
STATS 701
Data Analysis using Python

Lecture 5: Tuples

Tuples
Similar to a list, in that it is a sequence of values

But unlike lists, tuples are immutable

Because they are immutable, they are hashable
So we can use tuples where we wanted to key on a list

Documentation:
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.html#tuples

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.html#tuples

Creating Tuples

Tuples created either with “comma notation”,
optional parentheses.

Python always displays tuples with parentheses.

Creating a tuple of one element requires a
trailing comma. Failure to include this comma,
even with parentheses, yields… not a tuple.

Creating Tuples

Can also create a tuple using the tuple() function,
which will cast any sequence to a tuple whose
elements are those of of the sequence.

Tuples are Sequences

As sequences, tuples support indexing, slices, etc.

And of course, sequences have a length.

Reminder: sequences support all the operations listed here:
https://docs.python.org/3.3/library/stdtypes.html#typesseq

https://docs.python.org/3.3/library/stdtypes.html#typesseq

Tuple Comparison Tuples support comparison, which works
analogously to string ordering.

0-th elements are compared. If they are equal,
go to the 1-th element, etc.

Just like strings, the “prefix” tuple is ordered first.

Tuple comparison is element-wise, so
we only need that each element-wise
comparison is allowed by Python.

Tuples are Immutable
Tuples are immutable, so changing
an entry is not permitted.

As with strings, have to make a new
assignment to the variable.

Note: even thought ‘grapefruit’,
is a tuple, Python doesn’t know how to
parse this line. Use parentheses!

Useful trick: tuple assignment

Common pattern: swap the values of two variables.

Tuples in Python allow us to make many variable assignments at
once. Useful tricks like this are sometimes called syntactic sugar
(though some might argue that tuple assignment isn’t technically an
example of such). https://en.wikipedia.org/wiki/Syntactic_sugar

This line achieves the same end, but in a
single assignment statement instead of three,
and without the extra variable tmp.

https://en.wikipedia.org/wiki/Syntactic_sugar

Useful trick: tuple assignment
Tuple assignment requires one variable on
the left for each expression on the right.

If the number of variables doesn’t
match the number of expressions,
that’s an error.

Useful trick: tuple assignment
The string.split() method returns a list
of strings, obtained by splitting the calling
string on the characters in its argument.

Tuple assignment works so long as the
right-hand side is any sequence, provided
the number of variables matches the number
of elements on the right. Here, the right-hand
side is a list, [‘klevin’, ‘umich.edu’] .

A string is a sequence, so tuple assignment
is allowed. Sequence elements are
characters, and indeed, x, y and z are
assigned to the three characters in the string.

Tuples as Return Values
This function takes a list of numbers and returns a
tuple summarizing the list.
https://en.wikipedia.org/wiki/Five-number_summary

Test your understanding: what
does this list comprehension do?

https://en.wikipedia.org/wiki/Five-number_summary

Tuples as Return Values
More generally, sometimes you want more than one return value

divmod is a Python built-in function that takes a pair
of numbers and outputs the quotient and remainder,
as a tuple. Additional examples can be found here:
https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Useful trick: variable-length arguments

A parameter name prefaced with * gathers all
arguments supplied to the function into a tuple.

Note: this is also one of several ways that one
can implement optional arguments, though we’ll
see better ways later in the course.

Gather and Scatter
The opposite of the gather operation is scatter

divmod takes two arguments, so this is an error.

Instead, we have to “untuple” the tuple, using the
scatter operation. This makes the elements of
the tuple into the arguments of the function.

Note: gather/scatter only works in certain
contexts (e.g., for function arguments).

Combining lists: zip
Python includes a number of useful functions for combining lists and tuples

zip() returns a zip object, which is an iterator containing
as its elements tuples formed from its arguments.
https://docs.python.org/3/library/functions.html#zip

Iterators are, in essence, objects that support for-loops. All
sequences are iterators. Iterators support, crucially, a method
__next__() , which returns the “next element”. We’ll see this
in more detail later in the course.
https://docs.python.org/3/library/stdtypes.html#iterator-types

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/stdtypes.html#iterator-types

Combining lists: zip
zip() returns a zip object, which is an iterator containing
as its elements tuples formed from its arguments.
https://docs.python.org/3/library/functions.html#zip

Given arguments of different lengths,
zip defaults to the shortest one.

zip takes any number of arguments, so long as
they are all iterable. Sequences are iterable.

Iterables are, essentially, objects that can become iterators.
We’ll see the distinction later in the course.
https://docs.python.org/3/library/stdtypes.html#typeiter

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/stdtypes.html#typeiter

Combining lists: zip
zip is especially useful for iterating
over several lists in lockstep.

Test your understanding: what should this return?

Combining lists: zip
zip is especially useful for iterating
over several lists in lockstep.

Test your understanding: what should this return?

Related function: enumerate()

enumerate returns an enumerate object, which is an
iterator of (index,element) pairs. It is a more graceful way of
performing the pattern below, which we’ve seen before.
https://docs.python.org/3/library/functions.html#enumerate

https://docs.python.org/3/library/functions.html#enumerate

Dictionaries revisited

dict.items() returns a dict_items object, an
iterator whose elements are (key,value) tuples.

Conversely, we can create a dictionary by
supplying a list of (key,value) tuples.

Tuples as Keys

Keying on tuples is especially useful for representing
sparse structures. Consider a 20-by-20 matrix in
which most entries are zeros. Storing all the entries
requires 400 numbers, but if we only record the
entries that are nonzero...

In (most) Western countries, the family name is said
last (hence “last name”), but it is frequently useful to
key on this name before keying on a given name.

Data Structures: Lists vs Tuples
Use a list when:

Length is not known ahead of time and/or may change during execution
Frequent updates are likely

Use a tuple when:
The set is unlikely to change during execution
Need to key on the set (i.e., require immutability)
Want to perform multiple assignment or for use in variable-length arg list

Most code you see will use lists, because mutability is very useful!

Readings (this lecture)
Required:

Downey Chapter 12 or Severance Chapter 10

Recommended:
Downey Chapter 13
Python documentation on tuples

https://docs.python.org/3/library/stdtypes.html#tuples
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

https://docs.python.org/3/library/stdtypes.html#tuples
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Readings (next lecture)
Required:

Downey Chapter 14 or Severance Chapter 7
Python File I/O Documentation:

https://docs.python.org/3/tutorial/inputoutput.html
Handling Errors and Exceptions:

https://docs.python.org/3/tutorial/errors.html

Recommended:
Python pickle module:

https://docs.python.org/3/library/pickle.html#module-pickle

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/library/pickle.html#module-pickle

