
STATS701 Topics in Statistics: Data Analysis with Python 1

Homework 5: Functional Programming

Due February 21, 11:59 pm

Worth 15 points

Read this first. A few things to bring to your attention:

1. Important: If you have not already done so, please request a Flux Hadoop account.
Instructions for doing this can be found on Canvas.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Your homework should

be written in a jupyter notebook file. I have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/

Winter2018/STATS701/hw_template.ipynb. You will submit, via Canvas, a .zip file
called yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand
in a file for homework 1, it would be called klevin_hw1.zip. Contact the instructor or
your GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName.hwX.ipynb, where again X is the number of the current homework.
You should feel free to define supplementary functions in other Python scripts, which
you should include in your compressed directory. So, for example, if the code in your
notebook file imports a function from a Python file called supplementary.py, then the
file supplementary.py should be included in your submission. In short, I should be able
to extract your archived file and run your notebook file on my own machine. Please
include all of your code for all problems in the homework in a single Python notebook
unless instructed otherwise, and please include in your notebook file a list of any and
all people with whom you discussed this homework assignment. Please also include an
estimate of how many hours you spent on each of the three sections of this homework
assignment.

These instructions can also be found on the course webpage at http://www-personal.
umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html. Please
direct any questions to either the instructor or your GSI.

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html


STATS701 Topics in Statistics: Data Analysis with Python 2

1 Iterators and Generators (4 points)

In this exercise, you’ll get some practice with creating iterators and generators. Note:
in this problem, the word enumerate below is meant the sense of returning elements, not
in the sense of the Python function enumerate. So, if I say that an iterator enumerates
a sequence a0, a1, a2, . . . , I mean that these are the elements that it returns upon calls to
the __next__ method, not that it returns pairs (i, ai) like the enumerate function.

1. Define a class Fibo of iterators that enumerate the Fibonacci numbers. For the
purposes of this problem, the Fibonacci sequence begins 0, 1, 1, 2, 3, . . . , with the
n-th Fibonacci number fn given by the recursive formula fn = fn−1 + fn−2. Your
solution should not make use of any function aside from addition (i.e., you should
not to use the function fibo() defined in lecture a few weeks ago). Your class
should support, at a minimum, an initialization method, a __iter__ method (so
that we can get an iterator) and a __next__ method. Note: there is an especially
simple solution to this problem that can be expressed in just a few lines using tuple
assignment.

2. Define a generator integers that enumerates the nonnegative integers, in increasing
order, starting with 0.

3. Define a generator primes that enumerates the prime numbers. Recall that a prime
number is any integer p > 1 whose only divisors are p and 1. Note: you may
use the function is_prime that we defined in class (or something similar to it),
but such solutions will not receive full credit, as there is a more graceful solution
that avoids declaring a separate function or method for directly checking primality.
Hint: consider a pattern similar to the one seen in lecture using the any and/or all
functions.

2 List Comprehensions and Generator Expressions (3 points)

In this exercise you’ll write a few simple list comprehensions and generator expressions.
Again in this problem I use the term enumerate to mean that a list comprehension or
generator expression returns certain elements, rather than in the sense of the Python
function enumerate.

1. Write a list comprehension that enumerates the odd squares of the integers 1 through
20 inclusive.

2. Write a generator expression that enumerates the perfect cubes, starting from 1.

3. Write a generator expression that enumerates the tetrahedral numbers. The n-th
tetrahedral number is given by Tn =

(
n+2
3

)
, where

(
x
y

)
is the binomial coefficient(

x

y

)
=

x!

y!(x− y)!
.

Hint: use the generator integers that you defined in the previous problem.



STATS701 Topics in Statistics: Data Analysis with Python 3

3 Map, Filter and Reduce (4 points)

In this exercise, you’ll learn a bit about map, filter and reduce operations. We will
come back to these operations in a few weeks when we discuss MapReduce and related
frameworks in distributed computing. In this problem, I expect that you will use only the
functions map, filter and functions from the functools and itertools modules, along
with the range function (and similar list-related functions) and a sprinkling of lambda
expressions.

1. Write a one-line expression that computes the sum of the first 10 odd square numbers
(starting with 1).

2. Write a one-line expression that computes the product of the first 17 primes. You
may use the primes generator that you defined above.

3. Write a one-line expression that computes a list of the first ten harmonic numbers.
Recall that the n-th harmonic number is given by Hn =

∑n
k=1 1/k.

4. Write a one-line expression that computes the geometric mean of the first 10 tetra-
hedral numbers. You may use the generator that you wrote in the previous problem.
Recall that the geometric mean of a collection of n numbers a1, a2, . . . , an is given
by (

∏n
i=1 ai)

1/n.

4 Fun with Polynomials (4 points)

In this exercise you’ll get a bit of experience writing higher-order functions. You may
ignore error checking in this problem.

1. Write a function eval_poly that takes two arguments: a number (int or float) x, and
a list of numbers (again, ints and/or floats) coeffs. The elements of coeffs encode
the coefficients of a polynomial p(x) = a0 + a1x + a2x

2 + · · · + anx
n, with ai given

by coeffs[i]. eval_poly should return the value of this polynomial, evaluated at
x. You should be able to express your solution in a single line (not counting the
function definition header) by using functional programming patterns discussed in
lecture.

2. Write a function make_poly that takes a list of numbers coeffs as its only argument
and returns another function p. Here again the list coeffs represents the coefficients
of a polynomial as in the previous question. The function p should take a single
number (int or float) x as its argument, and return the value of the polynomial
represented by coeffs evaluated at x. Of course, one way to solve this problem
is to simply copy-paste your function definition for eval_poly inside the function
make_poly, or to call eval_poly using the functools.partial function. Neither
of these solutions will receive credit, because there is a more graceful solution. You
should again be able to express the solution to this problem in a single line (not
including the definition header).


	Iterators and Generators (4 points)
	List Comprehensions and Generator Expressions (3 points)
	Map, Filter and Reduce (4 points)
	Fun with Polynomials (4 points)

