
STATS701 Topics in Statistics: Data Analysis with Python 1

Homework 10: Google TensorFlow

Due April 25, 11:59 pm

Worth 15 points

Warning: Two things to bring to your attention:

• Owing to the grade submission deadline, you may not use late days to extend the
deadline for this homework or any other homework beyond April 25th. Any work
turned in after 11:59pm on April 25 will be considered late and will receive a grade
of 0.

• The last problem of this homework will ask you to do a few simple things in Tensor-
Flow on Google’s computing service, Google Cloud Platform (GCP). This part of
the assignment is meant to challenge you to learn a new tool from scratch by reading
documentation and following its tutorials. This is tough, by design. Start early so
that you have plenty of time to grapple with the material.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Winter2018/STATS701/hw_template.ipynb. You will submit, via Canvas, a .zip file
called yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand
in a file for homework 1, it would be called klevin_hw1.zip. Contact the instructor or
your GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able
to extract your archived file and run your notebook file on my own machine. Please
include all of your code for all problems in the homework in a single Python notebook
unless instructed otherwise, and please include in your notebook file a list of any and
all people with whom you discussed this homework assignment. Please also include an
estimate of how many hours you spent on each of the three sections of this homework
assignment.

These instructions can also be found on the course webpage at http://www-personal.
umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html. Please
direct any questions to either the instructor or your GSI.

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html


STATS701 Topics in Statistics: Data Analysis with Python 2

1 Warmup: Constructing a 3-tensor (1 point)

You may have noticed that the TensorFlow logo, seen in Figure 1 below, is a 2-dimensional
depiction of a 3-dimensional orange structure, which casts shadows shaped like a “T” and
an “F”, depending on the direction of the light. The structure is five “cells” tall, four
wide and three deep.

Figure 1: The TensorFlow logo.

Create a TensorFlow constant tensor tflogo with shape 5-by-4-by-3. This tensor will
represent the 5-by-4-by-3 volume that contains the orange structure depicted in the logo
(said another way, the orange structure is inscribed in this 5-by-4-by-3 volume). Each cell
of your tensor should correspond to one cell in this volume. Each entry of your tensor
should be 1 if and only if the corresponding cell is part of the orange structure, and should
be 0 otherwise. Looking at the logo, we see that the orange structure can be broken into
11 cubic cells, so your tensor tflogo should have precisely 11 non-zero entries. For the
sake of consistency, the (0, 3, 2)-entry of your tensor (using 0-indexing) should correspond
to the top rear corner of the structure where the cross of the “T” meets the top of the
“F”. Note: if you look carefully, the shadows in the logo do not correctly reflect the
orange structure—the shadow of the “T” is incorrectly drawn. Do not let this fool you!

Hint: you may find it easier to create a Numpy array representing the structure first,
then turn that Numpy array into a TensorFlow constant. Second hint: as a sanity
check, try printing your tensor. You should see a series of 4-by-3 matrices, as though you
were looking at one horizontal slice of the tensor at a time, working your way from top
to bottom.

2 Building and training simple models (4 points)

In this problem, you’ll use TensorFlow to build the loss functions for a pair of commonly-
used statistical models. In all cases, your answer should include placeholder variables x

and ytrue, which will serve as the predictor (independent variable) and response (de-
pendent variable), respectively. Please use W to denote a parameter that multiplies the
predictor, and b to denote a bias parameter (i.e., a parameter that is added).



STATS701 Topics in Statistics: Data Analysis with Python 3

1. Logistic regression with a negative log-likelihood loss. In this model, which
we discussed briefly in class, the binary variable Y is distributed as a Bernoulli
random variable with success parameter σ(W TX+b), where σ(z) = (1+exp(−z))−1

is the logistic function, and X ∈ R6 is the predictor random variable, and W ∈
R6, b ∈ R are the model parameters. Derive the log-likelihood of Y , and write the
TensorFlow code that represents the negative log-likelihood loss function. Hint: the
loss should be a sum over all observations of a negative log-likelihood term.

2. Estimating parameters in logistic regression. The zip file at http://www-

personal.umich.edu/~klevin/teaching/Winter2018/STATS701/logistic.zip con-
tains four Numpy .npy files that contain train and test data generated from a logistic
model:

• logistic xtest.npy : contains a 500-by-6 matrix whose rows are the indepen-
dent variables (predictors) from the test set.

• logistic xtrain.npy : contains a 2000-by-6 matrix whose rows are the inde-
pendent variables (predictors) from the train set.

• logistic ytest.npy : contains a binary 500-dimensional vector of dependent
variables (responses) from the test set.

• logistic ytrain.npy : contains a binary 2000-dimensional vector of depen-
dent variables (responses) from the train set.

The i-th row of the matrix in logistic xtrain.npy is the predictor for the response
in the i-th entry of the vector in logistic ytrain.npy, and analogously for the two
test set files. Note: we didn’t discuss reading numpy data from files. To load the
files, you can simply call xtrain = np.load(’xtrain.npy’) to read the data into
the variable xtrain. xtrain will be a Numpy array.

Load the training data and use it to obtain estimates of W and b by minimizing
the negative log-likelihood via gradient descent. Another note: you’ll have to play
around with the learning rate and the number of steps. Two good ways to check if
optimization is finding a good minimizer:

• Try printing the training data loss before and after optimization.

• Use the test data to validate your estimated parameters.

3. Evaluating logistic regression on test data. Load the test data. What is the
negative log-likelihood of your model on this test data? That is, what is the negative
log-likelihood when you use your estimated parameters with the previously unseen
test data?

4. Evaluating the estimated logistic parameters. The data was, in reality, gen-
erated with

W = (1, 1, 2, 3, 5, 8), b = −1.

Write TensorFlow expressions to compute the squared error between your estimated
parameters and their true values. What is the squared error? Note: you need only
evaluate the error of your final estimates, not at every step.

5. Classification of normally distributed data. The .zip file at http://www-

personal.umich.edu/~klevin/teaching/Winter2018/STATS701/normal.zip con-
tains four Numpy .npy files that contain train and test data generated from K = 3

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/logistic.zip
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/logistic.zip
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/normal.zip
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/normal.zip


STATS701 Topics in Statistics: Data Analysis with Python 4

different classes. Each class k ∈ {1, 2, 3} has an associated mean µk ∈ R and vari-
ance σ2

k ∈ R, and all observations from a given class are i.i.d. N (µk, σ
2
k). The four

files are:

• normal_xtest.npy : contains a 500-vector whose entries are the independent
variables (predictors) from the test set.

• normal_xtrain.npy : contains a 2000-vector whose entries are the independent
variables (predictors) from the train set.

• normal_ytest.npy : contains a 500-by-3 dimensional matrix whose rows are
one-hot encodings of the class labels for the test set.

• normal_ytrain.npy : contains a 2000-by-3 dimensional matrix whose rows are
one-hot encodings of the class labels for the train set.

The i-th entry of the vector in normal_xtrain.npy is the observed random variable
from class with label given by the i-th row of the matrix in normal_ytrain.npy,
and analogously for the two test set files.

Load the training data and use it to obtain estimates of the class means µ0, µ1, µ2 and
variances σ2

0, σ
2
1, σ

2
2 by minimizing the cross-entropy between the estimated normals

and the one-hot encodings of the class labels (as we did in our softmax regression ex-
ample in class). This time, instead of using gradient descent, use Adagrad, supplied
by TensorFlow as the function tf.train.AdagradOptimizer. Adagrad is a stochas-
tic gradient descent algorithm, popular in machine learning. You can call this just like
the gradient descent optimizer we used in class—just supply a learning rate. Docu-
mentation for the TF implementation of Adagrad can be found here: https://www.
tensorflow.org/api_docs/python/tf/train/AdagradOptimizer. See https://

en.wikipedia.org/wiki/Stochastic_gradient_descent for more information about
stochastic gradient descent and the Adagrad algorithm.

Note: you’ll no longer be able to use the built-in logit cross-entropy that we used for
training our models in lecture. Your cross-entropy for one observation should now
look something like−

∑
k y
′
k log pk, where y′ is the one-hot encoded vector and p is the

vector whose k-th entry is the (estimated) probability of the k-th observation given
its class. Another note: do not include any estimation of the mixing coefficients
(i.e., the class priors) in your model. You only need to estimate three means and
three variances. We are building a discriminative model in this problem.

6. Evaluating loss on test data. Load the test data. What is the cross-entropy of
your model on this test data? That is, what is the cross-entropy when you use your
estimated parameters with the previously unseen test data?

7. Evaluating parameter estimation on test data. The true parameter values for
the three classes were

µ0 = −1, σ2
0 = 0.5

µ1 = 0, σ2
1 = 1

µ2 = 3, σ2
2 = 1.5.

Write a TensorFlow expression to compute the total squared error (i.e., summed
over the six parameters) between your estimates and their true values. What is the
squared error? Note: you need only evaluate the error of your final estimates, not
at every step.

https://www.tensorflow.org/api_docs/python/tf/train/AdagradOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdagradOptimizer
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent


STATS701 Topics in Statistics: Data Analysis with Python 5

8. Evaluating classification error on test data. Write and evaluate a TensorFlow
expression that computes the classification error of your estimated model averaged
over the test data.

3 Building a Complicated Model (1 point)

The TensorFlow documentation includes tutorials on building a number of more compli-
cated neural models in TensorFlow: https://www.tensorflow.org/tutorials/. Choose
one of these tutorials (except for the GPU tutorial and the two numerical computing tu-
torials on the Mandelbrot set and PDEs) and follow it. Some of the tutorials include
instructions along the lines of “We didn’t discuss this trick, try adding it!”. You do not
need to do any of these additional steps (though you will certainly learn something if you
do!). Warning: some of the tutorials require large amounts of training data. If this is
the case, please do not include the training data in your submission! Instead, include a
line of code to download the data from wherever it is stored. Also, some of the tutorials
require especially long training time, so budget your time accordingly!

Your submission for this problem should include code that loads the training and test
data, builds and trains a model, and evaluates that model on test data. That is, your code
should perform all the training and testing steps performed in the tutorial, but without
having to be run from the command line. Depending on which model you choose, training
may take a long time if you use the preset number of training steps, so be sure to include
a variable called nsteps that controls the number of training steps.

Note: it will not be enough to simply copy the tutorial’s python code into your
jupyter notebook, since the demo code supplied in the tutorials is meant to be run from
the command line.

Another note: If it was not clear, you are, for this problem and this problem only,
permitted to copy-paste code from the TensorFlow tutorials as much as you like without
penalty.

4 Running Models on Google Cloud Platform (9 points)

In this problem, you’ll get a bit of experience running TensorFlow jobs on Google Cloud
Platform (GCP), Google’s cloud computing service. Google has provided us with a grant,
which will provide each of you with free compute time on GCP.

Important: this problem is very hard. It involves a sequence of fairly complicated
operations in GCP. As such, I do not expect every student to complete it. Don’t worry
about that. Unless you’ve done a lot of programming in the past, this problem is likely
your first foray into learning a new tool largely from scratch instead of having my lectures
to guide you. The ability to do this is a crucial one for any data scientist, so consider
this a learning opportunity (and a sort of miniature final exam). Start early, read the
documentation carefully, and come to office hours if you’re having trouble.

Good luck, and have fun!
The first thing you should do is claim your share of the grant money by visiting this

link: http://google.force.com/GCPEDU?cid=dGdosBZkUd3WTcrYh3uTmOEWJCxbvrtTkfI%
2B0RjhGTy%2BYjKA48VXanB%2BuJ8a54BN/ You will need to supply your name and your
UMich email. Please use the email address associated to your unique name (i.e., umid@umich.edu),
so that we can easily determine which account belongs to which student. Once you have
submitted this form, you will receive a confirmation email through which you can claim

https://www.tensorflow.org/tutorials/
http://google.force.com/GCPEDU?cid=dGdosBZkUd3WTcrYh3uTmOEWJCxbvrtTkfI%2B0RjhGTy%2BYjKA48VXanB%2BuJ8a54BN/
http://google.force.com/GCPEDU?cid=dGdosBZkUd3WTcrYh3uTmOEWJCxbvrtTkfI%2B0RjhGTy%2BYjKA48VXanB%2BuJ8a54BN/


STATS701 Topics in Statistics: Data Analysis with Python 6

your compute credits. These credits are valid on GCP until they expire in February of
2019. Any credits left over after completing this homework are yours to use as you wish.
Make sure that you claim your credits while signed in under your University of Michigan
email, rather than a personal gmail account so that your project is correctly associated
with your UMich email.

Once you have claimed your credits, you should create a project, which will serve as a
repository for your work on this problem. You should name your project umid-stats701-w18,
where umid is your unique name in all lower-case letters. Your project’s billing should
be automatically linked to your credits, but you can verify this fact in the billing section
dashboard in the GCP browser console. Please add both me (UMID klevin) and your
GSI Roger Fan (UMID rogerfan as owners. You can do this in the IAM tab of the IAM
& admin dashboard by clicking “Add” near the top of the page, and listing our UMich
emails and specifying our Roles as Project → Owner.

Note: this problem is comparatively complicated, and involves a lot of moving parts.
At the end of this problem (several pages below), I have included a list of all the files that
should be included in your submission for this problem, as well as a list of what should
be on your GCP project upon submission.

Important: after the deadline (April 25th at 11:59pm) you should not edit your
GCP project in any way until you receive a grade for the assignment in canvas. If your
project indicates that any files or running processes have been altered after the deadline
by a user other than klevin or rogerfan, we will assume this to be an instance of editing
your assignment after the deadline, and you will receive a penalty.

1. Follow the tutorial at https://cloud.google.com/ml-engine/docs/distributed-
tensorflow-mnist-cloud-datalab, which will walk you through the process of
training a CNN similar to the one we saw in class, but this time using resources
on GCP instead of your own machine. This tutorial will also have you set up a
DataLab notebook, which is Google’s version of a Jupyter notebook, in which you
can interactively draw your own digits and pass them to your neural net for classifi-
cation. Important: the tutorial will tell you to tear your nodes and storage down
at the end. Do not do that. Leave everything running so that we can verify that you
set things up correctly. It should only cost a few dollars to leave the datalab server
and storage buckets running, but if you wish to conserve your credits, you can tear
everything down and go through the tutorial again on the evening of April 25th.

2. Let us return to the classifier that you trained above on the normally-distributed
data. In this and the next several subproblems, we will take an adaptation of
that model and upload it to GCP where it will serve as a prediction node similar
to the one you built in the tutorial above. Train the same classifier on the same
training data, but this time, save the resulting trained model in a directory called
umid_normal_trained, where umid is your unique name. You’ll want to use the
tf.saved_model.simple_save function. Refer to the GCP documentation at

https://cloud.google.com/ml-engine/docs/deploying-models,

and the documentation on the tf.saved_model.simple_save function, here: https:
//www.tensorflow.org/programmers_guide/saved_model#save_and_restore_models

Please include a copy of this model directory in your submission. Hint: a stumbling
block in this problem is figuring out what to supply as the inputs and outputs ar-
guments to the simple_save function. Your arguments should look something like
inputs = {’x’:x}, outputs = {"prediction":prediction}.

https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-cloud-datalab
https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-cloud-datalab
https://cloud.google.com/ml-engine/docs/deploying-models
https://www.tensorflow.org/programmers_guide/saved_model#save_and_restore_models
https://www.tensorflow.org/programmers_guide/saved_model#save_and_restore_models


STATS701 Topics in Statistics: Data Analysis with Python 7

3. Let’s upload that model to GCP. First, we need somewhere to put your model. You
already set up a bucket in the tutorial, but let’s build a separate one. Create a
new bucket called umid-stat701-hw10-normal, where umid is your unique name in
lower-case. You should be able to do this by making minor changes to the commands
you ran in the tutorial, or by following the instructions at
https://cloud.google.com/solutions/running-distributed-tensorflow-on-

compute-engine#creating_a_cloud_storage_bucket. Now, we need to upload
your saved model to this bucket. There are several ways to do this, but the eas-
iest is to follow the instructions at https://cloud.google.com/storage/docs/

uploading-objects and upload your model through the GUI. Optional chal-
lenge (worth no extra points, just bragging rights): Instead of using the
GUI, download and install the Google Cloud SDK, available at https://cloud.

google.com/sdk/ and use the gsutil command line tool to upload your model to
a storage bucket.

4. Now we need to create a version of your model. Versions are how the GCP machine
learning tools organize different instances of the same model (e.g., the same model
trained on two different data sets). To do this, follow the instructions located at
https://cloud.google.com/ml-engine/docs/deploying-models#creating_a_model_

version, which will ask you to

• Upload a SavedModel directory (which you just did)

• Create a Cloud ML Engine model resource

• Create a Cloud ML Engine version resource (this specifies where your model is
stored, among other information)

• Enable the appropriate permissions on your account.

Please name your model umid_stat701_hw10_normal (note the underscores here as
opposed to the hyphens in the bucket name), and name your version umid_hw10

(see the documentation for the gcloud ml-engine versions command for how
to delete versions, if need be), where again umid is your lower-case unique name.
Important: there are a number of pitfalls that you may encounter here, which I
want to warn you about: A good way to check that your model resource and version
are set up correctly is to run the command gcloud ml-engine versions describe

"your_version_name" --model "your_model_name". The resulting output should
include a line reading state: READY. You may notice that the Python version for
the model appears as, say, pythonVersion: ’2.7’, even though you used, say,
Python 3.6. This should not be a problem, but you should make sure that the
runtimeVersion is set correctly. If the line runtimeVersion: ’1.0’ is appearing
when you describe your version, you are likely headed for a bug. You can prevent
this bug by adding the flag --runtime-version 1.6 to your gcloud ml-engine

versions create command, and making sure that you are running TensorFlow
version 1.6 on your local machine (i.e., the machine where you’re running Jupyter).

5. Create a .json file corresponding to a single prediction instance on the input obser-
vation x = 4. Name this .json file umid.instance.json, where umid is your unique
name in lower-case, and please include a copy of it in your submission. Hint: you
may find it easiest to download a copy of the .json file from the tutorial and alter
it in a text editor on your own computer, but it would be worth your time and

https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine#creating_a_cloud_storage_bucket
https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine#creating_a_cloud_storage_bucket
https://cloud.google.com/storage/docs/uploading-objects
https://cloud.google.com/storage/docs/uploading-objects
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/ml-engine/docs/deploying-models#creating_a_model_version
https://cloud.google.com/ml-engine/docs/deploying-models#creating_a_model_version


STATS701 Topics in Statistics: Data Analysis with Python 8

effort to take this opportunity to learn the basics of one of vim, emacs or nano, all
of which are text editors that run directly in the shell (and versions of which are
supported in the GCP Cloud Shell). Doing this will allow you to edit a copy of the
.json file directly in the GCP shell instead of going through the trouble of repeatedly
downloading and uploading files. Being proficient with a shell-based text editor is
also, generally speaking, a good skill for a data scientist to have.

6. Okay, it’s time to make a prediction. Follow the instructions at https://cloud.

google.com/ml-engine/docs/online-predict#requesting_predictions to sub-
mit the observation in your .json file to your running model. Your model will
make a prediction, and print the output of the model to the screen. Please in-
clude a copy-paste of the command you ran to request this permission as well as
the resulting output. Which cluster does your model think x = 4 came from?
Hint: if you are getting errors about dimensions being wrong, make sure that
your instance has the correct dimension expected by your model. Second hint: if
you are encountering an error along the lines of Error during model execution:

AbortionError(code=StatusCode.INVALID_ARGUMENT, details=\"NodeDef mentions

attr ’output_type’, this is an indication that there is a mismatch between the ver-
sion of TensorFlow that you used to create your model and the one that you are
running on GCP. See the discussion of gcloud ml-engine versions create above.

That’s all of it! Great work! Here is a list of all files that should be included for this
problem in your submission, as well as a list of what processes or resources should be left
running in your GCP project:

• You should leave the datalab notebook and its supporting resources (i.e., the pre-
diction node and storage bucket) from the GCP ML tutorial running in your GCP
project.

• Include in your submission a copy of the saved model directory constructed from
your classifier. You should also have a copy of this directory in a storage bucket on
GCP.

• Leave a storage bucket running on GCP containing your uploaded model directory.
This storage bucket should contain a model with a single version.

• Include in your submission a .json file representing a single observation. You need
not include a copy of this file in a storage bucket on GCP; it will be stored by default
in your GCP home directory if you created it in a text editor on the command line.

• Include in your jupyter notebook a copy-paste of the command you ran to request
your model’s prediction on the .json file, and please include the response that was
printed to the screen in response to that prediction request.

https://cloud.google.com/ml-engine/docs/online-predict#requesting_predictions
https://cloud.google.com/ml-engine/docs/online-predict#requesting_predictions

	Warmup: Constructing a 3-tensor (1 point)
	Building and training simple models (4 points)
	Building a Complicated Model (1 point)
	Running Models on Google Cloud Platform (9 points)

