
STATS 701
Data Analysis using Python

Lecture 7: Classes

Classes are programmer-defined types
Sometimes we use a collection of variables to represent a specific object

Example: we used a tuple of tuples to represent a matrix
Example: representing state of a board game

List of players, piece positions, etc.
Example: representing a statistical model

Want to support methods for estimation, data generation, etc.

Important point: these data structures quickly become very complicated,
and we want a way to encapsulate them. This is a core motivation (but

hardly the only one) for object-oriented programming.

Classes encapsulate data types

Example: I want to represent a point in 2-dimensional space ℝ2

Option 1: just represent a point by a 2-tuple

Option 2: make a point class, so that we have a whole new data type
Additional good reasons for this will become apparent shortly!

Credit: Running example adapted from A. B. Downey, Think Python

Class header declares a
new class, called Point.

Docstring provides explanation of what the class
represents, and a bit about what it does. This is an
ideal place to document your class.

Classes encapsulate data types

Example: I want to represent a point in 2-dimensional space ℝ2

Option 1: just represent a point by a 2-tuple

Option 2: make a point class, so that we have a whole new data type
Additional good reasons for this will become apparent shortly!

Credit: Running example adapted from A. B. Downey, Think Python

Class definition creates a class object, Point.

Note: By convention, class names
are written in CamelCase.

Creating an object: Instantiation

This defines a class Point, and
from here on we can create new
variables of type Point.

Creating an object: Instantiation

Creating a new object is called
instantiation. Here we are creating
an instance p of the class Point.

Indeed, p is of type Point.

Note: An instance is an individual object from a given class.
In general, the terms object and instance are interchangeable: an

object is an instantiation of a class.

Assigning Attributes This dot notation should look familiar.
Here, we are assigning values to attributes
x and y of the object p. This both creates
the attributes, and assigns their values.

Once the attributes are created, we can
access them, again with dot notation.

Attempting to access an attribute that
an object doesn’t have is an error.

Thinking about Attributes: Object Diagrams

At this point, p is just an
object with no attributes.

class: Pointp

Thinking about Attributes: Object Diagrams

After these two lines, p
has attributes x and y.

class: Pointp

x

y

3.0

4.0

Thinking about Attributes: Object Diagrams

After these two lines, p
has attributes x and y.

class: Pointp

x

y

3.0

4.0

So dot notation p.x, essentially
says, look inside the object p
and find the attribute x.

Nesting Objects

class: Pointp

x

y

3.0

4.0

class: Rectangler

height

width

5.0

12.0

corner

Objects can have other objects as their attributes.
We often call the attribute object embedded.

Nesting Objects

Both of these blocks of code create
equivalent Rectangle objects.

Note here that instead of creating a point
and then embedding it, we embed a Point
object and then populate its attributes.

Objects are mutable

If my Rectangle object were
immutable, this line would be an error,
because I’m making an assignment.

Since objects are mutable, I can change
attributes of an object inside a function
and those changes remain in the object
in the __main__ namespace.

Returning Objects
Functions can return objects. Note that this
function is implicitly assuming that rdouble
has the attributes corner, height and
width. We will see how to do this soon.

The function creates a new Rectangle
and returns it. Note that it doesn’t
change the attributes of its argument.

Copying and Aliasing
Recall that aliasing is when two or more variables have the same referent

i.e., when two variables are identical

Aliasing can often cause unexpected problems
Solution: make copy of object; variables equivalent, but not identical

The copy module provides functions for
copying objects. P2 is a copy of p1, so
they should not be identical...

...but they should be equivalent.

Copying and Aliasing
Recall that aliasing is when two or more variables have the same referent

i.e., when two variables are identical

Aliasing can often cause unexpected problems
Solution: make copy of object; variables equivalent, but not identical

The copy module provides functions for
copying objects. P2 is a copy of p1, so
they should not be identical...

...but they should be equivalent.

Hey, those were supposed to be equivalent! What’s up
with that? Answer: by default, for programmer-defined
types, == and is are the same. It’s up to you, the
programmer, to tell Python how to tell if two objects are
equivalent, by defining a method object.__eq__ .
We’ll come back to this.

Documentation for the copy module:
https://docs.python.org/3/library/copy.html

https://docs.python.org/3/library/copy.html

Copying and Aliasing

Here we construct a Rectangle, and
then copy it. Expected behavior is that
mutable attributes should not be
identical, and yet...

...evidently our copied objects still
have attributes that are identical.

Copying and Aliasing

class: Rectangler1

height

width

5.0

12.0

corner

class: Pointp

x

y

3.0

4.0

class: Rectangle

height

width

5.0

12.0

corner

r2

By default, copy.copy only copies the “top level” of
attributes. This is a problem if, for example, we have a
method like shift_rectangle that changes the
corner attribute. Calling shift_rectangle(r1)
would also change the corner attribute of r2.

Copying and Aliasing

copy.deepcopy is a recursive version of
copy.copy . So it recursively makes copies of
all attributes, and their attributes and so on.

We often refer to copy.copy as a shallow
copy in contrast to copy.deepcopy .

Now when we test for identity we get
the expected behavior. Python has
created a copy of r1.corner .

copy.deepcopy documentation explains how the copying operation is carried out:
https://docs.python.org/3/library/copy.html#copy.deepcopy

https://docs.python.org/3/library/copy.html#copy.deepcopy

Pure functions vs modifiers
A pure function is a function that returns an object

...and does not modify any of its arguments

A modifier is a function that changes attributes of one or more of its arguments

double_sides is a pure function. It creates
a new object and returns it, without changing
the attributes of its argument.

shift_rectangle changes the attributes
of its argument rec, so it is a modifier. We
say that rec has side effects, in that it
causes changes outside its scope.

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Pure functions vs modifiers
Why should one prefer one over the other?

Pure functions
Are often easier to debug and verify (i.e., check correctness)

https://en.wikipedia.org/wiki/Formal_verification
Common in functional programming

Modifiers
Often faster and more efficient
Common in object-oriented programming

https://en.wikipedia.org/wiki/Formal_verification

Modifiers vs Methods
A modifier is a function that changes attributes of its arguments

A method is like a function, but it is provided by an object.

Define a class representing a 24-hour time.

Class supports a method called
print_time , which prints a string
representation of the time.

Every method must include self as its first argument.
The idea is that the object is, in some sense, the object
on which the method is being called.

More on Methods

int_to_time is a pure
function that creates and
returns a new Time object.

Time.time_to_int is a method, but it is still a
pure function in that it has no side effects.

More on Modifiers

I cropped out time_to_int and
print_time for space.

Two different versions of the same
operation. One is a pure function
(pure method?), that does not
change attributes of the caller. The
second method is a modifier.

The modifier method does indeed
change the attributes of the caller.

More on Modifiers

Here’s an error you may encounter.
How the heck did increment_pure
get 3 arguments?!

Answer: the caller is considered an
argument (because of self)!

Readings (this lecture)
Required:

Downey Chapters 15,16
Python documentation on classes (only through section 9.3):

https://docs.python.org/3/tutorial/classes.html
Python documentation on copy module

https://docs.python.org/3/library/copy.html

Recommended:
D. Phillips (2015). Python 3 Object-oriented Programming, Second Edition. Packt Publishing.
M. Weisfeld (2009). The Object-Oriented Thought Process, Third Edition. Addison-Wesley.

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/library/copy.html

Readings (next lecture)
Required:

Downey Chapters 17 and 18

Recommended:
Python documentation on operators

https://docs.python.org/3/reference/datamodel.html#specialnames
Coding style guides

https://google.github.io/styleguide/pyguide.html
https://www.python.org/dev/peps/pep-0008/

https://docs.python.org/3/reference/datamodel.html#specialnames
https://google.github.io/styleguide/pyguide.html
https://www.python.org/dev/peps/pep-0008/

