
STATS701 Topics in Statistics: Data Analysis with Python 1

Homework 9: MapReduce, Hadoop and Spark

Due Wednesday, April 11, 11:59 pm

Worth 15 points

Read this first. A few things to bring to your attention:

1. Important: If you have not already done so, please request a Flux Hadoop account.
Instructions for doing this can be found on Canvas.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance, not the night before your assignment is due
when we cannot help you!

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git, which is well worth your time
and effort to learn.

Instructions on writing and submitting your homework.
Failure to follow these instructions will result in lost points. Much of this homework

will involve running code on the Data Science Cluster (Fladoop). As with previous home-
works, you will hand in a .zip archive that includes a jupyter notebook file. You should
follow the same naming conventions laid out in previous homeworks. In addition to a
jupyter notebook, you will also be creating several files on the Fladoop cluster that we
will ask you to include in your homework submission, so make sure you have a way to
copy files from the Fladoop cluster to your machine, e.g., using the command scp. If you
do not know how to do this, please speak with the instructor or your GSI. In cases where
we ask you to execute operations on the command line, please copy-paste the commands
that you run from your shell to a NBConvert cell in your jupyter notebook. NBConvert
cells display text in monospace, so it “looks” like code, but jupyter will not attempt to
execute this code.

Refer to the instructions on the course webpage for the usual additional information:
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.

html. Please direct any questions to either the instructor or your GSI.

1 Warmup: counting words with mrjob (3 points)

In this problem, you’ll get a gentle introduction to mrjob and running mrjob on the
Fladoop cluster. I have uploaded a large text file to the Fladoop cluster. Your job is to
count how many times each word occurs in this file.

1. Write an mrjob job that takes text as input and counts how many times each word
occurs in the text. Your script should strip punctuation like full stops, commas and

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/hw_instructions.html


STATS701 Topics in Statistics: Data Analysis with Python 2

semicolons, but you may treat hyphens, apostrophes, etc. as you wish. Simplest
is to treat, e.g., “John’s” as two words, “John” and “s”, but feel free to do more
complicated processing if you wish. Your script should ignore case, so that “Cat”
and “cat” are considered the same word. Your output should be a collection of
(word,count) pairs.

2. To test your code, I have uploaded a simple text file to the course webpage:

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/simple.txt .

Download this file and test your code either on your local machine or on the Fladoop
grid. The file is small enough that you should be able to check by hand whether
your code is behaving correctly. Save the output of your script on this small file to
a file called simple word counts.txt and include it in your submission. Note: use
the redirect arrow > to send the Hadoop output to a file. This will only send the
stdout output to the file, while still printing the Hadoop error/status messages to
the terminal.

3. Once you are confident in the correctness of your program, run your mrjob job on
the file

hdfs:///var/stat701w18/moby_dick.txt

on the Fladoop grid (this file is the Project Gutenberg plain text version of Herman
Melville’s novel Moby Dick). Note that this file is on hdfs, not the local file sys-
tem, so you’ll have to run your script accordingly. Save the output to a file called
word counts.txt, and include it in your submission.

4. Zipf’s law states, roughly, that if one plots word frequency against frequency rank
(i.e., most frequent word, second most frequent word, etc.), the resulting line is (ap-
proximately) linear on a log-log scale. Using the information in word counts.txt,
make a plot of word frequency as a function of word rank on a log-log scale for all
words in the file

hdfs:///var/stat701w18/moby_dick.txt

Give an appropriate title to your plot and include axis labels.

5. How “Zipfian” does the resulting plot look (It suffices for you to state whether or
not your plot looks approximately like a line)? You can read more about Zipf’s
law and about power laws generally at the respective Wikipedia pages (https://
en.wikipedia.org/wiki/Zipf’s_law, https://en.wikipedia.org/wiki/Power_
law). For more about power laws, I recommend this survey paper by Mark New-
man, a faculty member here at University of Michigan https://arxiv.org/pdf/

cond-mat/0412004.pdf.

2 Computing Sample Statistics with mrjob (6 points)

In this problem, we’ll compile some very basic statistics summarizing a toy dataset. The
file

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/populations_small.txt

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/simple.txt
https://en.wikipedia.org/wiki/Zipf's_law
https://en.wikipedia.org/wiki/Zipf's_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://arxiv.org/pdf/cond-mat/0412004.pdf
https://arxiv.org/pdf/cond-mat/0412004.pdf
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/populations_small.txt


STATS701 Topics in Statistics: Data Analysis with Python 3

contains a collection of (class,value) pairs, one per line, with each line taking the form
class label,value, where class label is a nonnegative integer and value is a float.
Each pair corresponds to an observation, with the class labels corresponding to different
populations, and the values corresponding to some measured quantity.

1. Write a mrjob program called mr summary stats.py that takes as input a sequence
of (label,value) pairs like in the file at http://www-personal.umich.edu/~klevin/
teaching/Winter2018/STATS701/populations_small.txt, and outputs a collec-
tion of (label, number of samples, sample mean, sample variance) 4-tuples, in which
one 4-tuple appears for each class label in the data, and mean and variance are the
sample mean and variance, respectively, of all the values for that class label. Thus,
if 25 unique class labels are present in the input then your program should output 25
lines, one for each class label. Note: I don’t care whether you use n or n− 1 in the
denominator of your sample variance formula—just be clear which one you are using.
Note: you don’t need to do any special formatting of the Hadoop output. That is,
your output is fine if it consists of lines of the form label [number,mean,variance]

or similar.

Think carefully about what your key-value pairs should be here, as well as what
your mappers, reducers, etc should be. Should there be more than one step in your
job? Sit down with pen and paper first! Hint: to compute the sample mean and
sample variance of a collection of numbers, it suffices to know their sum, the sum of
their squares, and the size of the collection. Hint: there are many ways to solve this
problem, but you will likely find it useful to use the lambda and reduce statements
in Python.

2. Download the small file at http://www-personal.umich.edu/~klevin/teaching/
Winter2018/STATS701/populations_small.txt. Run your mrjob script on this
file, either on your local machine or on Fladoop, and write the output to a file
called summary small.txt. Please include this file in your submission. Inspect your
program’s output and verify that it is behaving as expected.

3. I have uploaded to the Fladoop cluster a much larger data file, located on the HDFS
file system at hdfs:///var/stat701w18/populations large.txt. Once you are
sure that your script is doing what you want, run it on this file. Be sure to use the
-r hadoop command to tell mrjob to run on the Hadoop server rather than on the
login node. Save the output to a file called summary large.txt. Download this file
and include it in your submission. Don’t forget to include in your notebook file a
copy-paste of your shell session on Fladoop.

4. Use matplotlib and the results in summary large.txt to create a plot displaying
95% confidence intervals for the sample means of the populations given by the class
labels in file hdfs:///var/stat701w18/populations large.txt. You will proba-
bly want to make something similar to a boxplot for this, but feel free to get creative
if you think you have a better way to display the information.

3 Graph Processing: Counting Triangles with PySpark (6 points)

A classic task in graph processing is called “triangle counting”. If you have never heard of
graphs, that’s okay! It suffices to know that a graph is a set of nodes (also called vertices),

http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/populations_small.txt
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/populations_small.txt
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/populations_small.txt
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/populations_small.txt


STATS701 Topics in Statistics: Data Analysis with Python 4

pairs of which are joined by edges (see https://en.wikipedia.org/wiki/Graph_theory

for more). A triangle in graph theory is a set of three nodes, say {a, b, c}, such that all
three nodes are joined by edges. Triangle counting is closely related to a fundamental
task for social media companies, who may wish to suggest new “friends” to users based on
their existing social network. In this problem, you’ll implement triangle counting in the
MapReduce framework using PySpark. We should note that in practice, the MapReduce
framework is rather poorly-suited to the problem of counting triangles, but it’s a good
problem to get you practice with the framework, so we’ll leave that be.

The input for this problem will be a collection of files representing users’ friend lists in
a social network. Each user in the network is assigned a numeric ID, and that user’s friend
list is contained in a file called n.txt, where n is the user’s ID. Each such file contains a
single space-separated line, of the form

n f1 f2 ... fK

where n is the node and f1,f2,...,fK are the IDs of the friends of n. So, if node 1 is
friends with nodes 2,5 and 6, there will be a file 1.txt, containing only the line 1 2 5 6.
If node 10 has no friends, then there will be a file 10.txt, containing only the line 10, or
perhaps no file at all. Note that just because an ID appears in a friend list, that doesn’t
necessarily mean that there will be a file listing that user’s friends, but you may assume
(1) symmetry: if 100 is a friend of 200, then 200 is a friend of 100. (2) no duplication:
each friend appears in a given friend list at most once (i.e., every file will contain a given
number at most once).

Once again, before you dive in and write a bunch of code, sit down and think about
the problem. What is the right “fundamental unit” of the problem? What should your
keys and values look like? Hint: the simplest solution to this problem involves multiple
steps, involving a standard map-reduce pattern and a subsequent filtering operation.

1. Write a PySpark job that takes the described input and produces a list of all the
triangles in the network, one per line. Each triangle should be listed as a space-
separated line node1 node2 node3, with the entries sorted numerically. So, if nodes
2, 5 and 15 form a triangle, the output should include the triple (2,5,15), but not
(2,15,5), (15,2,5), etc.

2. Test your script on the set of 5 simple files in the HDFS directory

hdfs:///var/stat701w18/fof/friends.simple

which is small enough that you should be able to work out by hand what the correct
output is. How many triangles are there? List them in a file called small triangle list.txt

and include it in your submission.

3. Once you are confident that your script is correct, run it on the larger data set,
stored on HDFS at hdfs:///var/stat701w18/fof/friends1000 Save the list of
triangles to a file called big triangle list.txt, and include it in your submission.
Don’t forget to include in your notebook file a copy-paste of the commands you used
to launch your job along with their outputs.

https://en.wikipedia.org/wiki/Graph_theory

	Warmup: counting words with mrjob (3 points)
	Computing Sample Statistics with mrjob (6 points)
	Graph Processing: Counting Triangles with PySpark (6 points)

