STATS507: Data Analysis in Python 1

Homework 4: Functional Programming
Due February 15, 11:59 pm
Worth 15 points

Read this first. A few things to bring to your attention:

1. Important: If you have not already done so, please request a Flux Hadoop account.
Instructions for doing this can be found on Canvas.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance so we can help you.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git.

4. A note on grading: overly complicated solutions or solutions that suggest an
incomplete grasp of key concepts from lecture will not receive full credit.

Instructions on writing and submitting your homework.

Failure to follow these instructions will result in lost points. Your homework should
be written in a jupyter notebook file. 1 have made a template available on Canvas,
and on the course website at http://www-personal.umich.edu/~klevin/teaching/
Winter2019/STATS507 /hw_template.ipynb. You will submit, via Canvas, a .zip file
called yourUniqueName_hwX.zip, where X is the homework number. So, if I were to hand
in a file for homework 4, it would be called klevin_hw4.zip. Contact the instructor or
your GSI if you have trouble creating such a file.

When I extract your compressed file, the result should be a directory, also called
yourUniqueName_hwX. In that directory, at a minimum, should be a jupyter notebook file,
called yourUniqueName . hwX . ipynb, where again X is the number of the current homework.
Feel free to define supplementary functions in other Python scripts, but be sure to include
them in your compressed directory if you use them. In short, I should be able to extract
your archived file and run your notebook file on my own machine by opening it in jupyter
and clicking, for example, Cells->Run all. Importantly, please ensure that none of the
code in your submitted notebook file results in errors. Errors in your code cause problems
for our auto-grader. Thus, even though we frequently ask you to check for errors in
your functions, you should not include in your submission any examples of your functions
actually raising those errors.

Please include all of your code for all problems in the homework in a single Python
notebook unless instructed otherwise, and please include in your notebook file a list of any
and all people with whom you discussed this homework assignment. Please also include
an estimate of how many hours you spent on each of the sections of the assignment.

These instructions can also be found on the course web page at http://www-personal.
umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html. Please
direct any questions to either the instructor or your GSI.


http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_template.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html

STATS507: Data Analysis in Python 2

1 TIterators and Generators (4 points)

In this exercise, you'll get some practice working with iterators and generators. Note:
in this problem, the word enumerate is meant in the sense of returning elements, not in
the sense of the Python function enumerate. So, if I say that an iterator enumerates a
sequence ag, a1, ds, ..., I mean that these are the elements that it returns upon calls to
the __next__ method, not that it returns pairs (7, a;) like the enumerate function.

1. Define a class Fibo of iterators that enumerate the Fibonacci numbers. For the
purposes of this problem, the Fibonacci sequence begins 0,1,1,2,3,..., with the
n-th Fibonacci number F,, given by the recursive formula F,, = F,,_1 + F,,_5. Your
solution should not make use of any function aside from addition (i.e., you should
not need to use the function fibo() defined in lecture a few weeks ago). Your class
should support, at a minimum, an initialization method, a __iter__ method (so
that we can get an iterator) and a __next__ method. Note: there is an especially
simple solution to this problem that can be expressed in just a few lines using tuple
assignment.

2. We can generalize the Fibonacci sequence by following the same recursive procedure
F, = F,_1+ F,,_», but using a different choice of initial two values for Fy and Fi. For
example, if we take Fy = 2 and F; = 1, then we obtain the Lucas numbers, which
are closely related to the Fibonacci numbers (https://en.wikipedia.org/wiki/
Lucas_number). Define a class GenFibo of iterators that enumerate generalized
Fibonacci numbers. Your class should inherit from the Fibo class defined in the
previous subproblem. The initialization method for the GenFibo class should take
two optional arguments that specify the values of Iy and Fi, in that order, and their
values should default so that F = GenFibo () results in an enumerator equivalent to
the one that would have been created if you had called F = Fibo() (i.e., GenFibo ()
should produce an iterator over the Fibonacci numbers).

3. Define a generator primes that enumerates the prime numbers. Recall that a prime
number is any integer p > 1 whose only divisors are p and 1. Note: you may
use the function is_prime that we defined in class (or something similar to it),
but such solutions will not receive full credit, as there is a more graceful solution
that avoids declaring a separate function or method for directly checking primality.
Hint: consider a pattern similar to the one seen in lecture using the any and/or all
functions.

4. This one is good practice for coding interview questions. The Ulam numbers are a
sequence u1, Ug, Uz, . .. of positive integers, defined in the following way: u; = 1, and
uy = 2. For all n > 2, u,, is the smallest integer that is expressible as a sum of two
distinct terms from earlier in the sequence in ezactly one way. See the Examples sec-
tion of the Wikipedia page for an illustration: https://en.wikipedia.org/wiki/
Ulam_number. Define a generator ulam that enumerates the Ulam numbers. Hint:
it will be helpful to try and break this problem into smaller, simpler subproblems.
In particular, you may find it helpful to write a function that takes a list of integers
t and one additional integer u, and determines whether or not u is expressible as a
sum of two distinct elements of t in exactly one way.


https://en.wikipedia.org/wiki/Lucas_number
https://en.wikipedia.org/wiki/Lucas_number
https://en.wikipedia.org/wiki/Ulam_number
https://en.wikipedia.org/wiki/Ulam_number

STATS507: Data Analysis in Python 3

2 List Comprehensions and Generator Expressions (4 points)

In this exercise you'll write a few simple list comprehensions and generator expressions.
Again in this problem I use the term enumerate to mean that a list comprehension or
generator expression returns certain elements, rather than in the sense of the Python
function enumerate.

1. Write a list comprehension that enumerates the sequence 2" —1forn = 1,23, ..., 20.
For ease of grading, please assign this list comprehension to a variable called pow2minus1.

2. The Lazy Caterer’s sequence is a sequence of numbers that counts, for each n =
0,1,2,..., the largest number of pieces that can be cut from a disk with at most
n cuts (https://en.wikipedia.org/wiki/Lazy_caterer’s_sequence). The n-th
number in this sequence is given by p, = (n? + n + 2)/2, where n = 0,1,2,....
Write a generator expression that enumerates the Lazy Caterer’s sequence. For
ease of grading, please assign this generator expression to a variable called caterer.
Hint: you may find it useful to define a generator that enumerates the non-negative
integers.

3. Write a generator expression that enumerates the tetrahedral numbers. The n-th
tetrahedral number (n = 1,2,...) is given by T}, = (”*2), where (z) is the binomial

3
coefficient
(aj) B x!
y)  ylx—y)!

For ease of grading, please assign this generator expression to a variable called tetra.
Hint: you may find it useful to define a generator that enumerates the positive
integers.

3 Map, Filter and Reduce (3 points)

In this exercise, you’ll learn a bit about map, filter and reduce operations. We will revisit
these operations in a few weeks when we discuss MapReduce and related frameworks in
distributed computing. In this problem, I expect that you will use only the functions map,
filter and functions from the functools and itertools modules, along with the range
function (and similar list-related functions) and a sprinkling of lambda expressions.

1. Write a one-line expression that computes the sum of the first 10 even square num-
bers (starting from 4). For ease of grading, please assign the output of this expression
to a variable called sum_of_even_squares.

2. Write a one-line expression that computes the product of the first 13 primes. You
may use the primes generator that you defined above. For ease of grading, please
assign the output of this expression to a variable called product_of_primes.

3. Write a one-line expression that computes the sum of the squares of the first 31
primes. You may use the primes generator that you defined above. For ease of grad-
ing, please assign the output of this expression to a variable called squared_primes.

4. Write a one-line expression that computes a list of the first twenty harmonic numbers.
Recall that the n-th harmonic number is given by H, = Y ;_,1/k. For ease of
grading, please assign the output of this expression to a variable called harmonics.


https://en.wikipedia.org/wiki/Lazy_caterer's_sequence

STATS507: Data Analysis in Python 4

5. Write a one-line expression that computes the geometric mean of the first 12 tetra-
hedral numbers. You may use the generator that you wrote in the previous problem.
Recall that the geometric mean of a collection of n numbers ay, as, ..., a, is given
by (ITi, a;)'/™. For ease of grading, please assign the output of this expression to a
variable called tetra_geom.

4 Fun with Polynomials (4 points)

In this exercise you’ll get a bit of experience writing higher-order functions. You may
ignore error checking in this problem.

1. Write a function make_poly that takes a list of numbers (ints and/or floats) coeffs
as its only argument and returns a function p. The list coeffs encodes the co-
efficients of a polynomial, p(z) = ag + a1 + ax® + - -+ + a,x", with a; given by
coeffs[i]. The function p should take a single number (int or float) x as its argu-
ment, and return the value of the polynomial p evaluated at x.

2. Write a function eval_poly that takes two lists of numbers (ints and/or floats),
coeffs and args. coeffs encodes the coefficients of polynomial p, and your function
should return the list of numbers (ints and/or floats) representing the result of
evaluating the polynomial p on each of the elements in args, in order. You should
be able to express the solution to this problem in a single line (not including the
function definition header, of course). Your function should make use of make_poly
from the previous part to receive full credit.



	Iterators and Generators (4 points)
	List Comprehensions and Generator Expressions (4 points)
	Map, Filter and Reduce (3 points)
	Fun with Polynomials (4 points)

