will represent a matrix as a tuple of tuples, i.e., a tuple whose entries
are themselves tuples. We will represent an m-by-n matrix as an m-tuple of n-tuples.
For example, suppose that we are representing an m-by-n matrix M as a variable



STAT606: Computing for Data Science and Statistics 5

my_mx. Then my_mx will be a length-m tuple of n-tuples, so that the ¢-th row of the
matrix is given (as a vector) by the i-th entry of tuple my_mx.

Write a function check_valid_mx that takes a single argument and returns a Boolean,
which is True if the given argument is a tuple that validly represents a matrix as
described above, and returns False otherwise. A valid matrix will be a tuple of
tuples such that

e Every element of the tuple is itself a tuple,
e cach of these tuples is the same length, and

e cvery element of each of these tuples is a number (i.e., a float or integer).

4. Write a function mx_vec_mult that takes a matrix (i.e., tuple of tuples) and a vector
(i.e., a tuple) as its arguments, and returns a vector (i.e., a tuple of numbers) that
is the result of multiplying the given vector by the given matrix on the left. That
is, mx_vec_mult (M,v) should return the vector Mv. Again, if you are not familiar
with matrix-vector multiplication, refer to Wikipedia or any linear algebra textbook.
Your function should check that all the supplied arguments are reasonable (e.g.,
using your function check_valid_mx), and raise an appropriate error if not. Hint:
you may find it useful to make use of the inner-product function that you defined
previously.

5 More Fun with Vectors (2 points)

In the previous problem, you implemented matrix and vector operations using tuples to
represent vectors. In many applications, it is common to have vectors of dimension in the
thousands or millions, but in which only a small fraction of the entries are nonzero. Such
vectors are called sparse vectors, and if we tried to represent them as tuples, we would be
using thousands of entries just to store zeros, which would quickly get out of hand if we
needed to store hundreds or thousands of such vectors.

A reasonable solution is to instead represent a sparse vector (or matrix) by only storing
its non-zero entries. Typically, we do this by storing (index, value) pairs. We will take
this approach in this problem, and represent vectors as dictionaries with non-negative
integer keys (so we index into our vectors starting from 0— note that this is different from
MATLAB and R, where indexing starts from 1). A walid sparse vector will be a Python
dictionary that has the properties that (1) all its keys are non-negative integers, and (2)
all its values are numbers (i.e., integers or floats).

1. Write a function is_valid_sparse_vector that takes one argument, and returns
True if and only if the input is a valid sparse vector, and returns False otherwise.
Note: your function should not assume that the input is a dictionary.

2. Write a function sparse_inner_product that takes two “sparse vectors” as its in-
puts, and returns a float that is the value of the inner product of the vectors that
the inputs represent. Your function should raise an appropriate error in the event
that either of the inputs is not a valid sparse vector.

Note: This may be your first foray into algorithm design, so here’s something
I’d like you to think about: there are several distinct ways to perform this inner
product operation, depending on how one chooses to iterate over the entries of the



STAT606: Computing for Data Science and Statistics 6

two dictionaries. For this specific problem, it doesn’t much matter which you choose
(though I would argue that there is a “best” choice), but there is an important point
that you should consider: if the indices of our vectors were sorted, there would be
an especially fast way to perform this operation that would require that we look at
each entry of the two vectors at most once. Unfortunately, there is no guarantee
about order of dictionary keys, so we can’t take advantage of this fact, but we’ll
come back to it later in the course. You do not need to write anything about this,
but please give it some thought.

6 More Fun with Tuples (3 points)

In this problem, you’ll do a bit more with tuples.

1. You may recall that the functions min and max take any (positive) number of argu-
ments, but that sum does not behave similarly. Write a function called my_sum that
takes any number of numeric (ints and floats) arguments, and returns the sum of its
arguments. Your function should correctly handle the case of zero arguments. You
need not perform any error checking for this function. Reminder: by convention,
an empty sum is taken to be 0.

2. Write a function called reverse_tuple that takes a tuple as its only argument and
returns a tuple that is the reverse of the input. That is, the output should have as
its first entry the last entry of the input, the second entry of the output should be
the second-to-last entry of the input, and so on. You need not perform any error
checking for this function. Hint: you already essentially solved this problem above
for lists, and tuples are just immutable lists.

3. Write a function called rotate_tuple that takes two arguments: a tuple and an in-
teger, in that order. Letting n be the integer given in the input, your function should
return a tuple of the same length as the input tuple, but with its entries “rotated”
by n. If n is positive, this should mean to “push forward” all the entries of the input
tuple by n entries, with entries that “go off the end” of the tuple being wrapped
around to the beginning, so that the i-th entry of the input tuple becomes the (i+n)-
th entry of the output, wrapping around to the beginning of the tuple if this index
goes off the end. If n is negative, then this corresponds to rotating the entries in
the other direction, with entries of the input tuple being “pushed backward”. So,
for example, rotate_tuple((1,2,3), 1) and rotate_tuple((1,2,3),-2) should
both return (3,1,2); rotate_tuple((1,2,3), -1) should return (2,3,1); and
rotate_tuple((1,2,3), 0) should return (1,2,3). Your function should perform
error checking to ensure that the inputs are of appropriate types. If the user supplies
a non-integer for n, try casting it to an integer. Hint: a try/catch statement is most
appropriate, here.



	Fun with Strings (2 points)
	Fun with Lists (2 points)
	More Fun with Strings (2 points)
	Tuples as Vectors (4 points)
	More Fun with Vectors (2 points)
	More Fun with Tuples (3 points)

