
STATS701 Topics in Statistics: Data Analysis with Python 1

Homework 1: Data Types, Functions and Conditionals

Due January 17th, 11:59 pm

Worth 10 points

January 3, 2018

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

2. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Winter2018/STATS701/hw_template.ipynb. You will submit, via Canvas, a .zip file
called yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand
in a file for this, homework 1, it would be called klevin_hw1.zip. Contact the instructor
or your GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able
to extract your archived file and run your notebook file on my own machine. Please
include all of your code for all problems in the homework in a single Python notebook
unless instructed otherwise, and please include in your notebook file a list of any and
all people with whom you discussed this homework assignment. Please also include an
estimate of how many hours you spent on each of the three sections of this homework
assignment.

These instructions can also be found on the course webpage at http://www-personal.
umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html. Please
direct any questions to either the instructor or your GSI.

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html


STATS701 Topics in Statistics: Data Analysis with Python 2

1 Defining Simple Functions (3 points)

In this problem, you will get practice defining simple functions in Python.

1. Define a function called say_hello, which takes no arguments and prints the string
Hello, world! when called.

2. Define a function called goat_pad, which takes a string as its only argument, and
prints that string, prepended and appended with the string goat. So, goat_pad(’bird’)
should produce the output

goatbirdgoat

goat_pad(’_’) should produce the output

goat_goat

and so on. You may assume that the input is a string, so there is no need to perform
any error checking in your function.

3. Define a function called print_n, which takes two arguments, a string s and an
integer n (in that order), and prints the string n times, each on a separate line. You
may assume that s is a string and that the integer n is non-negative, so there is no
need to perform any error checking in your function.

2 Euclid’s algorithm (3 points)

Euclid’s algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm) is a method
for finding the greatest common divisor (GCD) of two numbers. Recall that the GCD of
two numbers m and n is the largest number that divides both m and n.

1. The Wikipedia page above includes several pseudocode implementations of Euclid’s
algorithm. Choose one of these, and use it to implement a function gcd, which takes
two integers as its arguments and returns their GCD. You may assume that both
inputs are integers, so there is no need to include any error checking in your function.
Note: this is one of the rare occasions where you have my explicit permission to
look up your answer. Unless otherwise stated (e.g., as in this problem), looking up
solutions on Wikipedia or in any other non-class resource will be considered cheating
in this course!

2. Use your function to evaluate the GCDs of the following pairs of numbers:

(a) 20, 10

(b) 2017, 2018

(c) 1000, 250

(d) 5040, 60

3. What does your function do if one or both of the arguments are negative? Does this
make sense?

https://en.wikipedia.org/wiki/Euclidean_algorithm


STATS701 Topics in Statistics: Data Analysis with Python 3

3 Approximating Euler’s number e (4 points)

The base of the natural logarithm, e, is typically defined as the infinite sum

e =
∞∑
k=0

1

k!
= 1 + 1 +

1

2
+

1

6
+

1

24
+ . . . , (1)

where k! denotes the factorial of k,

k! = k · (k − 1) · (k − 2) · · · · · 3 · 2 · 1,

where we define 0! = 1 by convention. For more on Euler’s number, see https://en.

wikipedia.org/wiki/E_(mathematical_constant). In this problem, we will explore
different approaches to approximating this number.

1. An early characterization of Euler’s number, due to Jacob Bernoulli, was as the limit

lim
x→∞

(
1 +

1

x

)x

. (2)

Define a function called euler_limit that takes as an argument an integer n, and
returns a float that approximates e by taking x = n in Equation (2). You may
assume that the input to your function will be a positive integer.

2. Define a function called euler_infinite_sum that takes a single integer argu-
ment n, and returns an approximation to e based on the first n terms of the
sum in Equation 1. Your function should take a non-negative integer as input
and return a float. You may assume that the input will be a non-negative inte-
ger, so you do not need to include error checking in your function. As an example,
euler_infinite_sum(4) should return the sum of the first four terms in Equation 1,
so that euler_infinite_sum(4) returns 1 + 1 + 1/2 + 1/6 ≈ 2.667. Note: the sum
in Equation 1 starts counting with k = 0 (i.e., it is “0-indexed”), while our function
starts counting with n = 1 (i.e., it is “1-indexed”). euler_infinite_sum(1) should
use one term from Equation (1), so that euler_infinite_sum(1) returns 1. Simi-
larly, euler_infinite_sum(0) should return 0, since by convention an empty sum
is equal to zero.

3. Define a function called euler_approx that takes a single argument, a float epsilon,
and uses the sum in (1) to obtain an approximation of e that is within epsilon of
the true value of e. Hint: use a while-loop. Note: you can use the Python math
module to get the true value of e (up to floating point accuracy): math.exp(1).

4. Define a function called print_euler_sum_table that takes a single positive integer
n as an argument and prints the successive values obtained from euler_infinite_sum(k)

as k ranges from 1 to n, one per line.

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)

	Defining Simple Functions (3 points)
	Euclid's algorithm (3 points)
	Approximating Euler's number e (4 points)

