
STATS701 Topics in Statistics: Data Analysis with Python 1

Homework 3: Working with Files

Due February 7, 11:59 pm

Worth 10 points

Read this first. A few things to bring to your attention:

1. Important: If you have not already done so, please request a Flux Hadoop account.
Instructions for doing this can be found on Canvas.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Winter2018/STATS701/hw_template.ipynb. You will submit, via Canvas, a .zip file
called yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand
in a file for homework 1, it would be called klevin_hw1.zip. Contact the instructor or
your GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able
to extract your archived file and run your notebook file on my own machine. Please
include all of your code for all problems in the homework in a single Python notebook
unless instructed otherwise, and please include in your notebook file a list of any and
all people with whom you discussed this homework assignment. Please also include an
estimate of how many hours you spent on each of the three sections of this homework
assignment.

These instructions can also be found on the course webpage at http://www-personal.
umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html. Please
direct any questions to either the instructor or your GSI.

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html


STATS701 Topics in Statistics: Data Analysis with Python 2

1 More Fun with Tuples (3 points)

In this problem, you’ll do a bit more with tuples.

1. You may recall that the functions min and max take any (positive) number of argu-
ments, but that sum does not behave similarly. Write a function called my_sum that
takes any number of numeric (ints and floats) arguments, and returns the sum of its
arguments. Your function should correctly handle the case of zero arguments. You
need not perform any error checking for this function. Reminder: by convention,
an empty sum is taken to be 0.

2. Write a function called reverse_tuple that takes a tuple as its only argument and
returns a tuple that is the reverse of the input. That is, the output should have as
its first entry the last entry of the input, the second entry of the output should be
the second-to-last entry of the input, and so on. You need not perform any error
checking for this function.

3. Write a function called rotate_tuple that takes two arguments: a tuple and an
integer, in that order. Letting n be the integer given in the input, your function
should return a tuple of the same length as the input tuple, but with its entries
“rotated” by n. If n is positive, this should mean to “push forward” all the entries
of the input tuple by n entries, with entries that “go off the end” of the tuple being
wrapped around to the beginning, so that the i-th entry of the input tuple becomes
the (i + n)-th entry of the output, wrapping around to the beginning of the tuple if
this index goes off the end. It should be clear that if n is negative, then this merely
corresponds to rotating the entries in the other direction, with entries of the input
tuple being “pushed backward”. Your function should perform error checking to
ensure that the inputs are of appropriate types. If the user supplies a non-integer,
print a message to alert the user that the input was not as expected, and try to
recover by casting it to an integer. Hint: a try/catch statement will likely be useful
here.

2 More Fun with Vectors (3 points)

In your previous homework assignment, you implemented matrix and vector operations
using tuples to represent vectors. In many applications, it is common to have vectors of
dimension in the thousands or millions, but in which only a small fraction of the entries
are nonzero. Such vectors are called sparse vectors, and if we tried to represent them as
tuples, we would be using thousands of entries just to store zeros, which would quickly
get out of hand if we needed to store hundreds or thousands of such vectors.

A reasonable solution is to instead represent a sparse vector (or matrix) by only storing
its non-zero entries, with (index, value) pairs. We will take this approach in this problem,
and represent vectors as dictionaries with positive integer keys (so we index into our
vectors starting from 1, just like in MATLAB and R). A valid sparse vector will be a
dictionary that has the properties that (1) all its indices are positive integers, and (2) all
its values are floats.

1. Write a function is_valid_sparse_vector that takes one argument, and returns
True if and only if the input is a valid sparse vector, and returns False otherwise.
Note: your function should not assume that the input is a dictionary.



STATS701 Topics in Statistics: Data Analysis with Python 3

2. Write a function sparse_inner_product that takes two “sparse vectors” as its in-
puts, and returns a float that is the value of the inner product of the vectors that
the inputs represent. Your function should raise an appropriate error in the event
that either of the inputs is not a valid sparse vector.

Note: This may be your first foray into algorithm design, so here’s something I’d like
you to think about: there are several distinct ways to perform this inner product
operation, depending on how one chooses to iterate over the entries of the two
dictionaries. For this specific problem, it doesn’t much matter which you choose,
but there is an important point that you should consider: if the indices of our
vectors were sorted, there would be an especially fast way to perform this operation
that would require that we look at each entry of the two vectors at most once.
Unfortunately, there is no guarantee about order of dictionary keys, so we can’t take
advantage of this fact, but we’ll come back to it. You do not need to write anything
about this, but please give it some thought.

3 Counting Word Bigrams (4 points)

In your previous homework, you wrote a function for counting character bigrams. Now,
let’s write a function for counting word bigrams. That is, for each pair of words, say,
cat and dog, we want to count how many times the word “cat” occurred immediately
before the word “dog”. We will represent this bigram by a tuple, (’cat’, ’dog’). For
our purposes, we will ignore all spaces, newlines, punctuation and capitalization in our
counting. So, as an example, the fragment of poem,

Half a league, half a league,
Half a league onward,
All in the valley of Death
Rode the six hundred.

includes the bigrams (’half’, ’a’) and (’a’, ’league’) both three times, the bigram
(’league’, ’half’) appears twice,while the bigram (’in’, ’the’) appears only once.

1. Write a function count_bigrams_in_file that takes a filename as its only argument.
Your function should read from the given file, and return a dictionary whose keys
are bigrams (given in the tuple form above), and values are the counts for those
bigrams. Again, your function should ignore punctuation, spaces, newlines and
capitalization. The strings in your key tuples should be lower-case. Your function
should use a try-catch statement to raise an error with an appropriate message to
alert the user in the event that the given file cannot be opened, and a different
error in the event that the provided argument isn’t a string at all. Hint: you will
find the Python function str.strip(), along with the string constants defined in
the string documentation (https://docs.python.org/3/library/string.html),
useful in removing punctuation. Hint: be careful to check that your function handles
newlines correctly. For example, in the poem above, one of the (’league’, ’half’)

bigrams spans a newline, but should be counted nonetheless. Note: be careful that
your function does not accidentally count the empty string as a word (this is a
common bug if you aren’t careful about splitting the input text). Solutions that
merely delete “bad” keys from the dictionary at the end will not receive full credit,
as all edge cases should handled by correctly splitting the input.

https://docs.python.org/3/library/string.html


STATS701 Topics in Statistics: Data Analysis with Python 4

2. Download the file mobydick.txt from the course webpage: http://www-personal.
umich.edu/~klevin/teaching/Winter2018/STATS701/mobydick.txt. Run your
function on this file, and pickle the resulting dictionary in a file called mb.bigrams.pickle.
Please include this file in your submission, along with mobydick.txt, so that we can
run your notebook directly from your submission.

3. We say that word A is collocated with word B in a text if words A and B occur im-
mediately one after another (in either order). That is, words A and B are collocated
if and only if either of the tuples (A, B) or (B, A) are present in the text. Write a
function collocations that takes a filename as its only argument and returns a dic-
tionary. Your function should read from the given file (raising an appropriate error if
the file cannot be opened or if the argument isn’t a string at all) and return a dictio-
nary whose keys are all the strings appearing in the file (again ignoring case and strip-
ping away all spaces, newlines and punctuation) and the value of word A is a Python
set containing all the words collocated with A. Again using the poem fragment above
as an example, the string ’league’ should appear as a key, and should have as its
value the set {’a’, ’half’, ’onward’}, while the string ’in’ should have the set
{’all’, ’the’} as its value. Hint: we didn’t discuss Python sets in lecture, be-
cause they are essentially just dictionaries without values. See the documentation
at https://docs.python.org/3/tutorial/datastructures.html#sets for more
information.

4. Run your function on the file mobydick.txt and pickle the resulting dictionary in a
file called mb.colloc.pickle. Please include this file in your submission.

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/mobydick.txt
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/mobydick.txt
https://docs.python.org/3/tutorial/datastructures.html#sets

	More Fun with Tuples (3 points)
	More Fun with Vectors (3 points)
	Counting Word Bigrams (4 points)

