
STATS701 Topics in Statistics: Data Analysis with Python 1

Homework 2: Iteration, Strings and Lists

Due January 29, 11:59 pm

Worth 10 points

Read this first. A few things to bring to your attention:

1. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

2. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Winter2018/STATS701/hw_template.ipynb. You will submit, via Canvas, a .zip file
called yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand
in a file for this, homework 1, it would be called klevin_hw1.zip. Contact the instructor
or your GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able
to extract your archived file and run your notebook file on my own machine. Please
include all of your code for all problems in the homework in a single Python notebook
unless instructed otherwise, and please include in your notebook file a list of any and
all people with whom you discussed this homework assignment. Please also include an
estimate of how many hours you spent on each of the three sections of this homework
assignment.

These instructions can also be found on the course webpage at http://www-personal.
umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html. Please
direct any questions to either the instructor or your GSI.

1 Fun with Strings (2 points)

In this problem, you’ll implement a few simple functions for dealing with strings. You
need not perform any error checking in any of the functions for this problem.

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html


STATS701 Topics in Statistics: Data Analysis with Python 2

1. A palindrome is a word or phrase that reads the same backwards and forwards
(https://en.wikipedia.org/wiki/Palindrome). So, for example, the words “level”,
“kayak” and “pop” are all palindromes, as are the phrases “rats live on no evil star”
and “Was it a car or a cat I saw?”, provided we ignore the spaces and punctuation.
Write a function called is_palindrome, which takes a string as its only argument,
and returns a Boolean. Your function should return True if the argument is a palin-
drome, and False otherwise. For the purposes of this problem, you may assume
that the input string will consist only of alphanumeric characters (i.e., the letters,
either upper or lower case, and the digits 0 through 9) and spaces. Your function
should ignore spaces and capitalization in assessing whether or not a string is a
plindrome, so that tacocat and TACO cat are both considered palindromes.

2. Let us say that a word is “abecedarian” if its letters appear in alphabetical order
(repeated letters are okay). So, for example, “adder” and “beet” are abecedar-
ian, whereas “dog” and “cat” are not. Write a function is_abecedarian, which
takes a single argument in the form of a string and returns True if the argument
is abecedarian and False otherwise. Here you may assume that the input consists
only of alphabetic characters and spaces. You function should ignore spaces, so that
the string abcd efgh xyz is considered abecedarian.

3. Write a function called count_vowels that takes a single string as an argument and
returns a non-negative integer, the number of vowels that appeared in the string.
For the purposes of this question, the vowels are the letters “a e i o u”.

2 Fun with Lists (2 points)

In this problem, you’ll implement a few very simple list operations.

1. Write a function list_reverse that takes a list as an argument and returns that list,
reversed. That is, given the list [1,2,3], your function should return the reversed
list, [3,2,1]. Your function should raise an appropriate error in the event that the
input is not a list.

2. This one is a common interview question. Write a function called binary_search

that takes two arguments, a list of integers t (which is guaranteed to be sorted in
ascending order) and an integer elmt, and returns True if elmt appears in list t

and False otherwise. Of course, you could do this with the in operator, but that
will be slow when the list is long, for reasons that we discussed in class. Instead, you
should use binary search: To look for elmt, first look at the “middle” element of the
list t If it’s a match, return True . If it isn’t a match, compare elmt against the
“middle” element, and recurse, searching the first or second half of the list depending
on whether elmt is bigger or smaller than the middle element. Hint: be careful of
the base cases : What should you do when t is empty, length 1, length 2, etc.? Note:
your solution must actually make use of binary search to receive credit, and your
solution must not use any built-in sorting or searching functions.

3 More Fun with Strings (2 points)

In this problem, you’ll implement some very simple counting operations that are common
in fields like biostatistics and natural language processing. You need not perform any

https://en.wikipedia.org/wiki/Palindrome


STATS701 Topics in Statistics: Data Analysis with Python 3

error checking in the functions for this problem.

1. Write a function called char_hist that takes a string as its argument and returns a
dictionary whose keys are characters and values are the number of times each charac-
ter appeared in the input. So, for example, given the string “gattaca”, your function
should return a dictionary with key-value pairs (g, 1), (a, 3), (t, 2), (c, 1). Your func-
tion should count all characters in the input (including spaces, tabs, numbers, etc).
The dictionary returned by your function should have as its keys all and only the
characters that appeared in the input (i.e., you don’t need to have a bunch of keys
with value 0!). Your function should count capital and lower-case letters as the
same, and key on the lower-case version of the character, so that G and g are both
counted as the same character, and the corresponding key in the dictionary is g.

2. In natural language processing and bioinformatics, we often want to count how often
characters or groups of characters appear. Pairs of words or characters are called
“bigrams”. For our purposes in this problem, a bigram is a pair of characters. As
an example, the string mississippi contains the following bigrams, in order:

’mi’, ’is’, ’ss’, ’si’, ’is’, ’ss’, ’si’, ’ip’, ’pp’, ’pi’

Write a function called bigram_hist that takes a string as its argument and returns
a dictionary whose keys are 2-tuples of characters and values are the number of times
that pair of characters appeared in the string. So, for example, when called on the
string mississippi, your function should return a dictionary with items

’mi’,’is’,’ss’,’si’,’ip’,’pp’,’pi’

and respective count values
1, 2, 2, 2, 1, 1, 1.

As another example, if the two-character string ab occurred four times in the in-
put, then your function should return a dictionary that includes the key-value pair
(a, b), 4. Your function should handle all characters (alphanumerics, spaces, puncu-
ation, etc). So, for example, the string cat, dog includes the bigrams ’t,’, ’, ’

and ’ d’. As in the previous subproblem, the dictionary produced by your function
should only include pairs that actually appeared in the input, so that the absence of
a given key implies that the corresponding two-character string did not appear in the
input. Also as in the previous subproblem, you should count upper- and lower-case
letters as the same, so that GA and ga both count for the same tuple, (g, a).

4 Tuples as Vectors (4 points)

In this problem, we’ll see how we can use tuples to represent vectors. Later in the semester,
we’ll see the Python numpy and scipy packages, which provide objects specifically meant
to enable matrix and vector operations, but for now tuples are all we have. So, for this
problem we will represent a d-dimensional vector by a length-d tuple of floats.

1. Implement a function called vec_scalar_mult, which takes two arguments: a tuple
of numbers (floats and/or integers) t and a number (float or integer) s and returns
a tuple of the same length as t, with its entries equal to the entries of t multiplied
by s. That is, vec_scalar_mult implements multiplication of a vector by a scalar.



STATS701 Topics in Statistics: Data Analysis with Python 4

Your function should check to make sure that the types of the input are appropriate
(e.g., that s is a float or integer), and raise a TypeError with a suitable error message
if the types are incorrect. However, your function should gracefully handle the case
where the input s is an integer rather than a float, or the case where some or all of
the entries of the input tuple are integers rather than floats. Hint: you may find it
useful for this subproblem and the next few that follow it to implement a function
that checks whether or not a given tuple is a “valid” vector (i.e., checks if a variable
is a tuple and checks that its entries are all floats and/or integers).

2. Implement a function called vec_inner_product which takes two “vectors” (i.e.,
tuples of floats) as its inputs and outputs a float corresponding to the inner product
of these two vectors. Recall that the inner product of vectors x, y ∈ Rd is given
by

∑d
j=1 xjyj. Your function should check whether or not the two inputs are of the

correct type (i.e., both tuples), and raise a TypeError if not. Your function should
also check whether or not the two inputs agree in their dimension (i.e., length, so
that the inner product is well-defined), and raise a ValueError if not.

3. It is natural, following the above, to extend our scheme to the case of matrices.
Recall that a matrix is simply a box of numbers. If you are not already familiar with
matrices, feel free to look them up on wikipedia or in any linear algebra textbook. We
will represent a matrix as a tuple of tuples, i.e., a tuple whose entries are themselves
tuples. We will represent an m-by-n matrix as an m-tuple of n-tuples. To be more
concrete, suppose that we are representing an m-by-n matrix M as a variable my_mx.
Then my_mx will be a length-m tuple of n-tuples, so that the i-th row of the matrix
is given (as a vector) by the i-th entry of tuple my_mx.

Write a function check_valid_mx that takes a single argument and returns a Boolean,
which is True if the given argument is a tuple that validly represents a matrix as
described above, and returns False otherwise. A valid matrix will be a tuple of
tuples such that

• Every element of the tuple is itself a tuple,

• each of these tuples is the same length, and

• every element of each of these tuples is a number (i.e., a float or integer).

4. Write a function mx_vec_mult that takes a matrix (i.e., tuple of tuples) and a vector
(i.e., a tuple) as its arguments, and returns a vector (i.e., a tuple of numbers) that is
the result of multiplying the given vector by the given matrix. Again, if you are not
familiar with matrix-vector multiplication, refer to wikipedia or any linear algebra
textbook. Your function should check that all the supplied arguments are reasonable
(e.g., using your function check_valid_mx), and raise an appropriate error if not.
Hint: you may find it useful to make use of the inner-product function that you
defined previously.


	Fun with Strings (2 points)
	Fun with Lists (2 points)
	More Fun with Strings (2 points)
	Tuples as Vectors (4 points)

