
STATS 701
Data Analysis using Python

Lecture 18: the UNIX/Linux Command Line



UNIX/Linux: a (very) brief history
1960s: Multics (Bell Labs, MIT, GE), a time-sharing operating system

1970s: UNIX developed at Bell Labs

1980s: the UNIX wars https://en.wikipedia.org/wiki/Unix_wars

1990s: GNU/Linux emerges

2000s: MacOS developed based on UNIX

Bell labs film about UNIX from 1982: 
http://techchannel.att.com/play-video.cfm/2012/2/22/AT&T-Archives-The-UNIX-Sy
stem

https://en.wikipedia.org/wiki/Unix_wars
http://techchannel.att.com/play-video.cfm/2012/2/22/AT&T-Archives-The-UNIX-System
http://techchannel.att.com/play-video.cfm/2012/2/22/AT&T-Archives-The-UNIX-System


The Unix philosophy: do one thing well
1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is a universal interface.



The Unix philosophy: do one thing well
1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is a universal interface.

These three design principles, articulated in the concise form above long after Unix was written, go a long 
way toward explaining how to approach the command line. For nearly any task you wish to accomplish, 
there almost certainly exists a way to do it (reasonably) easily by stringing together several different 
programs. More information: https://en.wikipedia.org/wiki/Unix_philosophy

https://en.wikipedia.org/wiki/Unix_philosophy


Basic concepts
Shell : the program through which you interact with the computer.

provides the command line and facilitates typing commands and reading outputs.
Popular shells: bash (Bourne Again Shell), csh (C Shell), ksh (Korn Shell)

Redirect : take the output of one program and make it the input of another.
we’ll see some simple examples in a few slides

stdin, stdout, stderr : three special “file handles”
for reading inputs from the shell (stdin)
and writing output to the shell (stderr for error messages, stdout other information).

input

Program 1

output 1

Program 2

output 2



Parts of the command line prompt

[klevin@flux-hadoop-login2 ~]$

Username Hostname Current directory Prompt/delimiter

Note: details of this will vary from one computer to the next (and it can be customized 
by the user), but this is the default on the Fladoop cluster. For information on 
customizing the command line prompt, see https://linuxconfig.org/bash-prompt-basics

https://linuxconfig.org/bash-prompt-basics


Connecting to other machines: ssh
ssh (Secure Shell) network protocol allows secure communication machines

Allows remote access to resources on, e.g., a server or compute cluster

UNIX/Linux/MacOS: open a terminal, type “ssh user@machine”, and you’re off!

Windows: ssh does not come standard.
PuTTY: https://en.wikipedia.org/wiki/PuTTY
Cygwin: https://en.wikipedia.org/wiki/Cygwin

https://en.wikipedia.org/wiki/PuTTY
https://en.wikipedia.org/wiki/Cygwin


Typical ssh session
Secure shell (ssh) login to 
Fladoop, from the command 
line on my Mac (term)

I cropped a few security-related 
things out of here.

And now I have a command line 
prompt on the Fladoop cluster!



Typical ssh session
Secure shell (ssh) login to 
Fladoop, from the command 
line on my Mac (term)

I cropped a few security-related 
things out of here.

And now I have a command line 
prompt on the Fladoop cluster!

If you’re using a Mac or UNIX/Linux machine, you can pretty much copy what I just 
did. On Mac, use the app Terminal. On UNIX/Linux systems, you should be able to 
pull up a terminal using a shortcut like ctrl+alt+t, depending on what distribution of 
UNIX/Linux you’re using.

On Windows, you can use cygwin to run a command line on your own machine, or 
use PuTTY to open an ssh connection to another machine like I did in this slide.

If you have trouble with any of this, please post to the discussion board and come to 
office hours to get assistance promptly so that you can do the homework.



Basic commands for navigating
pwd : “print/present working directory”. Print the directory that you are currently in.

ls : list the contents of the current directory.

cd dirname : change the working directory to dirname.

Some special directory symbols:
~ : your home directory. cd ~ will take you back to your home.
. : the current directory. cd . will take you to where you are right now.
.. : the directory above the current directory.

If you’re in /home/klevin/stats , then cd .. will take you to /home/klevin .

Try this. Type pwd or ls in your shell (either in terminal/cygwin or on Fladoop).



Example: pwd, ls and cd
keith@Steinhaus:~$ ssh -X klevin@flux-hadoop-login.arc-ts.umich.edu
Password:

[...]

[klevin@flux-hadoop-login2 ~]$ pwd
/home/klevin
[klevin@flux-hadoop-login2 ~]$ ls
Myfile.txt  stats700f17
[klevin@flux-hadoop-login2 ~]$ cd stats700f17/
[klevin@flux-hadoop-login2 stats700f17]$ pwd
/home/klevin/stats700f17
[klevin@flux-hadoop-login2 stats700f17]$ ls .
hw1.tex  hw2.tex  hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$ ls ..
myfile.txt  stats700f17
[klevin@flux-hadoop-login2 stats700f17]$ ls ~
myfile.txt  stats700f17



Getting help: man pages
When in doubt, the shell has built-in documentation, and it tends to be good!

man cmdname : brings up documentation about the command cmdname

This help page is called a man (short for manual) page. These have a reputation 
for being terse, but once you get used to reading them, they are extremely useful!

Some shells also have a command apropos:
apropos topic : lists all commands that might be relevant to topic.

Let’s read some of the ls man page and see if we can make sense of it.



Relevant xkcds



Basic commands: actually doing things
In the next few slides, we’ll look at some commands that actually let you do things 
like creating files and directories, reading files, and moving them around.

Follow along with the examples in your terminal, if you like (highly recommended).



Basic commands: echo
echo string : prints string to the shell.

keith@Steinhaus:~$ echo "hello world."
hello world.
keith@Steinhaus:~$ echo "hello world!"
-bash: !": event not found
keith@Steinhaus:~$ echo "hello world\!"
hello world\!
keith@Steinhaus:~$ echo 'hello world!'
hello world!
keith@Steinhaus:~$ echo "hello\tworld."
hello\tworld.
keith@Steinhaus:~$ echo -e "hello\tworld."
hello    world.

The shell tries to interpret the 
exclamation point as referencing a 
previous command rather than as text. 
Escaping doesn’t do the trick here. 
Instead, use single-quotes to tell the 
shell not to try and process the string.

To print special characters (tabs, 
newlines, etc), use the flag -e, without 
which echo just prints what it’s given.



Aside: redirections using >
What if I want to send output someplace other than the shell?

keith@Steinhaus:~$ echo -e  "hello\tworld." > myfile.txt
keith@Steinhaus:~$

Redirect tells the shell to send the 
output of the program on the 
“greater than” side to the file on the 
“lesser than” side. This creates 
the file on the RHS, an 
overwrites the old file, if it 
already exists!

Note: the other redirect, <, has a somewhat 
similar function, but is beyond our purposes 
here (stay tuned for command-line workshop 
at end of semester, perhaps?)



Basic commands: cat
cat filename : prints the contents of the file filename.

So cat is like echo but it takes a filename as argument instead of a string.

keith@Steinhaus:~$ cat myfile.txt
hello    world
keith@Steinhaus:~$



Basic commands: head
head filename : prints the first 10 lines of filename.
head -n X filename : prints the first X lines of filename.

keith@Steinhaus:~$ head ~/Teaching/Homeworks/HW1/homework1.tex
\documentclass[11pt]{article}

\usepackage{enumerate}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{hyperref}

\oddsidemargin 0mm
\evensidemargin 5mm
\topmargin -20mm
keith@Steinhaus:~$



Basic commands: more/less
more and less are two (very similar) programs for reading ASCII files.

[klevin@flux-hadoop-login2 stats700f17]$ less hw1.tex
[less takes up the whole screen]

This is just a dummy file that I wrote
as an example.
An actual tex file wouldn't look like this.
It would have a bunch of stuff like
\begin{definition}
An integer $p > 1$ is called \emph{prime}
is its only divisors are $1$ and $p$.
\end{definition}
and it would have a preamble
section declaring its document type
and a bunch of other stuff.
hw1.tex (END)

Note: press “q” to quit less/more and return to the command line.



Basic commands: mkdir
mkdir dirname : creates a new directory called dirname, if it doesn’t exist

[klevin@flux-hadoop-login2 stats700f17]$ ls
hw1.tex  hw2.tex  hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$ mkdir hadoop_stuff
[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  hw1.tex  hw2.tex    hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$



Basic commands: mv
mv file1 file2 : “moves” file1 to file2, overwriting file2.

If file2 is a directory, this places file1 inside that directory, again replacing any existing file with 
the same basename as file1. /path/to/file/basename.txt

[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  hw1.tex  hw2.tex    hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$ mv hw2.tex homework2.tex
[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  homework2.tex  hw1.tex  hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$
[klevin@flux-hadoop-login2 stats700f17]$ mv hw1.tex hadoop_stuff
[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  homework2.tex  hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$ ls hadoop_stuff
Hw1.tex
[klevin@flux-hadoop-login2 stats700f17]$



Basic commands: cp
cp file1 file2 : similar to mv, but creates a copy of file1 with name file2

So cp is like mv but file1 is copied instead of being renamed

[klevin@flux-hadoop-login2 stats700f17]$ cat homework2.tex
This is the second homework!
[klevin@flux-hadoop-login2 stats700f17]$ cp homework2.tex HW2.tex
[klevin@flux-hadoop-login2 stats700f17]$ cat homework2.tex
This is the second homework!
[klevin@flux-hadoop-login2 stats700f17]$ cat HW2.tex
This is the second homework!
[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  homework2.tex  HW2.tex  hw3.tex

Note: to copy a directory, you must include the -r flag to cp: cp -r dirname otherdirname



Basic commands: rm

rm filename : deletes the file filename. Be very very careful with this!

[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  homework2.tex  HW2.tex  hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$ rm HW2.tex
[klevin@flux-hadoop-login2 stats700f17]$ ls
hadoop_stuff  homework2.tex  hw3.tex
[klevin@flux-hadoop-login2 stats700f17]$



Basic commands: logout
logout: close connection to the current machine

[klevin@flux-hadoop-login2 stats700f17]$ logout
Connection to flux-hadoop-login.arc-ts.umich.edu closed.
keith@Steinhaus:~$

Note: depending on the type of shell session in use, 
you may need to use exit or ctrl-D to log off.



Moving files between machines: scp (Secure copy)
scp localfile username@hostname:path/to/file

Copy a file from your machine to some other machine via ssh

scp username@hostname:path/to/file localfile
Copy a file from another machine to your machine via ssh

keith@Steinhaus:~$ scp myfile.txt 
klevin@flux-hadoop-login.arc-ts.umich.edu:~/stats700f17/myfile.txt
Password:
[authentication]
myfile.txt                                100%   14 0.0KB/s   00:00    
keith@Steinhaus:~$ ssh -X klevin@flux-hadoop-login.arc-ts.umich.edu
Password:
[authentication]
[klevin@flux-hadoop-login1 ~]$ ls stats700f17/
hadoop_stuff  homework2.tex  hw3.tex  myfile.txt



You will need scp for homeworks
If you are on UNIX/Linux/Mac, you can just use scp from the command line

If you are on Windows, make sure you have either:
1. cygwin installed and working
2. PuTTY installed with pscp working

You should try and copy a file to/from Fladoop to make sure everything works
And come talk to me if there are problems!



We’ve only scratched the surface!
The UNIX command line is extremely powerful!

Offers numerous tools for working with text and general data wrangling:
grep, sed, awk, tr, cut, …

Ability to use the command line is crucial to being a good “data scientist”
Command line, once you’re good at it, makes things VERY fast!
2-3 lines of shell script to do what would take an entire Python program!



We’ve only scratched the surface!
The UNIX command line is extremely powerful!

Offers numerous tools for working with text and general data wrangling:
grep, sed, awk, tr, cut, …

Ability to use the command line is crucial to being a good “data scientist”
Command line, once you’re good at it, makes things VERY fast!
2-3 lines of shell script to do what would take an entire Python program!

If time allows, we’ll come back to some of 
these tools at the end of the course.



Readings
Required:

Introduction to Unix commands: https://kb.iu.edu/d/afsk
Includes all the commands we discussed today, and a few more that you don’t need to know 
well, but are worth being aware of.

Recommended:
Survival guide for Unix newbies: http://matt.might.net/articles/basic-unix/

More thorough discussion, including advanced commands like grep

“GNU/Linux Command−Line Tools Summary” by Gareth Anderson
Comprehensive introduction to the command line and the UNIX/Linux 
design philosophy in general.
http://tldp.org/LDP/GNU-Linux-Tools-Summary/GNU-Linux-Tools-Summary.pdf

https://kb.iu.edu/d/afsk
http://matt.might.net/articles/basic-unix/
http://tldp.org/LDP/GNU-Linux-Tools-Summary/GNU-Linux-Tools-Summary.pdf

