
STATS 701
Data Analysis using Python
Lecture 9: Functional Programming I: itertools

Functional Programming
In the last few lectures, we saw ideas from object oriented programming

“Everything is an object”
Every operation is the responsibility of some class/object
Use side effects to our advantage (e.g., modifying attributes)

In functional programming, functions are the central concept, not objects
“Everything is a function”, “data is immutable”
Avoid side effects at all costs
Use pure functions (and “meta-functions”) as much as possible
Iterators (or their equivalents) become hugely important

Iterators
An iterator is an object that represents a “data stream”

Supports method __next__():
returns next element of the stream/sequence
raises StopIteration error when there are no more elements left

Iterators
An iterator is an object that represents a “data stream”

Supports method __next__():
returns next element of the stream/sequence
raises StopIteration error when there are no more elements left

__next__() method is the
important point, here. It returns a
value, the next Catalan number.

next(iter) is equivalent to calling
__next__() . Variable _ in the list
comprehension is a placeholder. Tells
Python we don’t care about the value.

Catalan numbers show up a lot in counting problems.
https://en.wikipedia.org/wiki/Catalan_number

https://en.wikipedia.org/wiki/Catalan_number

Iterators Lists are not iterators, so we first
have to turn the list t into an iterator
using the function iter().

Now, each time we call next(), we get the next
element in the list. Reminder: next(iter) and
iter.__next__() are equivalent.

Once we run out of elements, we get an error.

Iterators Lists are not iterators, so we first
have to turn the list t into an iterator
using the function iter().

Now, each time we call next(), we get the next
element in the list. Reminder: next(iter) and
iter.__next__() are equivalent.

Once we run out of elements, we get an error.

Lists are not iterators, but we can turn a list into an iterator
by calling iter() on it. Thus, lists are iterable, meaning
that it is possible to obtain an iterator over their elements.
https://docs.python.org/3/glossary.html#term-iterable

From the documentation: “When an iterable object is passed as
an argument to the built-in function iter(), it returns an iterator for
the object. This iterator is good for one pass over the set of
values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for statement does
that automatically for you, creating a temporary unnamed variable
to hold the iterator for the duration of the loop.”

https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#iter

Iterators You are already familiar with iterators from previous
lectures. When you ask Python to traverse an object
obj with a for-loop, Python calls iter(obj) to
obtain an iterator over the elements of obj.

These two for-loops are equivalent. The first
one hides the call to iter() from you,
whereas in the second, we are doing the
work that Python would otherwise do for us
by casting t to an iterator.

Iterators You are already familiar with iterators from previous
lectures. When you ask Python to traverse an object
obj with a for-loop, Python calls iter(obj) to
obtain an iterator over the elements of obj.

These two for-loops are equivalent. The first
one hides the call to iter() from you,
whereas in the second, we are doing the
work that Python would otherwise do for us
by casting t to an iterator.

Apropos a question from Jarvis a few weeks ago: “There is a subtlety when the sequence
is being modified by the loop (this can only occur for mutable sequences, i.e. lists). An internal
counter is used to keep track of which item is used next, and this is incremented on each
iteration. When this counter has reached the length of the sequence the loop terminates. This
means that if the suite deletes the current (or a previous) item from the sequence, the next
item will be skipped (since it gets the index of the current item which has already been
treated). Likewise, if the suite inserts an item in the sequence before the current item, the
current item will be treated again the next time through the loop.”

Iterators
If we try to iterate over an object that is not
iterable, we’re going to get an error.

Objects of class dummy have neither __iter__()
(i.e., doesn’t support iter()) nor __next__() , so
iteration is hopeless. When we try to iterate, Python
is going to raise a TypeError .

Iterators

Merely being an iterator isn’t enough, either!
for X in Y requires that object Y be iterable.

Iterators

Now Catalan supports __iter__() (it just returns
itself!), so Python allows us to iterate over it.

Iterable means that an object has the __iter__()
method, which returns an iterator. So __iter__()
returns a new object that supports __next__() .

This is an infinite loop. Don’t try this at home.

Iterators

We can turn an iterator back into a list, tuple, etc.
Caution: if you have an iterator like our Catalan
example earlier, this list is infinite and you’ll just
run out of memory.

Many built-in functions work on iterators. e.g., max, min, sum,
work on any iterator (provided elements support the operation);
in operator will also work on any iterator

Warning: Once again, care must
be taken if the iterator is infinite.

List Comprehensions and Generator Expressions
Recall that a list comprehension creates a list from an iterable

List comprehension computes and
returns the whole list. What if the
iterable were infinite? Then this list
comprehension would never return!

This list comprehension is going to be infinite! But I
really ought to be able to get an iterator over the
squares of the elements of Catalan object c...

This is the motivation for generator
expressions. Generator expressions
are like list comprehensions, but they
create an iterator rather than a list.

Generator expressions are written like list comprehensions,
but with parentheses instead of square brackets.

Generators
Related to generator expressions are generators

Provide a simple way to write iterators (avoids having to create a new class)

Each time we call this function, a local namespace is
created, we do a bunch of work there, and then all that
work disappears when the namespace is destroyed.

Alternatively, we can write harmonic as a generator.
Generators work like functions, but they maintain
internal state, and they yield instead of return.
Each time a generator gets called, it runs until it
encounters a yield statement or reaches the end of
the def block.

https://en.wikipedia.org/wiki/Harmonic_number

https://en.wikipedia.org/wiki/Harmonic_number

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Create a new harmonic generator. Inside this
object, Python keeps track of where in the def
code we are. So far, no code has been run.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

Each time we call next, Python runs
the code in h from where it left off until
it encounters a yield statement.

Generators Python sees the yield keyword and
determines that this should be a generator
definition rather than a function definition.

If/when we run out of yield statements (i.e.,
because we reach the end of the definition block),
the generator returns a StopIteration error,
as required of an iterator (not shown here).

Generators
Generators supply a few more bells and whistles

Ability to pass values into the generator to modify behavior
Can make generators both produce and consume information

Coroutines as opposed to subroutines

See generator documentation for more:
https://docs.python.org/3/reference/expressions.html#generator-iterator-methods

https://docs.python.org/3/reference/expressions.html#generator-iterator-methods

Map and Filter
Recall:

map operation applies a function to every element of a sequence
Yields a new, transformed sequence

filter operation removes from a sequence all elements failing some condition
Again, yields a new, filtered sequence

Map
We saw how to achieve a map operation using list comprehensions

But there’s also the Python map function: From the documentation:
map(function, iterable, ...)
Return an iterator that applies function to
every item of iterable, yielding the results.

map and range are both
special kinds of iterators.

Map
The first argument to map is a
function; remaining arguments
are one or more iterables.

Number of iterables and
number of function
arguments must agree!

Aside: lambda expressions
Lambda expressions let you define functions without using a def statement

Called an in-line function or anonymous function
Name is a reference to lambda calculus, a concept from symbolic logic

Define a function, then pass it to map.

Alternatively, define an equivalent function
in-line, using a lambda statement.

A lambda expression returns a function,
so my_square and lambda x: x**2
are, in a certain sense, equivalent.

Aside: lambda expressions Arguments of the function are listed
before the colon. So this function
takes a single argument...

...while this one takes four.

Aside: lambda expressions Return value of the function is listed on
the right of the colon. So this function
returns the square of its input plus 1....

...and this one returns a
Boolean stating whether or
not the four numbers satisfy
Fermat’s last theorem.

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem

Aside: lambda expressions

Lambda expressions return
actual functions, which we
can apply to inputs.

Function names are stored in an attribute
__name__ . Since lambda expressions yield
anonymous functions, they all have the
generic name ‘<lambda>’ .

Aside: lambda expressions

Lambda expressions can be used anywhere you
would use a function. Note that the term
anonymous function makes sense: the lambda
expression defines a function, but it never gets a
variable name (unless we assign it to something,
like in the ‘goat’ example to the left).

First-class functions

The fact that we can get variables
whose values are functions is actually
quite special. We say that Python has
first-class functions. That is,
functions are perfectly reasonable
values for a variable to have.

You’ve seen these ideas before if
you’ve used R’s tapply (or similar),
MATLAB’s function handles, C/C++
function pointers, etc.

Filter
The list filter expression also has an analogous function, filter.

filter takes a Boolean function and an
iterator and returns an iterator of only the
elements that evaluated to True.

Returns its own special iterator.

Second argument to filter (and map) can be
any iterator. Here we are filtering a generator.

Filter

It’s often more convenient to just use a
lambda expression in-line instead of
defining a Boolean function elsewhere.

Lambda expressions don’t support scatter/gather, so
you have to use this kind of pattern to process tuples.
Worry not! Another Python module does support this,
and we’ll see it in the next lecture.

Quantifiers over iterables: any() and all()

any takes an iterable as its input
and returns True if and only if one
or more elements is True.

Reminder: 0, 0.0, empty string, empty
list, etc all evaluate to False. Just about
everything else evaluates to True.

all takes an iterable as its input
and returns True if and only if all
elements are True.

zip, revisited Recall that zip takes two or more iterables
and returns an iterator over tuples

Here are two infinite iterators, and we zip them. So
z should also be an infinite iterator. But this
expression doesn’t result in an infinite evaluation...

The trick is that zip uses lazy evaluation. Rather
than trying to build all the tuples right when we call
zip, Python is lazy. It only builds tuples as we ask
for them! We’ll see this plenty more in this course.
https://en.wikipedia.org/wiki/Lazy_evaluation

https://en.wikipedia.org/wiki/Lazy_evaluation

Working with iterators: itertools
itertools.count(x,y) returns an
infinite iterator of numbers starting at x
and proceeding in increments of y.

itertools.accumulate(t) returns an
iterator of partial sums of t. Or partial
“sums” if we specify a different function.

itertools.filterfalse(t)
is like the opposite of filter.

itertools.starmap similar to map, but
applies multi-argument function to tuples.
Name is reference to the *args notation.

https://docs.python.org/3/library/itertools.html#module-itertools

https://docs.python.org/3/library/itertools.html#module-itertools

More itertools: combinations

itertools also includes some combinatorial
functions that can be useful on occasion.

Readings (this lecture)
Required:

Python itertools documentation
https://docs.python.org/3/library/itertools.html

A. M. Kuchling. Functional Programming HOWTO
https://docs.python.org/3/howto/functional.html

Recommended:
M. R. Cook. A Practical Introduction to Functional Programming
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
D. Mertz. Functional Programming in Python.

http://www.oreilly.com/programming/free/functional-programming-python.csp

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/howto/functional.html
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://www.oreilly.com/programming/free/functional-programming-python.csp

Readings (next lecture)
Required:

Python functools documentation
https://docs.python.org/3/library/functools.html

A. M. Kuchling. Functional Programming HOWTO
https://docs.python.org/3/howto/functional.html

Recommended:
M. R. Cook. A Practical Introduction to Functional Programming
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
D. Mertz. Functional Programming in Python.

http://www.oreilly.com/programming/free/functional-programming-python.csp

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/howto/functional.html
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://www.oreilly.com/programming/free/functional-programming-python.csp

