STATS 701
Data Analysis using Python

Lecture 5: Tuples

Tuples

Similar to a list, in that it is a sequence of values
But unlike lists, tuples are immutable

Because they are immutable, they are hashable
So we can use tuples where we wanted to key on a list

Documentation:
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.htmi#tuples

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.html#tuples

Creating Tuples

t=1,2,3,4,5
t

Tuples created either with “comma notation”,
optional parentheses.

(1, 2, 3, 4, 3)

t=({1,2,3,4,5)
t

(1, 2, 3, 4, 5) - Python always displays tuples with parentheses.

t = 'cat',
t

Creating a tuple of one element requires a
(‘cat’,) trailing comma. Failure to include this comma,
even with parentheses, yields... not a tuple.

Creating Tuples

tl = tuple()
tl1
()
tZ2 = tuple(range(5)) Can also create a tuple using the tuple () function,
t which will cast any sequence to a tuple whose
0. 1. 2. 3., 4 elements are those of of the sequence.
{ ¥ ¥ F i]

t3 = tuple('goat')
t3

{Ig-‘ Dj a.I-‘ ItI]

tuplE{[[l:3:3]:[‘1r5:5]]}

({1, 2, 3], [4, 3, B])

print(type(t2))

<class 'tuple'>

Tuples are Sequences

e’ And of course, sequences have a length.

Ll len{t)

Reminder: sequences support all the operations listed here:

https://docs.python.org/3.3/library/stdtypes.html#typesseq

https://docs.python.org/3.3/library/stdtypes.html#typesseq

Tu ple Com parlson Tuples support comparison, which works
analogously to string ordering.

L (1,2,3) < (2,2,3)

0-th elements are compared. If they are equal,
(2,2,20) <= (2,2,2) <& go to the 1-th element, etc.

False

a0 % (L2 - Just like strings, the “prefix” tuple is ordered first.

True

True

(‘cat’','dog’','goat') > ('dog'; 'cat', 'goat')

False

Tuple comparison is element-wise, so

b (L ERE {1, 3]) (0, Bk ((1:2,0]) we only need that each element-wise

True comparison is allowed by Python.

Tuples are Immutable

Tuples are immutable, so changing

fruits = ('apple', 'banana', 'orange', 'kiwi')) .
fruits[(2] = 'grapefruit’ an entry is not permitted.
TypeError Traceback (most recent call last)
<ipython-input-48-c40al905a6e9> in ()
1 fruits = ('apple', 'banana', 'orange', 'kiwi')
———=> 2 fruits[2] = 'grapefruit’

TypeError: 'tuple' object does not support item assignment As with strings have to make a new
: assignment to the variable.

fruits = fruits[0:2] + ('grapefruit',) + fruits[3:])

fruits
{'apple', 'banana’, 'grapefruit', 'kiwi') Note: even thought ‘grapefruit’,
is a tuple, Python doesn’t know how to
fruits = fruits[0:2] + 'grapefruit', + fruits(3:] parse this line. Use parentheses!
TypeError Traceback (most recent call last)
<ipython-input-50-£f62749483e65> in ()
~===> 1 fruits = fruits[0:2] + 'grapefruit', + fruits[3:)

TypeError: can only concatenate tuple (not "str") to tuple

Useful trick: tuple assignment

: E - éﬂ Tuples in Python allow us to make many variable assignments at
i print(a, b) once. Useful tricks like this are sometimes called syntactic sugar
(though some might argue that tuple assignment isn’t technically an
10 5 example of such). https://en.wikipedia.org/wiki/Syntactic_sugar

: Common pattern: swap the values of two variables.
print(a, b)

35 f my This line achieves the same end, but in a
21D = 3 single assignment statement instead of three,
(a,b) = (b,a)

and without the extra variable tmp.

print{a, b)

https://en.wikipedia.org/wiki/Syntactic_sugar

Useful trick: tuple assignment

(x,¥,2) = (2*'cat’', 0.57721, [1,2,3]) :) :
(x,¥,2) Tuple assignment requires one variable on

the left for each expression on the right.

('catcat', 0.57721, [1, 2, 3}])

ValueError Traceback [(most recent call last)
<ipython-input-68-ell8c50£83dd> in ()
———=> 1 (X,¥,2) = (2", b';,'c’;'d")

ValueError: too many values to unpack (expected 3) If the number of variables doesn’t

match the number of expressions,
that’s an error.

ValueError Traceback [(most recent call last)
<ipython-input-69-875£95ceadid4> in ()
-———=> 1 (X,¥,2) = ('a’,'d’")

ValueError: not enough values to unpack (expected 3, got 2)

Useful trick: tuple assignment

email = 'klevinéumich.edu'
email.split('€") ¢

['klevin', 'umich.edu']

(user ,domain) = email.split('@"')
user

'klevin'

domain

'umich.edu'

(x,¥,2) = '‘cat’ g

 print(x, v, Z)

cCa-tc

The string.split () method returns a list
of strings, obtained by splitting the calling
string on the characters in its argument.

Tuple assignment works so long as the
right-hand side is any sequence, provided
the number of variables matches the number
of elements on the right. Here, the right-hand
sideisalist, [‘klevin’, ‘umich.edu’].

A string is a sequence, so tuple assignment
is allowed. Sequence elements are
characters, and indeed, x, y and z are
assigned to the three characters in the string.

Tuples as Return Values

This function takes a list of numbers and returns a

. import random tuple summarizing the list.
2 def five numbers(t): https://en.wikipedia.org/wiki/Five-number_summary
t.sort()
n = len(t)
return (t[0], t[n//4], t[n//2], t[(3*n)//4], t[-1])
five numbers([1,2,3,4,5,6,7])

(1, 2, 4, 6, 7)

randnumlist = [random.randint(1l,100) for x in range(60)]
2 (mini,lowqg,med,upqg,maxi) = five numbers(randnumlist)
3 (mini,lowqg,med,upqg,maxi)

(3, 27, 54, 73, 398) Test your understanding: what

does this list comprehension do?

https://en.wikipedia.org/wiki/Five-number_summary

Tuples as Return Values

More generally, sometimes you want more than one return value

1 t = divmod(13,4)
r i o
(3, 1)
(quotient,remainder) = divmod(13,4)

Z quotient

divmod is a Python built-in function that takes a pair
of numbers and outputs the quotient and remainder,

| remainder as a tuple. Additional examples can be found here:
https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Useful trick: variable-length arguments

A parameter name prefaced with * gathers all
arguments supplied to the function into a tuple.

def my min(*args):
p return min{args)
3 my min{l,2,3)

1

1 my min(4,5,6,10)
d

def print all{ *args):
2 print(args) o
. print all{'cat', 'dog', 'bird') Note: this is also one of several ways that one
- can implement optional arguments, though we’ll

('cat', 'dog', 'bird"} see better ways later in the course.

print all()

()

Gather and Scatter

The opposite of the gather operation is scatter

NEs e) g divmod takes two arguments, so this is an error.
} divmod(t)

TypeError Traceback (most recent call last)
<ipython-input-106-c7clalleef7e> in {)
l1t=(¢)

———=> 2 divmod(t)

TypeError: divmod expected 2 arguments, got 1

Instead, we have to “untuple” the tuple, using the
L divend (5] - scatter operation. This makes the elements of
(3, 1) the tuple into the arguments of the function.

i

"<ipython-input-109-£9912a2ca07d>" Note: gather/scatter only works in certain
*t contexts (e.g., for function arguments).

SyntaxError: can't use starred EKPIEEEiDn here

Combining lists: zip

Python includes a number of useful functions for combining lists and tuples

1 t1 = ['apple', 'orange', 'banana’, ‘'kiwi']
2l k2= [1,; 2, 3, &)
3 zip(tl,t2)

zip () returns a zip object, which is an iterator containing

<zip at 0x10c95d5cB> as its elements tuples formed from its arguments.
https://docs.python.org/3/library/functions.html#zip

1 for tup imn zip(tl,t2):
' print(tup)

('apple', 1) Iterators are, in essence, objects that support for-loops. All
('orange', 2) sequences are iterators. lterators support, crucially, a method
('banana', 3) __next (), which returns the “next element”. We'll see this
('kiwi', 4) in more detail later in the course.

https://docs.python.org/3/library/stdtypes.html#iterator-types

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/stdtypes.html#iterator-types

zip () returns a zip object, which is an iterator containing

as its elements tuples formed from its arguments.

Comblnlng IIStS le https://docs.python.org/3/library/functions.html#zip

1| for tup in zip(|['a','b';'c'),[1:2,;3,4])):
print(tup)

(*a', 1) Given arguments of different lengths,
('b', 2) zip defaults to the shortest one.
('e's 3)

1 for tup in zip(] 'a';'b';'c','d"}),[1:2,:3])):
' print(tup)

{'a', 1) .
('b', 2) z1ip takes any number of arguments, so long as
('e', 3) they are all iterable. Sequences are iterable.

1l for-tup in zip{[1,;2.,3]),['a',;'b';'ce"), 'xyz2’):
print(tup)

x') Iterables are, essentially, objects that can become iterators.
{2 By vty We'll see the distinction later in the course.
z') https://docs.python.org/3/library/stdtypes.htmli#typeiter

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/stdtypes.html#typeiter

Combining lists: zip

zip is especially useful for iterating
L def count_matches(s, t}: over several lists in lockstep.
2 cnt = 0

for (a,b) im zip(s,t):
i if a==b:
- cnt += 1
= return{ cnt)
count matches([(1,1,2,3,5],[1,2,3,4,5])

count matches([1,2,3,4,5],[1,2,3])

Test your understanding: what should this return?

Combining lists: zip

. zip is especially useful for iterating
L def count_matches(s, t}: over several lists in lockstep.
7. 0

7. cnt =

3 for (a,b) im zip(s,t):
i if a==b:

5 cnt += 1

= return{ cnt)

count matches([(1,1,2,3,5],[1,2,3,4,5])

1l ecount matches([1,2,3,4,5],[1,2,3])

Test your understanding: what should this return?

Related function: enumerate ()

for t in enumerate{ 'goat'):

print(t)
(0, 'g")
{d, o) . .
(2, 'a') enumerate returns an enumerate object, which is an
(3, 't') iterator of (index,element) pairs. It is a more graceful way of
performing the pattern below, which we’ve seen before.
7 https://docs.python.org/3/library/functions.html#enumerate
! for i in range(len(s)):
print((i,s(i]))
(0, "g")
(1, 'o0')
(2, 'a')
(3, 't')

https://docs.python.org/3/library/functions.html#enumerate

Dictionaries revisited

hist = {'cat':3,'dog':12, '"goat':18}
hist.items()

dict items([('cat', 3), ('dog', 12), ('goat', 18)])

for (k,v) in hist.items():

dict.items () returns a dict_items object, an

EEink LK, i, iterator whose elements are (key,value) tuples.
cat : 3
dog : 12
goat : 18
d = dict([(0, 'zero'),(1,'one'),(2, 'two'}])
d

{0: 'zero', 1l: 'one', 2: 'two'} Conversely, we can create a dictionary by
supplying a list of (key,value) tuples.
L dict(zip('cat','dog'))

{Iali IG.' cli Idlj Itli Igl}

Tuples as Keys

name2umid = {('Einstein', 'Albert'): 'aeinstein’,
('Noether', 'Emmy'): 'enoether’,
{ "Shannon', 'Claude’'): 'eshannon',
('Fan','Ky'): 'kyfan'}

namezumid In (most) Western countries, the family name is said
FiHibatein’, Ribart Y asinstein’, last (hence “last name”), but it is frequently useful to
('Fan', 'Ky'): 'kyfan', key on this name before keying on a given name.

('Moether', 'Emmy'): 'encether’,
{ 'Shannon', 'Claude'): 'cshannon'}

nameZumid(('Einstein', 'Albert’}]

'aeinstein'

sparsemx = dict() Keying on tuples is especially useful for representing

sparsemx[(1,4)] = sparse structures. Consider a 20-by-20 matrix in
sparsemx[(3,5)] =
gparsemx([(12,13)]
sparsemx[(11,13)]
sparsemx[(19,13})]

Sparsemx

which most entries are zeros. Storing all the entries
2 requires 400 numbers, but if we only record the
entries that are nonzero...

| i]

nn
L

{{l, 4): 1, (3, 5)y: 1, (11, 13): 3, (12, 13): 2, (19, 13): 5}

Data Structures: Lists vs Tuples

Use a list when:
Length is not known ahead of time and/or may change during execution
Frequent updates are likely

Use a tuple when:
The set is unlikely to change during execution
Need to key on the set (i.e., require immutability)
Want to perform multiple assignment or for use in variable-length arg list

Most code you see will use lists, because mutability is very useful!

Readings (this lecture)

Required:
Downey Chapter 12 or Severance Chapter 10

Recommended:
Downey Chapter 13
Python documentation on tuples
https://docs.python.org/3/library/stdtypes.htmi#tuples
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

https://docs.python.org/3/library/stdtypes.html#tuples
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Readings (next lecture)

Required:
Downey Chapter 14 or Severance Chapter 7
Python File I/O Documentation:
https://docs.python.org/3/tutorial/inputoutput.html
Handling Errors and Exceptions:
https://docs.python.org/3/tutorial/errors.html

Recommended:
Python pickle module:
https://docs.python.org/3/library/pickle.html#module-pickle

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/library/pickle.html#module-pickle

