
STATS 701
Data Analysis using Python

Lecture 2: Conditionals, Recursion, and Iteration

Boolean Expressions
Boolean expressions evaluate the truth/falsity of a statement

Python supplies a special Boolean type, bool
variable of type bool can be either True or False

Boolean Expressions
Comparison operators available in Python:

Expressions involving comparison
operators evaluate to a Boolean.

Note: In true Pythonic style, one can compare many
types, not just numbers. Most obviously, strings can
be compared, with ordering given alphabetically.

Boolean Expressions
Can combine Boolean expressions into larger expressions via logical operators

In Python: and, or and not

Note: technically, any
nonzero number or any
nonempty string will
evaluate to True, but you
should avoid comparing
anything that isn’t Boolean.

Boolean Expressions: Example
Let’s see Boolean expressions in action

Note: in practice, we would want to include some extra code to
check that n is actually a number, and to “fail gracefully” if it
isn’t, e.g., by throwing an error with a useful error message.
More about this in future lectures.

Reminder: x % y returns the
remainder when x is divided by y.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

This is an if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

This Boolean expression is called the test
condition, or just the condition.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

If the condition evaluates to True,
then Python runs the code in the
body of the if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

If the condition evaluates to False,
then Python skips the body and
continues running code starting at the
end of the if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

Note: the body of a conditional statement
can have any number of lines in it, but it
must have at least one line. To do
nothing, use the pass keyword.

Conditional Expressions
More complicated logic can be handled with chained conditionals

Conditional Expressions
More complicated logic can be handled with chained conditionals

This is treated as a single if-statement.

Conditional Expressions
More complicated logic can be handled with chained conditionals

If this expression evaluates to True...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...then this block of code is executed...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...and then Python exits the if-statement

Conditional Expressions
More complicated logic can be handled with chained conditionals

If this expression evaluates to False...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...then we go to the condition. If this
condition fails, we go to the next
condition, etc.

Note: elif is short for else if.

Conditional Expressions
More complicated logic can be handled with chained conditionals

If all the other tests fail, we execute the
block in the else part of the statement.

Conditional Expressions
Conditionals can also be nested

This if-statement...

Conditional Expressions
Conditionals can also be nested

...contains another if-statement.

This if-statement...

Conditional Expressions
Often, a nested conditional can be simplified

When this is possible, I recommend it for the sake of your sanity,
because debugging complicated nested conditionals is tricky!

These two if-statements
are equivalent, in that
they do the same thing!

But the second one is
(arguably) preferable,
because it is simpler.

Recursion
A function is a allowed to call itself, in what is termed recursion

Countdown calls itself!

But the key is that each time it calls itself, it is passing an argument
with its value decreased by 1, so eventually, n <= 0 is true.

With a small change, we can make it so that
countdown(1) encounters an infinite
recursion, in which it repeatedly calls itself.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

This block specifies a while-loop. So
long as the condition is true, Python will
run the code in the body of the loop,
checking the condition again at the end
of each time through.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

Warning: Once again, there is a danger of creating an infinite
loop. If, for example, n never gets updated, then when we call
countdown(10) , the condition n>0 will always evaluate to
True, and we will never exit the while-loop.

Repeated actions: Iteration

One always wants to try and ensure that a while loop will
(eventually) terminate, but It’s not always so easy to know!
https://en.wikipedia.org/wiki/Collatz_conjecture

“Mathematics may not be ready for such problems."
Paul Erdős

https://en.wikipedia.org/wiki/Collatz_conjecture

Repeated actions: Iteration
We can also terminate a while-loop using the break keyword

Newton-Raphson method:
https://en.wikipedia.org/wiki/Newton's_method

The break keyword terminates the
current loop when it is called.

https://en.wikipedia.org/wiki/Newton's_method

Repeated actions: Iteration
We can also terminate a while-loop using the break keyword

Newton-Raphson method:
https://en.wikipedia.org/wiki/Newton's_method

Notice that we’re not testing for equality
here. That’s because testing for equality
between pairs of floats is dangerous.
When I write x=1/3, for example, the
value of x is actually only an
approximation to the number 1/3.

https://en.wikipedia.org/wiki/Newton's_method

Readings (this lecture)
Required:

Either Downey, Chapters 5, 6 and 7 or Severance Chapters 4 and 5

Recommended:
Python documentation on conditionals:

https://docs.python.org/3/reference/compound_stmts.html

https://docs.python.org/3/reference/compound_stmts.html

Readings (next lecture)
Required:

Downey Chapters 8 and 10 or Severance Chapters 6 and 8

Recommended:
Downey Chapter 9
Python documentation on lists:

https://docs.python.org/3/library/stdtypes.html#lists
Python documentation on sequences:

https://docs.python.org/3/library/stdtypes.html#typesseq

https://docs.python.org/3/library/stdtypes.html#lists
https://docs.python.org/3/library/stdtypes.html#typesseq

