
STATS 701
Data Analysis using Python
Lecture 10: Functional Programming II: functools

What about reduce?
Saw map and filter last lecture, but we can’t have MapReduce without reduce

functools contains a bunch of useful functional
programming functions, including reduce.

Reduce operations reduce an iterator (i.e., a sequence) to a
single element. Sum is a good example of a reduce function.

functools.reduce takes a
function and and iterator and
performs a reduce operation on
the iterator using the function.

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Python initializes an accumulator with the given initial value.0

accumulator

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Now, Python repeatedly updates the accumulator, with
acc += f(acc,y)
where y traverses the iterable

0

accumulator

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

0

accumulator

f(0,2) = 2

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

2

accumulator

f(0,2) = 2

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

2

accumulator

f(2,3) = 5

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

5

accumulator

f(2,3) = 5

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

5

accumulator

f(5,5) = 10

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

10

accumulator

f(5,5) = 10

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

10

accumulator

...and so on.

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

27

accumulator

Once Python gets a StopIteration error
indicating that the iterator has no more elements,
it returns the value in the accumulator.

If the initial value isn’t supplied, Python
initializes the accumulator as acc = f(x,y)
where x and y are the first two elements of the
iterator. If the iterator is length 1, it just returns
that element. All told, it’s best to always
specify the initial value, except in very simple
cases (like these slides).

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Warning: if the iterator supplied to reduce is
empty, then we really do need the initial value!

Reduce operations
Three fundamental pieces:

2 3 5 8 1 1 7f(x,y) = x+y 0

function iterable initial value

Reduce in Python
reduce is not included as a built-in function in Python, unlike map and filter

Because developers felt that reduce is not “Pythonic”

The argument is that reduce operations can always be written as a for-loop:

Reduce in Python
reduce is not included as a built-in function in Python, unlike map and filter

Because developers felt that reduce is not “Pythonic”

The argument is that reduce operations can always be written as a for-loop:

This criticism is mostly correct, but we’ll see
later in the course when we cover MapReduce
that there are cases where we really do want a
proper reduce function.

Reduce in Python
All of the standard reduce-like functions are
easily reimplemented with reduce statements,
like this example, with max. Note the use of
Python’s in-line conditional statement.

More often, one has to implement the pairwise
function. For example, here we have implemented
a function for entrywise addition of tuples.

Note: there are “more functional” ways to do this. Since tuples are
themselves iterable, we could write a clever “function of functions”
to do this more gracefully. More on this soon.

Related: itertools.accumulate itertools.accumulate
performs a reduce operation, but
it returns an iterator over the
partial “sums” of its argument.
Returns an empty iterator if
argument is empty.

I put “sums” in quotes, because of course the function need not
be addition. The point is that we get an iterator over the values
of the accumulator at each step of the reduce operation.

Python operator module
It’s awfully annoying to have to write lambda x,y:x+y all the time

operator includes many other functions:
Math: add(), sub(), mul(), abs(), etc.
Logic: not_(), truth().
Bitwise: and_(), or_(), invert() .
Comparison: eq(), ne(), lt(), le(), etc.
Identity: is_(), is_not() .

Here is what we’d like to write,
but of course it’s a syntax error.

operator.mul gives us *, but
as a function, just as though we
wrote a lambda expression.

https://docs.python.org/3/library/operator.html#module-operator

https://docs.python.org/3/library/operator.html#module-operator

More functional patterns: functools
functools module provides a number of functional programming constructions

functools.partial takes a function and a set
of arguments to pass to the function. Returns a
function with some of its arguments “fixed”.

So in this case, it’s like we got a new function,
pow2(x) == math.pow(x,2)

functools.partial also lets
us pass keyword arguments.

Higher-order functions and currying
functools.partial takes a function (and other stuff), returns a function

Called a higher-order function

In most other languages, Python’s functools.partial is called currying

Currying is named after logician Haskell Curry
https://en.wikipedia.org/wiki/Currying

curry1 takes two arguments,
returns their product times 2.

curry2 takes one argument z, returns
2*3*z (reminder: partial fills positional
arguments in order).

Equivalently, just pass both
arguments in one call to partial.

https://en.wikipedia.org/wiki/Currying

Pure functions, again
Recall that a pure function was a function that did not have any side effects

Pure functions are especially important in functional programming
A pure function is really a function (in the mathematical sense)
Given the same input, it always produces the same output

(And doesn’t change the state of our program!)

This function is a modifier.
It has side effects.

This is a pure function.

Pure functions, again
Recall that a pure function was a function that did not have any side effects

Pure functions are especially important in functional programming
A pure function is really a function (in the mathematical sense)
Given the same input, it always produces the same output

(And doesn’t change the state of our program!)

Pure functions are also crucial to having immutable
data. Think about processing the observations in a
data set. We don’t want to change the original data
file in the process of our analysis! We want to be
able to write a pipeline, in which we pass data from
one function to another, producing a transformed
version of the data at each step.

Pure functions and higher-order functions
Pure functions are useful because they are very naturally composed

and arise naturally in map/reduce frameworks
Here’s a good example of a
higher-order function. compose
takes functions and produces a
new function.

You can see why we prefer pure
functions for these kinds of tricks.
If f and/or g had side effects, this
would be a big mess!

Returning a function is okay, because
Python has first-class functions.

Example credit: D. Mertz, Functional Programming in Python

Functional vs Object-oriented Programming
Of course, I’m exaggerating the
complexity of this object here, but this
really is what object-oriented code
ends up looking like in the wild.

Contrast that with the simplicity of this
functional version of the same
letter-counting operation.

Why use functional programming?
Some problems are especially well-suited to this paradigm

Example: quicksort

https://en.wikipedia.org/wiki/Quicksort
See the quicksort Wikipedia page for
examples of what this looks like when
written in a non-functional style.

https://en.wikipedia.org/wiki/Quicksort

A note on recursion in Python: tail call optimization
M. R. Cook, A Practical Introduction to Functional Programming:
“Tail call optimisation is a programming language feature. Each time a function recurses, a
new stack frame is created. A stack frame is used to store the arguments and local values
for the current function invocation. If a function recurses a large number of times, it is
possible for the interpreter or compiler to run out of memory. Languages with tail call
optimisation reuse the same stack frame for their entire sequence of recursive calls.
Languages like Python that do not have tail call optimisation generally limit the number of
times a function may recurse to some number in the thousands.”

Python doesn’t have tail call recursion, so some functional
programing patterns simply aren’t well-suited if we may
encounter many thousands of layers of recursion. Recall our
memoized function for computing the Fibonacci numbers.

Declarative Programming
Describe what the program should do, rather than how it does it

Implementation details are left up to the language as much as possible

In contrast to imperative/procedural programming
Sequence of statements describes how program should proceed
Most programming you have done in the past is procedural
Program consists of subroutines that get called, change state of program

Don’t worry too much about these distinctions. Most languages are a mix
of them, and no single approach is a silver bullet.

Different applications call for different programming paradigms.

Congratulations! You know enough functional
programming to get the joke in this xkcd comic!

Alt-text: Functional programming
combines the flexibility and power of
abstract mathematics with the intuitive
clarity of abstract mathematics.

Readings (this lecture)
Required:

Python functools documentation
https://docs.python.org/3/library/functools.html

A. M. Kuchling. Functional Programming HOWTO
https://docs.python.org/3/howto/functional.html

Recommended:
M. R. Cook. A Practical Introduction to Functional Programming
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
D. Mertz. Functional Programming in Python.

http://www.oreilly.com/programming/free/functional-programming-python.csp

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/howto/functional.html
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://www.oreilly.com/programming/free/functional-programming-python.csp

Readings (next lecture)
Required:

Numpy quickstart tutorial:
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

Pyplot tutorial:
http://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-introductory-pyplot-py

Recommended:
SciPy tutorial: https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
Pyplot API: http://matplotlib.org/api/pyplot_summary.html
The Visual Display of Quantitative Information by Edward Tufte
Visual and Statistical Thinking: Displays of Evidence for Making Decisions

by Edward Tufte This is essentially a reprint of Chapter 2 of the book above.

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-introductory-pyplot-py
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://matplotlib.org/api/pyplot_summary.html

