
STATS507: Data Analysis in Python 1

Homework 7: Regexes and Structured Data

Due March 13, 11:59 pm

Worth 20 points

Read this first. A few things to bring to your attention:

1. Important: If you have not already done so, please request a Flux Hadoop account.
Instructions for doing this can be found on Canvas.

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance so we can help you.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git.

4. A note on grading: overly complicated solutions or solutions that suggest an
incomplete grasp of key concepts from lecture will not receive full credit.

Instructions on writing and submitting your homework can be found at http://

www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.

html. Failure to follow these instructions will result in lost points. Please direct any ques-
tions to either the instructor or your GSI.

1 Regular Expressions: Warmup (4 points)

In this problem, you’ll get practice with basic regular expressions. Pay particular attention
to edge cases such as the empty string and single-character strings when writing your
regexes. At the URL http://www.greenteapress.com/thinkpython/code/words.txt

is a list of about 100,000 English words.

1. Use urllib to open the URL and read the file, and produce a list of ASCII strings
so that each line of the file corresponds to an element of the list. You will likely
need to convert the raw bytes read from the webpage to ASCII characters, for which
you should see the documentation for the string methods encode and decode. How
many words are in the file?

2. It is a good habit to always look at your data to check that it makes sense. Have
a look at the words in the list. Does anything jump out at you? Note: I am not
requiring you to do anything specific, here. Just look at the data!

3. Write a regular expression that matches any string containing exactly four consecu-
tive consonants. Compile this regular expression, and assign it to a variable called
four_consecutive_consonants. Use this regex to determine how many words from

http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html
http://www.greenteapress.com/thinkpython/code/words.txt


STATS507: Data Analysis in Python 2

the list contain exactly four consecutive consonants. For the purposes of this spe-
cific problem, the vowels are a, e, i, o, u, y. All other letters are consonants.
Produce a list of all such words.

4. Write a regular expression that matches any string that contains no instances of the
letter e. Compile this regular expression, and assign it to a variable called gadsby.
(Gadsby is the title of an English novel written in the 1930s that contains almost no
instances of the letter e). How many words in the list do not contain the letter e?

5. Write a regular expression that matches any string that begins and ends with a
vowel and has no vowels in between. For the purposes of this specific problem, y is
neither consonant nor vowel, so consonants are the 20 letters that are not one of a,
e, i, o, u, y and vowels are a, e, i, o, u. The words need not begin and end
with the same vowel, so angle is a valid match. Compile this regular expression,
and assign it to a variable called vowel_vowel. How many words begin and end
with a vowel with no vowels in between?

6. Write a regular expression that matches any string whose last two characters are
the first two characters in reverse order. So, for example, your regex should match
repeater and stats, but not neoprene. Compile this regular expression and assign
it to a variable called bookends. How many words in the list have this property?
Hint: be careful of the cases in which the word is length less or equal to 3. You
may handle the case of a single character (e.g., a), as you like, but please give an
explanation for your choice.

2 Exploring Internet Traffic with Regexes (4 points)

In this problem, you’ll get a taste of a more realistic application of regular expressions. The
file http://umich.edu/~klevin/teaching/Winter2019/STATS507/SkypeIRC.txt con-
tains data generated by web traffic associated with Skype and IRC, captured using the
Wireshark program, a common tool for analyzing web traffic. The original data file can
be found on the Wireshark wiki, https://wiki.wireshark.org/SampleCaptures, but
please use the file provided on my website for this assignment.

1. Download the file from the URL above (or use urllib or requests to open it
directly, being careful to convert the raw bytes back to UTF-8) and read its contents
into a string. Each line of this file corresponds to a single packet sent over the
internet. How many packets are in this file? Save the answer in a variable n_packets.
Note: if you decide to download the file, don’t forget to include a copy of it in your
submission so that we can run your code.

2. Use regular expressions to extract all the IP addresses from the file and collect them
in a Python list. An IP address consists of four numbers, which are displayed as
A.B.C.D where A,B,C and D are each numbers between 0 and 255. How many unique
IP addresses appear in the data set? Save the answer in a variable ip_addresses

3. Write a function called get_packets_by_regex that takes a single raw string as its
argument and returns all lines of the input file that match the input raw string as
a regular expression. So, for example, get_packets_by_regex(r’comcast’) will
return all lines from the file containing the string ’comcast’. Your function should

http://umich.edu/~klevin/teaching/Winter2019/STATS507/SkypeIRC.txt
https://wiki.wireshark.org/SampleCaptures


STATS507: Data Analysis in Python 3

perform appropriate error checking to ensure that the input is a string, but you do
not need to check that it is a raw string.

4. The second piece of text (i.e., non-whitespace) on each line is a time stamp, counting
the time (in seconds) since the beginning of the traffic recording. Using matplotlib,
create a plot displaying how many packets appeared in each second of the recording.
A histogram or line plot is the most obvious way to do this, but you should feel
free to use a more creative way of displaying this information if you wish to do so.
Note: in case it wasn’t obvious, there is no need to use a regular expression for this
subproblem if you do not want to.

3 Retrieving Data from the Web (6 points)

In this problem, we’ll scrape data from Wikipedia using BeautifulSoup. Documentation
for BeauitfulSoup can be found at https://www.crummy.com/software/BeautifulSoup/
bs4/doc/. As mentioned in lecture, there is another package, called requests, which
is becoming quite popular, which you are welcome to use for this problem instead, if
you wish. Documentation for the requests package can be found at http://docs.

python-requests.org/en/master/.
Suppose you are trying to choose a city to vacation in. A major factor in your decision

is weather. Conveniently, lots of weather information is present in the Wikipedia articles
for most world cities. Your job in this problem is to use BeautifulSoup to retrieve weather
information from Wikipedia articles. We should note that in practice, such information is
typically more easily obtained from, for example, the National Oceanic and Atmospheric
Administration (NOAA), in the case of American cities, and from analogous organizations
in other countries.

1. Look at a few Wikipedia pages corresponding to cities. For example:

• https://en.wikipedia.org/wiki/Ann_Arbor,_Michigan

• https://en.wikipedia.org/wiki/Buenos_Aires

• https://en.wikipedia.org/wiki/Harbin

Note that most city pages include a table titled something like “Climate data for
[Cityname] (normals YYYY-YYYY, extremes YYYY-YYYY)” Find a Wikipedia
page for a city that includes such a table (such as one of the three above). In
your jupyter notebook, open the URL and read the HTML using either urllib or
requests, and parse it with BeautifulSoup using the standard parser, html.parser.
Have a look at the parsed HTML and find the climate data table, which will have
the tag table and will contain a child tag th containing a string similar to

Climate data for [Cityname] (normals YYYY-YYYY, extremes YYYY-YYYY).

Find the node in the BeautifulSoup object corresponding to this table. What is the
structure of this node of the tree (e.g., how many children does the table have, what
are their tags, etc.)? You may want to learn a bit about the structure of HTML
tables by looking at the resources available on these websites:

• https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

• https://www.w3schools.com/html/html_tables.asp

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
https://en.wikipedia.org/wiki/Ann_Arbor,_Michigan
https://en.wikipedia.org/wiki/Buenos_Aires
https://en.wikipedia.org/wiki/Harbin
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://www.w3schools.com/html/html_tables.asp


STATS507: Data Analysis in Python 4

• https://www.w3.org/TR/html401/struct/tables.html

2. Write a function retrieve climate table that takes as its only argument a Wikipedia
URL, and returns the BeautifulSoup object corresponding to the climate data table
(if it exists in the page) and returns None if no such table exists on the page. You
should check that the URL is retrieved successfully, and raise an error if urllib2
fails to successfully read the website. You may notice that some city pages in-
clude more than one climate data table or several nested tables (see, for example,
https://en.wikipedia.org/wiki/Los_Angeles). In this case, your function may
arbitrarily choose one of the tables to return as a BeautifulSoup object. Note: a
good way to check for edge cases is to test your script on the Wikipedia pages for a
few of your favorite cities. The pages for Los Angeles, Hyderabad and Boston will
give good examples of edge cases that you should be able to handle, but note that
these are by no means exhaustive of all the possible edge cases. Hint: make use of
the contents attribute of the BeautifulSoup objects and the ability to change the
elements of the contents list to Unicode.

3. As you look at some of the climate data tables, you may notice that different cities’
tables contain different information. For example, not all cities include snowfall data.
Write a function list_climate_table_row_names that takes as its only argument
a Wikipedia URL and returns a list of the row names of the climate data table,
or returns None if no such table exists. The list returned by your function should,
ideally, consist solely of Python strings (either Unicode or ASCII), and should not in-
clude any BeautifulSoup objects or HTML (Hint: see the BeautifulSoup method
get text()). The list returned by your script should not include an entry corre-
sponding to the Climate data for... row in the table. Second hint: you are
looking for HTML table header (th) objects. The HTML attribute scope is your
friend here, because in the context of an HTML table it tells you when a th tag is
the header of a row or a column.

4. The next natural step would be to write a function that takes a URL and a row
name and retrieves the data from that row of the climate data table (if the table
exists and has that row name). Doing this would require some complicated string
wrangling to get right, so I’ll spare you the trouble. Instead, please briefly describe
either in pseudo code or in plain English how you would accomplish this, using the
two functions you wrote above and the tools available to you in the BeautifulSoup

package. Note: just to be clear, you do not have to write any code for this last
step.

4 Relational Databases and SQL (6 points)

In this problem, you’ll interact with a toy SQL database using Python’s built-in sqlite3

package. Documentation can be found at https://docs.python.org/3/library/sqlite3.
html. For this problem, we’ll use a popular toy SQLite database, called Chinook, which
represents a digital music collection. See the documentation at

https://github.com/lerocha/chinook-database/blob/master/ChinookDatabase/

DataSources/Chinook_Sqlite.sqlite

for a more detailed explanation. We’ll use the .sqlite file Chinook Sqlite.sqlite,
which you should download from the GitHub page above. Note: Don’t forget to save

https://www.w3.org/TR/html401/struct/tables.html
https://en.wikipedia.org/wiki/Los_Angeles
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html
https://github.com/lerocha/chinook-database/blob/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite
https://github.com/lerocha/chinook-database/blob/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite


STATS507: Data Analysis in Python 5

the file in the directory that you’re going to compress and hand in, and make sure that
you use a relative path when referring to the file, so that when we try to run your code
on our machines the file path will still work!

1. Load the database using the Python sqlite3 package. How many tables are in the
database? Save the answer in the variable n_tables.

2. What are the names of the tables in the database? Save the answer as a list of
strings, table_names. Note: you should write Python sqlite3 code to answer
this; don’t just look up the answer in the documentation!

3. Write a function list_album_ids_by_letter that takes as an argument a single
character and returns a list of the primary keys of all the albums whose titles start
with that character. Your function should ignore case, so that the inputs “a” and
“A” yield the same results. Include error checking that raises an error in the event
that the input is not a single character.

4. Write a function list_song_ids_by_album_letter that takes as an argument a
single character and returns a list of the primary keys of all the songs whose al-
bum names begin with that letter. Again, your function should ignore case and
perform error checking as in list_album_ids_by_letter. (again ignoring case).
Hint: you’ll need a JOIN statement here. Don’t forget that you can use the
cursor.description attribute to find out about tables and the names of their
columns.

5. Write a function total_cost_by_album_letter that takes as an argument a single
character and returns the cost of buying every song whose album begins with that
letter. This cost should be based on the tracks’ unit prices, so that the cost of buying
a set of tracks is simply the sum of the unit prices of all the tracks in the set. Again
your function should ignore case and perform appropriate error checking.


	Regular Expressions: Warmup (4 points)
	Exploring Internet Traffic with Regexes (4 points)
	Retrieving Data from the Web (6 points)
	Relational Databases and SQL (6 points)

