
STAT606: Computing for Data Science and Statistics 1

Homework 4: Objects and Classes

Due March 1, 11:59 pm

Worth 15 points

Instructions on writing and submitting your homework can be found on the course
webpage at http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2024/STAT606/
hw_instructions.html. Failure to follow these instructions will result in lost points.
Please direct any questions the instructor.

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble or you have questions, it’s best to find those
problems well in advance, not in the hours before your assignment is due!

2. If you have clarifying questions or you run into issues, please do not email the
instructor directly. Instead, post to the discussion board so that your classmates
can benefit as well if they have the same question.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

1 More Fun with Vectors (8 points)

In this exercise, we’ll encounter our old friend the vector yet again, this time using objects.

1. Define a class Vector. Every vector should have a dimension (a positive integer) and
a list or tuple of its entries. The initializer for your class should take the dimension
as its first argument and a list or tuple of numbers (ints or floats), representing
the vector’s entries, as its second argument. If the user supplies only a dimension
and no entries, the default behavior should be to create a vector of all zeroes of the
given dimension. The initializer should raise a sensible error in the case where the
dimension is invalid (i.e., wrong type or a negative number), and should also raise an
error in the event that the dimension and the number of supplied entries disagree.

2. Implement a method Vector.get_dim() that returns the vector’s dimension, and a
method Vector.get_entries() that returns the vector’s entries as a tuple.

3. Did you choose to make the vector’s entries a tuple or a list (there is no strictly
right or wrong answer here, although I would say one is better than the other in this
context)? Defend your choice.

4. Are the dimension and entries class attributes or instance attributes? Why is this
the right design choice?

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2024/STAT606/hw_instructions.html
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2024/STAT606/hw_instructions.html

STAT606: Computing for Data Science and Statistics 2

5. Implement the necessary operator(s) to support comparison (equality, less than, less
or equal to, greater than, etc) of Vector objects. We will say that two Vector

objects are equivalent if they have the same coordinates (normally we would worry
about float comparison here, but let’s ignore that). Otherwise, comparison should
be analogous to tuples in Python, so that comparison is done on the first coordinate
first, then the second coordinate, then the third, and so on. So, for example, the
two-dimensional vector (2, 4) is ordered before (less than) (2, 5). Attempting to
compare two vectors of different dimensions should result in an error. Attempting
to compare a Vector object to an object that is not of type Vector should result in
an error.

6. Implement the addition and subtraction operators for Vector objects, so that we can
write v1 + v2 and v1 - v2 for Vector objects v1 and v2 of the same dimension.
Adding two Vector objects should produce another Vector object. Adding two
Vector objects of different dimensions should result in an error, as should adding a
Vector and a non-Vector.

7. Implement a method Vector.dot for computing the inner product of the caller with
another Vector object. That is, if v1 and v2 are Vector objects, v1.dot(v2) should
compute their inner product. Your method should raise an appropriate error in the
event that the argument is not of the correct type or in the event that the dimensions
of the two vectors do not agree.

8. We would also like our Vector class to support scalar multiplication. Left- or right-
multiplication by a scalar, e.g., 2*v or v*2, where v is a Vector object, should
result in a new Vector object with its entries all multiplied by the given scalar.
This should support multiplication by both ints and floats. We will also follow
conventions of R and numpy (which you will learn in a few weeks), and use * to
denote entrywise vector-vector multiplication, so that for Vector objects v and w,
v*w results in a new Vector object, with the i-th entry of v*w equal to the i-th
entry of v multiplied by the i-th entry of w. Implement the appropriate operators to
support this multiplication operation. Many languages have a convention for dealing
with multiplication of vectors that differ in their dimension (look up broadcasting if
you’re curious, or just wait a few weeks until we discuss numpy), but we will punt
on this matter. Your method should simply raise an appropriate error in the event
that v and w disagree in their dimensions. Your method should also raise an error
when trying to multiply a Vector object by anything that isn’t a Vector, int or float.

9. For a real number 0 ≤ p ≤ ∞, and a vector v ∈ Rd, the p-norm of v, written ∥v∥p,
is given by

∥v∥p =

∑d

i=1 1vi ̸=0 if p = 0

(
∑d

i=1 |vi|p)1/p if 0 < p < ∞,

maxi=1,2,...,d |vi| if p = ∞
.

Strictly speaking, this is only a norm for p ≥ 1, but that’s beside the point.1 Im-
plement a method Vector.norm that takes a single argument p (an int or float) as
an argument and returns the p-norm of the calling Vector object. Your method
should work whether p is an integer or float. Your method should raise a sensi-
ble error in the event that p is negative or is not of an appropriate type. Hint:

1https://en.wikipedia.org/wiki/Norm_(mathematics)

https://en.wikipedia.org/wiki/Norm_(mathematics)

STAT606: Computing for Data Science and Statistics 3

see https://docs.python.org/3/library/functions.html#float for documen-
tation on representing positive infinity in Python.

2 Random Walkers (7 points)

In this problem, you’ll get some practice working with inheritance by building a collection
of objects for generating and representing random walks.2 Recall that a random walk is a
discrete-time stochastic process, in which a “walker” starts out at some position S0 at time
0, and for all t = 1, 2, . . . , the walker’s position at time t+ 1 is given by St+1 = St +Xt,
where X1, X2, . . . are drawn i.i.d. from some distribution. The variables X1, X2, . . . are
called the “steps” or “increments” of the random walk.

The simplest random walk is the symmetric random walk on the integers. The walker
starts out at 0 at time t = 0, and the steps X1, X2, . . . are independent Rademacher
random variables.3 That is, for all i = 1, 2, . . . , Pr[Xi = 1] = Pr[Xi = −1] = 1/2.
At each time t = 0, 1, 2, . . . , we say that the current position of the random walker is
St =

∑t
i=1 Xi, so that S0 = 0, S1 = X1, S2 = X1+X2, and so on. At any given time t, we

can speak of the “history” or the “sample path” of the random walker, (S0, S1, . . . , St−1).
That is, the sequence of integers that the random walker has visited prior to time t.

1. Implement a class representing symmetric random walk on the integers, called
SymIntRW, which has the following instance attributes:

� current_position: an integer, the current position of the random walker.

� history: a list of integers that specify the previous positions of the walker, in
order (so that the last entry of the list is the most recent previous position of
the walker).

The class should support the following methods:

� get_time(): return a non-negative integer encoding the number of steps that
the walker has taken so far. That is, return the length of the history attribute.

� get_history(): return the history attribute, i.e., the list of previous posi-
tions.

� get_position(): return the current_position attribute, i.e., the integer that
the walker is currently at.

� step(): take a single step. Generate a random step according to a Rademacher
distribution. Update the current position and history accordingly. Hint: use
the Python random.randint function.4

You should also implement an initialization method that takes no arguments (aside
from the self argument) and initializes self.current_position to 0 and self.history
to be the empty list. This reflects the fact that initially, the random walker starts
at S0 = 0, at which point it has no “history”.

2. One natural extension of the symmetric random walk on the integers is to allow the
steps to be drawn from a different distribution. Implement a class IntegerRW that

2https://en.wikipedia.org/wiki/Random_walk
3https://en.wikipedia.org/wiki/Rademacher_distribution
4https://docs.python.org/3/library/random.html#random.randint

https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Random_walk
https://en.wikipedia.org/wiki/Rademacher_distribution
https://docs.python.org/3/library/random.html#random.randint

STAT606: Computing for Data Science and Statistics 4

inherits from SymIntRW, but has the additional attribute p, where p is a probability.
Override the following methods:

� Override the initialization method to take a single optional argument p, which
should default to 0.5, which initializes the self.p attribute to be equal to
the argument p, and raises an appropriate error in the event that p is not a
probability (i.e., is not an int or float in the range [0, 1]).

� Override the step method so that the steps are generated according to

Pr[Xi = 1] = 1− Pr[Xi = −1] = p.

Hint: random.random() will generate a random float drawn uniformly from
the interval [0, 1).

3. Another extension of the symmetric random walk on the integers is to define the
random walk on 2-, 3- or higher-dimensional space. The d-dimensional simple sym-
metric random walk (SSRW) is a random walk on the integer lattice

Zd = {(z1, z2, . . . , zd) : z1, z2, . . . , zd ∈ Z} ,

in which the steps X1, X2, · · · ∈ Zd are drawn i.i.d. from the uniform distribution on{
z ∈ Zd : ∥z∥ = 1

}
.

Said another way, to generate a step Xt, we generate Xt = ϵtZt, where ϵt ∈ {−1, 1}
is a Rademacher random variable,

Pr[ϵt = 1] = Pr[ϵt = −1] =
1

2
,

and Zt is generated by choosing an index j uniformly from the set of integers
{1, 2, . . . , d}, and setting

(Zt)i =

{
1 if i = j

0 otherwise.

This process is called the symmetric random walk because the steps are chosen uni-
formly from the points adjacent to the origin in Zd (i.e., so that the step distribution
is symmetric about the origin).

Implement a class SSRW that inherits from SymIntRW, but represents a random walk
on the d-dimensional lattice. Thus, the attribute self.current_position is now a
point in Zd, which you should represent by a list of d integers (note that we could
use our Vector class from the previous problem, but I want to avoid making one
problem depend on the other). The class should have an attribute self.dimension,
which is a positive integer representing the dimension of the random walk. You will
need to override the following methods:

� step(): Update this method to generate a new step according to the process
outlined above. Hint: use random.choice to select from {−1, 1}.

� The initialization method should take a single argument, a positive integer d,
which specifies the dimension attribute. d should default to 1. The initializa-
tion method should raise an appropriate error in the event that this argument
is not a positive integer. In keeping with the one-dimensional case, the current
position should be initialized to be the origin.

	More Fun with Vectors (8 points)
	Random Walkers (7 points)

