
STATS 701
Data analysis using Python

Lecture 0: Introduction and Administrivia

“Data science” has completely changed our world

Course goals
● Establish a broad background in Python programming

● Survey popular tools in academia/industry for data analysis and exploration

● Learn how to read documentation and quickly get new tools up and running

● Learn basic distributed computing frameworks

These tools will be obsolete some day...

...but not your ability to learn new frameworks and solve problems!

Course structure
Unit 1: Introduction to Python

Data types, functions, Jupyter, classes, objects, Python functools

Unit 2: Numerical Computing and Data Visualization
numpy, scipy, matplotlib

Unit 3: Dealing with structured data
regular expressions, retrieving web data, SQL, Python pandas, APIs

Unit 4: Big data and parallel programming
Basics of the UNIX command line, ssh, Hadoop, Spark, TensorFlow

Schedule (tentative) and other information available on course webpage:
www.umich.edu/~klevin/teaching/Winter2018/STATS701/

http://www.umich.edu/~klevin/teaching/Winter2018/STATS701/

Prerequisites
I assume that you have some background in programming and statistics

Come speak to me if:
● this is your first programming course
● you have never taken a probability or statistics course

This course is probably not for you if:
● you have no programming background

Course information
Instructor: Keith Levin

● Email: klevin@umich.edu
● Office: 272 WH
● OH: TBA

or by appointment

GSI: Roger Fan
● Email: rogerfan@umich.edu
● OH: TBA in 2165 USB

or by appointment

Textbook: None
● Readings posted to the website

Grading: 6-8 HWs,
● Weighted approximately equally
● No midterm, no final
● No class project
● Late days (see syllabus)

See syllabus on Canvas or at
umich.edu/~klevin/teaching/Winter2018/STATS701/syllabus.pdf

http://umich.edu/~klevin/teaching/Winter2018/STATS701/syllabus.pdf

A Note on Readings
I will post weekly readings throughout the course

I would prefer if you do the readings before lecture...
...but I recognize this is not always possible...
...and if you find that you learn better seeing lecture first, then that’s fine.

Some of the readings consist of technical documentation
It is a goal of this course to get you comfortable reading docs!
Read and understand what you can, google terms you don’t understand…
...and it’s okay to set things aside to come back to later!

Policies
Don’t plagiarize!

● You may discuss homeworks with your fellow students...
● ...but you must submit your own work
● Disclose in your homework whom (if anyone) you worked with

Late homeworks are not allowed!
● Instead, we have “late days”, of which you get 7
● One late day extends HW deadline by 24 hours
● Note: homework deadlines may not be extended beyond 11:59pm on the

scheduled day of the final (Wednesday, April 25th).

Refer to the syllabus for details.

Survey time!

1. Raise your hand if you were in 607A, either this year (taught by Ambuj
Tewari) or a previous year.

2. Raise your hand if you have used Python before.

3. Raise your hand if you have used jupyter/iPython in the past.

4. Raise your hand if you have used the UNIX/Linux command line.

5. Raise your hand if you have used the Python matplotlib package.

6. Raise your hand if you prefer Canvas over a course webpage

Things to do very soon:
Pick an editor/IDE for python

or just use a text editor, or just write directly in jupyter

Familiarize yourself with jupyter:
https://jupyter.readthedocs.io/en/latest/content-quickstart.html

Get a flux/fladoop username
Fill out form here: http://arc-ts.umich.edu/hpcform/
List me (Keith Levin, klevin@umich.edu) as your “advisor”
Include a note that you are in STATS701 and need access to Fladoop

Note: we will use only Python 3 in this course. Check that you have
Python 3 installed on your machine and that it is running properly.

https://jupyter.readthedocs.io/en/latest/content-quickstart.html
http://arc-ts.umich.edu/hpcform/

Other things
HW1 is posted to canvas and the website. Get started now!

If you run into trouble, come to office hours for help
● But also please post to the discussion board on Canvas
● If you’re having trouble, at least one of your classmates is, too
● You’ll learn more by explaining things to each other than by reading

stackexchange posts!

New policy:
I will not provide tech support over email!
If you are having trouble, post to the discussion board and/or come to OHs!

STATS 701
Data analysis using Python

Lecture 1: Introduction to Python

Python: Overview
Python is a dynamically typed, interpreted programming language

Created by Guido van Rossum in 1991
Maintained by the Python Software Foundation

Design philosophy: simple, readable code

Python syntax differs from R, Java, C/C++, MATLAB
whitespace delimited
limited use of brackets, semicolons, etc

Image credit: https://www.python.org/community/logos/

Python: Overview
Python is a dynamically typed, interpreted programming language

Created by Guido van Rossum in 1991
Maintained by the Python Software Foundation

Design philosophy: simple, readable code

Python syntax differs from R, Java, C/C++, MATLAB
whitespace delimited
limited use of brackets, semicolons, etc

Image credit: https://www.python.org/community/logos/

In many languages, when you
declare a variable, you must
specify the variable’s type (e.g.,
int, double, Boolean, string).
Python does not require this.

Python: Overview
Python is a dynamically typed, interpreted programming language

Created by Guido van Rossum in 1991
Maintained by the Python Software Foundation

Design philosophy: simple, readable code

Python syntax differs from R, Java, C/C++, MATLAB
whitespace delimited
limited use of brackets, semicolons, etc

Image credit: https://www.python.org/community/logos/

Some languages (e.g., C/C++ and
Java) are compiled: we write code,
from which we get a runnable
program via compilation. In
contrast, Python is interpreted: A
program, called the interpreter,
runs our code directly.

Compiled vs interpreted languages: compiled languages
are (generally) faster than interpreted languages, typically at
the cost of being more complicated.

Running Python
Several options for running Python on your computer

Python interpreter
Jupyter: https://jupyter.org/
PythonAnywhere: https://www.pythonanywhere.com/
Suggestions from Allen Downey:

http://www.allendowney.com/wp/books/think-python-2e/

Your homeworks must be handed in as Jupyter notebooks
But you should also be comfortable with the interpreter and running Python on the command line

Installing Jupyter: https://jupyter.readthedocs.io/en/latest/install.html
Note: Jupyter recommends Anaconda: https://www.anaconda.com/

I mildly recommend against Anaconda, but it’s your choice

Image credit: https://www.python.org/community/logos/

https://jupyter.org/
https://www.pythonanywhere.com/
http://www.allendowney.com/wp/books/think-python-2e/
https://jupyter.readthedocs.io/en/latest/install.html
https://www.anaconda.com/

Python Interpreter on the Command Line

keith@Steinhaus:~/demo$ python3
Python 3.6.3 (default, Oct 4 2017, 06:09:05)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
keith@Steinhaus:~/demo$ python
Python 2.7.13 |Anaconda 4.4.0 (x86_64)| (default, Dec 20 2016, 23:05:08)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
>>>

Python Interpreter on the Command Line

keith@Steinhaus:~/demo$ python3
Python 3.6.3 (default, Oct 4 2017, 06:09:05)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
keith@Steinhaus:~/demo$ python
Python 2.7.13 |Anaconda 4.4.0 (x86_64)| (default, Dec 20 2016, 23:05:08)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
>>>

Python 3 vs Python 2

The prompt indicates that the
system is waiting for your input.

I have Python 2 running inside
Anacaonda, by default.

Python Interpreter on the Command Line

keith@Steinhaus:~/demo$ python3
Python 3.6.3 (default, Oct 4 2017, 06:09:05)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
keith@Steinhaus:~/demo$ python
Python 2.7.13 |Anaconda 4.4.0 (x86_64)| (default, Dec 20 2016, 23:05:08)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
>>>

Write Python commands (code) at the prompt

Python in Jupyter
Creates “notebook files” for running Julia, Python and R

Example notebook:
https://nbviewer.jupyter.org/github/jrjohansson/

scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb

Clean, well-organized presentation of code, text and images, in one document

Installation: https://jupyter.readthedocs.io/en/latest/install.html
Documentation on running: https://jupyter.readthedocs.io/en/latest/running.html
Good tutorials:

https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

https://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb
https://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb
https://jupyter.readthedocs.io/en/latest/install.html
https://jupyter.readthedocs.io/en/latest/running.html
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

Running Jupyter

keith@Steinhaus:~/demo$ jupyter notebook
[I 17:11:41.129 NotebookApp] Serving notebooks from local directory:
/Users/keith/Dropbox/Academe/Teaching/STATS701/Lecs/L1_AdminIntro
[I 17:11:41.129 NotebookApp] 0 active kernels
[I 17:11:41.129 NotebookApp] The Jupyter Notebook is running at:
http://localhost:8888/?token=452d6d4b227f306f5bb57e72f5d4722fcbadf47d1d794441
[I 17:11:41.129 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).
[C 17:11:41.132 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

 http://localhost:8888/?token=452d6d4b227f306f5bb57e72f5d4722fcbadf47d1d794441
[I 17:11:41.635 NotebookApp] Accepting one-time-token-authenticated connection from
::1

Jupyter provides some information
about its startup process, and then...

Running Jupyter

keith@Steinhaus:~/demo$ jupyter notebook
[I 17:11:41.129 NotebookApp] Serving notebooks from local directory:
/Users/keith/Dropbox/Academe/Teaching/STATS701/Lecs/L1_AdminIntro
[I 17:11:41.129 NotebookApp] 0 active kernels
[I 17:11:41.129 NotebookApp] The Jupyter Notebook is running at:
http://localhost:8888/?token=452d6d4b227f306f5bb57e72f5d4722fcbadf47d1d794441
[I 17:11:41.129 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).
[C 17:11:41.132 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

 http://localhost:8888/?token=452d6d4b227f306f5bb57e72f5d4722fcbadf47d1d794441
[I 17:11:41.635 NotebookApp] Accepting one-time-token-authenticated connection from
::1

...Jupyter opens a browser window
in which you can launch a new
notebook or open an existing one.

Creates a new notebook
file running Python 2.

Creates a new notebook
file running Python 3.

Creates a new notebook
file running R.

Note: Jupyter can also run other programming
environments, such as Julia, if they are installed.

Running Python 3Notebook doesn’t have a title, yet.

Running Python 3Notebook doesn’t have a title, yet.

I’ll leave it to you to learn about the other features by reading the
documentation. For now, the green-highlighted box is most important.
That’s where we write Python code.

Write code in the highlighted box,
then press shift+enter to run the
code in that box...

Write code in the highlighted box, then press
shift+enter to run the code in that box...

Note: can also run code by clicking the “run cell”
button, but the shift+enter shortcut is a lot easier.

Our first function: print

If you haven’t already guessed, print takes a
Python string and prints it. Of course, “print”
here means to display a string, not literally
print it on a printer!

Note: if you know Python 2, you’ll notice that
print is a bit different in Python 3.

Print displays whatever is
inside the quotation marks.

Can also use double quotes

Arithmetic in Python

Use + to add numbers.

Use * to multiply.

Order of operations is
just like you learned in
elementary school.

/ for division

If you divide two
integers, rounds down.

% is modulo. x%y is
remainder when x is
divided by y.

Python is weird in that it uses ** for
exponentiation instead of the more
common ^.

Data Types
Programs work with values, which come with different types

Examples:
The value 42 is an integer
The value 2.71828 is a floating point number (i.e., decimal number)
The value “bird” is a string (i.e., a string of characters)

Variable’s type determines what operations we can and can’t perform
e.g., 2*3 makes sense, but what is ‘cat’*‘dog’?
(We’ll come back to this in more detail in a few slides)

Variables in Python
Variable is a name that refers to a value

Assign a value to a variable via variable assignment

Assign values to three variables

Change the value of
number_of_planets via
another assignment statement.

Variables in Python
Variable is a name that refers to a value

Assign a value to a variable via variable assignment

Assign values to three variables

Change the value of
number_of_planets via
another assignment statement.

Note: unlike some languages (e.g., C/C++ and
Java), you don’t need to tell Python the type of a
variable when you declare it. Instead, Python
figures out the type of a variable automatically.
Python uses what is called duck typing, which
we will return to in a few lectures.

Variables in Python
Variable is a name that refers to a value

Assign a value to a variable via variable assignment

Note: unlike some languages (e.g., C/C++ and
Java), you don’t need to tell Python the type of a
variable when you declare it. Instead, Python
figures out the type of a variable automatically.
Python uses what is called duck typing, which
we will return to in a few lectures.

Python variable names can be arbitrarily long, and
may contain any letters, numbers and underscore
(_), but may not start with a number. Variables
can have any name, except for the Python 3
reserved keywords:
None continue for lambda try True
def from nonlocal while and del
global not with as elif if or yield
assert else import pass break except
in raise

Variables in Python
Sometimes we do need to know the type of a variable

Python type() function does this for us

Recall that type is one of the Python
reserved words. Syntax highlighting
shows it as green, indicating that it is
a special word in Python.

Variables in Python
We can (sometimes) change the type of a Python variable

Convert a float to an int: Convert a string to an int:

Note: changing a variable to a different type is
often called casting a variable to that type.

Variables in Python
We can (sometimes) change the type of a Python variable

Convert a float to an int: Convert a string to an int:

Test your understanding:
what should be the value of
float_from_int?

Note: changing a variable to a different type is
often called casting a variable to that type.

Variables in Python
We can (sometimes) change the type of a Python variable

But if we try to cast to a type that doesn’t make sense...

ValueError signifies that the type of a variable is okay, but its
value doesn’t make sense for the operation that we are asking for.
https://docs.python.org/3/library/exceptions.html#ValueError

https://docs.python.org/3/library/exceptions.html#ValueError

Variables in Python
Variables must be declared (i.e., must have a value) before we evaluate them

NameError signifies that Python can’t find anything (variable, function, etc) matching
a given name. https://docs.python.org/3/library/exceptions.html#NameError

https://docs.python.org/3/library/exceptions.html#NameError

String Operations
Try to multiply two strings and
Python throws an error.

TypeError signifies that one
or more variables doesn’t
make sense for the operation
you are trying to perform.
https://docs.python.org/3/librar
y/exceptions.html#TypeError

Python uses + to mean string concatenation,
and defines multiplication of a string by a scalar
in the analogous way.

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Comments in Python
Comments provide a way to document your code

Good for when other people have to read your code
But also good for you!

Comments explain to a
reader (whether you or
someone else) what your
code is meant to do, which
is not always obvious from
reading the code itself!

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Python math module provides a number of math
functions. We have to import (i.e., load) the module
before we can use it.

math.sqrt() takes one argument,
returns its square root.

math.pow() takes two arguments. Returns the value
obtained by raising the first to the power of the second.

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Python math module provides a number of math
functions. We have to import (i.e., load) the module
before we can use it.

math.sqrt() takes one argument,
returns its square root.

math.pow() takes two arguments. Returns the value
obtained by raising the first to the power of the second.

Note: in the examples below, we write math.sqrt() to
call the sqrt() function from the math module. This
notation will show up a lot this semester, so get used to it!

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Note: in the examples below, we write math.sqrt() to
call the sqrt() function from the math module. This
notation will show up a lot this semester, so get used to it!

Documentation for the Python math module:
https://docs.python.org/3/library/math.html

https://docs.python.org/3/library/math.html

Functions in Python
Functions can be composed

Supply an expression as the argument of a function
Output of one function becomes input to another

math.sin() has as its
argument an expression, which
has to be evaluated before we
can compute the answer.

Functions can even have the
outputs of other functions as
their arguments.

Functions in Python
Functions can be composed

Supply an expression as the argument of a function
Output of one function becomes input to another

math.sin() has as its
argument an expression, which
has to be evaluated before we
can compute the answer.

Functions can even have the
outputs of other functions as
their arguments.

Test your understanding: why
60.0, and not just 60?

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Let’s walk through this line by line.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

This line (called the header in some
documentation) says that we are defining a
function called print_wittgenstein ,
and that the function takes no argument.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

The def keyword tells Python
that we are defining a function.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Any arguments to the function are giving
inside the parentheses. This function takes
no arguments, so we just give empty
parentheses. In a few slides, we’ll see a
function that takes arguments.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

The colon (:) is required by Python’s
syntax. You’ll see this symbol a lot, as
it is commonly used in Python to signal
the start of an indented block of code.
 (more on this in a few slides).

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

This is called the body of the function.
This code is exectuted whenever the
function is called.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Note: in languages like R, C/C++ and
Java, code is organized into blocks using
curly braces ({ and }). Python is
whitespace delimited. So we tell Python
which lines of code are part of the function
definition using indentation.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Note: in languages like R, C/C++ and
Java, code is organized into blocks using
curly braces ({ and }). Python is
whitespace delimited. So we tell Python
which lines of code are part of the function
definition using indentation.

This whitespace can be tabs, or spaces, so
long as it’s consistent. It is taken care of
automatically by most IDEs.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

We have defined our function. Now, any
time we call it, Python executes the code in
the definition, in order.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

This function takes one argument,
prints it, then prints our
Wittgenstein quote, then prints the
argument again.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

This function takes one argument,
which we call bread. All the
arguments named here act like
variables within the body of the
function, but not outside the body.
We’ll return to this in a few slides.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

Body of the function specifies what
to do with the argument(s). In this
case, we print whatever the
argument was, then print our
Wittgenstein quote, and then print
the argument again.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

Now that we’ve defined our function, we can call
it. In this case, when we call our function, the
variable bread in the definition gets the value
‘here is a string’, and then proceeds to run the
code in the function body.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

Now that we’ve defined our function, we can call
it. In this case, when we call our function, the
variable bread in the definition gets the value
‘here is a string’, and then proceeds to run the
code in the function body.

Note: this last line is not part of the function
body. We communicate this fact to Python
by the indentation. Python knows that the
function body is finished once it sees a line
without indentation.

Defining Functions
Using the return keyword, we can define functions that produce results

Defining Functions
Using the return keyword, we can define functions that produce results

double_string takes one
argument, a string, and returns that
string, concatenated with itself.

Defining Functions
Using the return keyword, we can define functions that produce results

So when Python executes this line, it
takes the string ‘bird’, which
becomes the parameter string in the
function double_string , and this line
evaluates to the string ‘birdbird’ .

Defining Functions
Using the return keyword, we can define functions that produce results

Alternatively, we can call the function and
assign its result to a variable, just like we
did with the functions in the math module.

Defining Functions

Variables are local. Variables defined inside a
function body can’t be reference outside.

Defining Functions
When you define a function, you are actually creating a variable of type function

Functions are objects that you can treat just like other variables

This number is the address in memory
where print_wittgenstein is stored.
It may be different on your computer.

Readings (this lecture)
Required:

Jupyter documentation
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html

Downey, Chapters 1 through 3 or Severance, Chapters 1, 2 and 4.

Recommended:
Jupyter tutorials:

https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

Readings (next lecture)
Required:

Either Downey, Chapters 5, 6 and 7 or Severance Chapters 4 and 5

Recommended:
Python documentation on conditionals:

https://docs.python.org/3/reference/compound_stmts.html

https://docs.python.org/3/reference/compound_stmts.html

