
STATS 701
Data Analysis using Python

Lecture 27: APIs and Graph Processing
Some slides adapted from C. Budak

Previously: Scraping Data from the Web
We used BeautifulSoup to process HTML that we read directly

We had to figure out where to find the data in the HTML
This was okay for simple things like Wikipedia…
...but what about large, complicated data sets?

E.g., Climate data from NOAA; Twitter/reddit/etc.; Google maps

Many websites support APIs, which make these tasks simpler

Instead of scraping for what we want, just ask!

Example: ask Google Maps for a computer repair shop near a given address

Three common API approaches
Via a Python package

Service (e.g., Google maps, ESRI*) provides library for querying DB
Example: from arcgis.gis import GIS

Via a command-line tool
Example: twurl https://developer.twitter.com/

Via HTTP requests
We submit an HTTP request to a server
Supply additional parameters in URL to specify our query
Example: https://www.yelp.com/developers/documentation/v3/business_search

* ESRI is a GIS service, to which the university has a subscription: https://developers.arcgis.com/python/

Ultimately, all three of these
approaches end up submitting an
HTTP request to a server, which
returns information in the form of a
JSON or XML file, typically.

https://developer.twitter.com/
https://www.yelp.com/developers/documentation/v3/business_search
https://developers.arcgis.com/python/

Web service APIs
Step 1: Create URL with query parameters

Example (non-working): www.example.com/search?key1=val1&key2=val2

Step 2: Make an HTTP request
Communicates to the server what kind of action we wish to perform
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Step 3: Server returns a response to your request
May be as simple as a code (e.g., 404 error)...
...but typically a JSON or XML file (e.g., in response to a DB query)

http://www.example.com/search?key1=value1&key2=value2
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

HTTP Requests
Allows a client to ask a server to perform an action on a resource

E.g., perform a search, modify a file, submit a form

Two main parts of an HTTP request:
URI: specifies a resource on the server
Method: specifies the action to be performed on the resource

HTTP request also includes (optional) additional information
E.g., specifying message encoding, length and language

More information:
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
RFC specifying HTTP requests: https://tools.ietf.org/html/rfc7231#section-4

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://tools.ietf.org/html/rfc7231#section-4

HTTP Request Methods
GET: retrieves information from the server

POST: sends information to the serve (e.g., a file for upload)

PUT: replace the URI with a client-supplied file

DELETE: delete the file indicated by the URI

CONNECT: establishes a tunnel (i.e., connection) with the server

More: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

See also Representational State Transfer:
https://en.wikipedia.org/wiki/Representational_state_transfer

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://en.wikipedia.org/wiki/Representational_state_transfer

Refresher: JSON
JavaScript Object Notation

https://en.wikipedia.org/wiki/JSON

Commonly used by website APIs

Basic building blocks:
attribute–value pairs
array data

Example (right) from wikipedia:
Possible JSON representation of a person

https://en.wikipedia.org/wiki/JSON

Python json module
JSON string encoding
information about information
theorist Claude Shannon

json.loads parses a string
and returns a JSON object.

json.dumps turns a JSON
object back into a string.

Python json module

JSON object returned by
json.loads acts just like a
Python dictionary.

Example: Querying Yelp’s Business Search Service
I am sitting at my desk, woefully undercaffeinated

I could open a new tab and search for coffee nearby…
...but why leave the comfort of my Jupyter notebook?

Yelp provides several services under their “Fusion API”
https://www.yelp.com/developers/documentation/v3/get_started

We’ll use the business search endpoint
Supports queries that return businesses reviewed on Yelp
https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/get_started
https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service
URL to which to direct
our request, specified in
Yelp’s documentation.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

Yelp requires that we obtain an
API key to use for authentication.
You must register with Yelp to
obtain such a key.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

We are going to pass a dictionary
of parameter values for
requests to use in constructing
a GET request for us.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

The resulting URL looks like this (can be access with r.url):
https://api.yelp.com/v3/businesses/search?term=coffee&radius=1000&location=1085+S.+University
Notice that if you try to follow that link, you’ll get an error asking for an authentication token.

https://www.yelp.com/developers/documentation/v3/business_search
https://api.yelp.com/v3/businesses/search?term=coffee&radius=1000&location=1085+S.+University

Example: Querying Yelp’s Business Search Service

This line actually submits the GET request to the
URL, and includes the authorization header and
our search parameters. requests handles all
the annoying formatting and construction of the
HTTP request for us.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

requests packages up the JSON object
returned by Yelp, if we ask for it. Recall that we
can naturally go back and forth between JSON
formatted files and dictionaries, so it makes
sense that r.json() is a dictionary.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

The businesses attribute of the JSON
object returned by Yelp is a list of
dictionaries, one dictionary per result.
The name of each business is stored in
its alias key.

See Yelp’s documentation for more
information on the structure of the
returned JSON object.
https://www.yelp.com/developers/doc
umentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search
https://www.yelp.com/developers/documentation/v3/business_search

More interesting API services
National Oceanic and Atmospheric Administration (NOAA)

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

ESRI ArcGIS
https://developers.arcgis.com/python/

MediaWiki (includes API for accessing Wikipedia pages)
https://www.mediawiki.org/wiki/API:Main_page

Open Movie Database (OMDb)
https://omdbapi.com/

Major League Baseball
http://statsapi.mlb.com/docs

Of course, these are just examples. Just about
every large tech company provides an API, as
do most groups/agencies that collect data.

https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://developers.arcgis.com/python/
https://www.mediawiki.org/wiki/API:Main_page
https://omdbapi.com/
http://statsapi.mlb.com/docs

Graphs: a Brief Introduction
A graph (also called a network) is:

a set of nodes (also called vertices) V
And a set of edges (also called links) E

each edge is a pair of nodes from V
Edges may be directed or undirected

Very useful for representing phenomena in the real world
Food webs, neurons, gene regulation, social networks, politics, WWW…
Any situation with actors/objects interacting with one another

Graphs are fundamentally different from relational data
vertex and edge structure makes it hard to represent graph as a “table”

An undirected graph on seven vertices.

Representing Graphs
Adjacency matrix

Each vertex gets a row in a matrix A
Aij is 1 if edge from node i to node j, 0 otherwise
A is symmetric when graph is undirected

Edge list
Graph represented by a list of its edges
(i,j) appears iff there is an edge from node i to node j

Edge “dictionary”
Graph is stored as a dictionary-lke structure
Each vertex is a key, value is a list of its neighbors

1 2

3 4

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

A =

[(1,2),(2,3),
(2,4),(3,4)]

{1:[2],2:[1,3,4],
3:[3,4], 4:[2,3]}

The three structures
below all encode this
undirected graph.

Representing Graphs
Adjacency matrix

Each vertex gets a row in a matrix A
Aij is 1 if edge from node i to node j, 0 otherwise
A is symmetric when graph is undirected

Edge list
Graph represented by a list of its edges
(i,j) appears iff there is an edge from node i to node j

Edge “dictionary”
Graph is stored as a dictionary-lke structure
Each vertex is a key, value is a list of its neighbors

1 2

3 4

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

A =

[(1,2),(2,3),
(2,4),(3,4)]

{1:[2],2:[1,3,4],
3:[3,4], 4:[2,3]}

The three structures
below all encode this
undirected graph.

Which of these (or other)
representations to use will
depend on the task. Each
representation has its own
advantages and
disadvantages with
respect to memory usage
and speed of access.

Graphs in Python: igraph
igraph is a set of tools for performing graph processing and analysis

Implementations in Python, R and C

Includes functions for generating graphs from several common models
Including the stochastic block model and preferential attachment model
https://en.wikipedia.org/wiki/Stochastic_block_model
https://en.wikipedia.org/wiki/Preferential_attachment

Includes graph visualization tools
see also the graphviz package, https://pypi.python.org/pypi/graphviz

https://en.wikipedia.org/wiki/Stochastic_block_model
https://en.wikipedia.org/wiki/Preferential_attachment
https://pypi.python.org/pypi/graphviz

Using igraph 1 2

3 0

I’ve changed vertex 4 to
vertex 0 because igraph
numbers the vertices from
0 by default.

Create an igraph object
representing a graph. Initially, it is an
empty graph (no nodes, no edges).

Using igraph 1 2

3 0

I’ve changed vertex 4 to
vertex 0 because igraph
numbers the vertices from
0 by default.

add_vertices method adds vertices to the
graph. Argument specifies number of vertices
to add. By default, vertices are numbered
sequentially in the order that they are created.

Using igraph 1 2

3 0

I’ve changed vertex 4 to
vertex 0 because igraph
numbers the vertices from
0 by default.

Add edges to the graph. Edges
are specified by pairs, with no
attention to order. Trying to add
an edge to a vertex that doesn’t
exist in the graph is an error.

Using igraph 1 2

3 0

I’ve changed vertex 4 to
vertex 0 because igraph
numbers the vertices from
0 by default.

By default, we create an undirected
graph. Directed graphs are also available
by specifying directed=True in
ig.Graph() initialization.

Using igraph 1 2

3 0

I’ve changed vertex 4 to
vertex 0 because igraph
numbers the vertices from
0 by default.

You can check that this
encodes the graph above.

Generating graphs

1 2

3

0

4 5 6

igraph includes functions for generating
deterministic graphs, such as k-regular
trees (i.e., a tree in which every non-leaf
has the same number of children).

Generating graphs
igraph also includes functions for generating
random graphs, such as this geometric random
graph, in which each node has a corresponding
(random) point in the unit square, and nodes
form edges if and only if their positions are
within some radius of one another.

This generates a geometric random graph
on n=100 nodes with radius 0.2.

Generating graphs
igraph also includes functions for generating
random graphs, such as this geometric random
graph, in which each node has a corresponding
(random) point in the unit square, and nodes
form edges if and only if their positions are
within some radius of one another.

Summary tells us that the graph has 100 nodes and
484 edges. The nodes have attributes, namely their
(x,y) coordinates in the unit square.

Graph properties
Compute the degree sequence of the graph.
The degree of a vertex is the number of
edges incident upon that vertex.

Graph properties

Betweenness of a vertex measures how
central it is to the graph; essentially, how
many paths between other pairs of vertices
pass through this vertex?

Graph properties

Count the number of triangles in the graph. The
number of triangles is a good, albeit simple,
measure of the extent to which the graph in
question displays the small world phenomenon.

https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Six_degrees_of_separation

https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Six_degrees_of_separation

Graph visualization

Full disclosure: because igraph does not
include support for inline image display like
matplotlib does, I actually ran this code
directly in the Python interpreter.

Layout object specifies how to arrange the nodes
when visualizing the graph. kk is the
Kamada-Kawai algorithm, which models the
nodes as masses connected by springs.
http://igraph.org/python/doc/tutorial/tutorial.html#layout-al
gorithms

http://igraph.org/python/doc/tutorial/tutorial.html#layout-algorithms
http://igraph.org/python/doc/tutorial/tutorial.html#layout-algorithms

Graph visualization

Full disclosure: because igraph does not
include support for inline image display like
matplotlib does, I actually ran this code
directly in the Python interpreter.

We can add more information to the plot, such as
vertex- or edge-level labels, change vertex sizes
and colors, change edge weights and colors, etc.
More information:
http://igraph.org/python/doc/tutorial/tutorial.html#v
ertex-attributes-controlling-graph-plots

http://igraph.org/python/doc/tutorial/tutorial.html#vertex-attributes-controlling-graph-plots
http://igraph.org/python/doc/tutorial/tutorial.html#vertex-attributes-controlling-graph-plots

Working with graphs
For most of my own research, I use MATLAB and numpy

Using adjacency matrix representation, so want fast matrix operations

I find igraph primarily useful for visualization
Less so for running experiments

But support for many different generative models is also quite nice

Note: the R igraph package is better supported than the Python one

Example Project: Exploring the Twitter Graph
It is natural to represent Twitter as a directed graph

Each user is a node
Edge from user A to user B if A follows B

Idea:
select a user of twitter
construct the neighborhood of that user in the twitter graph
E.g., graph formed by that user, his/her friends, and friends of friends

Example Project: Exploring the Twitter Graph
Project sketch:

Choose a user, say, Albert-Laszlo Barabasi https://twitter.com/barabasi
Create a graph with one node, labeled @barabasi

Choose a neighborhood size (e.g., 2 for friends and friends of friends)

Use the twitter API to access followers and followees of Prof. Barabasi
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/overview

Note: this requires a twitter account and App registration

For each follower and followee, add a corresponding node and edge

Recurse, repeating on all neighbors of @barabasi, and so on
(until we have explored to the desired neighborhood size)

https://twitter.com/barabasi
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/overview

Readings
Required:

None

Recommended:
Getting started with the Python requests package

http://docs.python-requests.org/en/master/user/quickstart/

Mozilla overview of HTTP methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

RFC Specifying HTTP methods https://tools.ietf.org/html/rfc7231#section-4

igraph tutorial http://igraph.org/python/doc/tutorial/tutorial.html

http://docs.python-requests.org/en/master/user/quickstart/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://tools.ietf.org/html/rfc7231#section-4
http://igraph.org/python/doc/tutorial/tutorial.html

STATS 701
Data Analysis using Python

Closing Remarks

First, a word of thanks

Seth Meyer
Research Computing Lead

ARC-TS

Peter Knoop
Programmer & Senior Analyst

LSA IT

Without these two gentlemen, the second half of this course would not have
been possible. If you see them, please thank them for their help!

Second, more words of thanks

Roger Fan
PhD Student

Department of Statistics

Topics We Surveyed

We’ve only scratched the surface on all of these
topics. The best way to learn more is to pick a
project and start working on it. For example, pick
a simple statistical model and implement it in
TensorFlow, then apply that model to data,
perhaps scraped from the web somewhere.

Regular expressions

Markup languages

Databases

UNIX Command Line

MapReduce

Spark

TensorFlow

APIs

Topics We Surveyed
Regular expressions

Markup languages

Databases

UNIX Command Line

MapReduce

Spark

TensorFlow

APIs

We’ve only scratched the surface on all of these
topics. The best way to learn more is to pick a
project and start working on it. For example, pick
a simple statistical model and implement it in
TensorFlow, then apply that model to data,
perhaps scraped from the web somewhere.

But these topics are constantly changing
New software versions
New tools
New frameworks

It’s a lot of work to keep up!

Keeping up with new tools
Find a few blogs/twitter feeds to follow

Forums: e.g., HackerNews, Reddit

Read papers on the arXiv
Most good papers will describe what framework(s) they used

Keeping up with changes in the software ecosystem is a part of
the job, especially in industry, and requires time and effort.

Finding Projects
If you are currently doing research:

At least one thing we discussed this semester should apply to your project!
Speak to your supervisor about Flux allocation or buying GCP time

If you aren’t:
Find an interesting question, and answer it
Interesting data set? Visualization? Simulation?
Consider Amazon AWS or GoogleCloud for compute resources

Finding Projects
If you are currently doing research:

At least one thing we discussed this semester should apply to your project!
Speak to your supervisor about Flux allocation or buying GCP time

If you aren’t:
Find an interesting question, and answer it
Interesting data set? Visualization? Simulation?
Consider Amazon AWS or GoogleCloud for compute resources

“I picked this card shuffling problem up off the street.
Find a problem that sparks your interest, and pursue it!”

-Persi Diaconis (paraphrased)

Thanks!

