
STATS507: Data Analysis in Python 1

Homework 9: Algorithm Design and Analysis

Due Wednesday, April 17, 11:59 pm

Worth 10 points

Read this first. A few things to bring to your attention:

1. Important:

2. Start early! If you run into trouble installing things or importing packages, it’s best
to find those problems well in advance so we can help you.

3. Make sure you back up your work! I recommend, at a minimum, doing your
work in a Dropbox folder or, better yet, using git.

4. A note on grading: overly complicated solutions or solutions that suggest an
incomplete grasp of key concepts from lecture will not receive full credit.

Instructions on writing and submitting your homework can be found at http://

www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.

html. Failure to follow these instructions will result in lost points. Please direct any ques-
tions to either the instructor or your GSI.

1 Implementing a Basic Data Structure (6 points)

In this problem you’ll get a small taste of the kind of problem solving typical of software
engineering.

1. A trie (rhymes with tree, confusingly) is a tree-like data structure for storing collec-
tions of array-like data. We will confine our attention to strings for the sake of this
problem, but bear in mind that tries can of course be used to represent much more
general data than that. In a trie, each path from the root node to a leaf corresponds
to a string in the collection, and every string in the collection has a corresponding
path from the root to a node (not necessarily a leaf). Each edge from a node to one
of its children is annotated with a letter, as in this example, which represents the
collection of strings {cat, car, cog, dart, do, dog}.

http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/hw_instructions.html


STATS507: Data Analysis in Python 2

Notice that only certain nodes in the trie are shaded. These correspond precisely
to the nodes that represent strings in the collection. In passing, note that tries
have certain advantages and disadvantages when compared against other look-up
structures like hash tables. Refer to any textbook on data structures (or Wikipedia)
for a discussion.

It should be more or less clear how one might represent this data structure as a
Python dictionary, but let’s walk through it. We will represent a trie by a series of
nested dictionaries, with each node in the trie having a dictionary that maps a sin-
gle character to another dictionary. Thus, for example, the trie in the figure above
is, at its outer-most layer, a dictionary, say, my_trie, with two keys, ’c’,’d’.
my_trie[’c’] is itself a dictionary with two keys, ’a’,’o’ and my_trie[’d’]

is a separate dictionary with the same two keys. (that is, my_trie[’c’] and
my_trie[’d’] are equivalent, but they are not identical). Note that one tricky
thing here is to make sure we have a system for representing which leaves (i.e., dic-
tionaries) correspond to the ends of strings (i.e., shaded nodes in the figure above).
To solve this, we will use the empty string (’’) as a sort of special “end-of-word”
character. Thus, for example, my_trie[’d’][’o’] would itself be a dictionary with
the keys ’’,’g’. The first key corresponds to the fact that ’do’ is a string in the
collection, while the second corresponds to the string ’dog’ (which also happens to
be in the collection, so that the dictionary my_trie[’d’][’o’][’g’] will have the
empty string as its only key. We will, by convention, give the end-character symbol
’’ the value None (note that this is again an arbitrary choice, but one which I am
enforcing for the sake of uniformity and ease of grading).

Now, this is all well and good, but the natural (and more principled) thing to do is
to wrap this structure in a class. Define a class called a Trie, which supports the
following methods:

• __init__(self) : takes no arguments. Initializes an empty dictionary called
root as the only instance attribute of the Trie object. This dictionary will
serve as the data structure described in the previous paragraph.

• add(self,s) : takes a string s as its only argument. Adds s to the trie rep-
resented by self.root according to the procedure described in the paragraph
above.

• contains(self,s) : takes a string s as its only argument and returns a
boolean, which is True if and only if the string s is represented in the trie.



STATS507: Data Analysis in Python 3

• __repr__(self) : takes no arguments. Returns a string representing the ob-
ject. When you try to print an object, Python calls this method (if it exists).
See https://docs.python.org/3.6/reference/datamodel.html#object.__

repr__ for more information. In our case, let’s just say that calling the Trie.__repr__
method just returns the string representation of the dictionary, which you’ll re-
call is stored as self.root.

You are of course free to implement methods additional to these if you wish. Hint:
you may find it helpful to write a “helper” method for use in the contains method,
that takes a string and a dictionary as its two arguments, say, contains_helper(s,d).
If the first character of the string is not in the dictionary, you can safely return False.
If the first character is in the dictionary, we can recurse, contains_helper(s[1:],d[s[0]]).
Be careful of the base case, where s is the empty string! A similar trick will also
help with the add method.

2. Write a function called wordlist2trie that takes a list of strings as input and
returns a Trie object representing the collection of strings in the input list. Your
function should perform error checking to verify that the input is indeed a list and
that all its elements are strings. Note that we could just as well have implemented
a method in the Trie class to do this, if we wanted.

3. Download the word list from http://www.greenteapress.com/thinkpython/code/

words.txt (or read it directly using urlib or requests), and use wordlist2trie

to build a trie representing the words in the word list. Save the result in a variable
called big_trie.

2 Comparing Sorting Algorithms (4 points)

A point that we touched upon in lecture is the distinction between worst-case and average-
case run time. That is, an algorithm may require, say, O(n) time to run on most inputs,
but certain inputs require, say, O(n2) time. In this problem, you’ll see an illustration of
this phenomenon in the context of sorting algorithms.

1. We are going to compare the performance of three popular sorting algorithms: merge
sort, quicksort and bubble sort. Their respective Wikipedia pages, each of which
includes pseudocode, which you are free to consult. Some of these pages display
pseudocode for multiple variants of the algorithms (e.g., implementing certain small
optimizations). You are not required to implement any of these speedups, but you
are welcome to do so if you wish. You are free, if you wish, to simply copy the
implementation of quicksort from the lecture slides. Note: looking up solutions to
this problem from any resource other than these Wikipedia pages and the course
materials will be considered academic misconduct and will be referred to Rackham’s
academic integrity office accordingly.

https://en.wikipedia.org/wiki/Merge_sort

https://en.wikipedia.org/wiki/Quicksort

https://en.wikipedia.org/wiki/Bubble_sort

Implement functions called mergesort, quicksort and bubblesort, each of which
takes as input a list of numbers (ints and/or floats) and returns the list with elements

https://docs.python.org/3.6/reference/datamodel.html#object.__repr__
https://docs.python.org/3.6/reference/datamodel.html#object.__repr__
http://www.greenteapress.com/thinkpython/code/words.txt
http://www.greenteapress.com/thinkpython/code/words.txt
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Bubble_sort


STATS507: Data Analysis in Python 4

sorts in non-decreasing order. Your sorting functions should perform error checking
to ensure that the input is a list and that the elements of the list are all numeric
(i.e., ints and/or floats). Your quicksort should use the last element of the input
list as the pivot.

2. The Wikipedia page on sorting algorithms includes information about best-, average-
and worst-case runtimes for a number of sorting algorithms: https://en.wikipedia.
org/wiki/Sorting_algorithm#Comparison_of_algorithms. Note that our three
algorithms differ in some of these. For example, merge sort and quicksort both have
O(n log n) average-case runtime, while bubble sort is O(n2) runtime in both the
average and worst case. Write a function called run_timing_expt, which takes a
list of numbers (ints and/or floats) as its only input. Calling this function should
run each of the three sorting algorithms implemented in the previous subproblem
on the given list, timing each call. The function should return a tuple of floats
(t_merge,t_quick,t_bubble) corresponding to the times that it took to sort the
input list with merge sort, quicksort and bubble sort, respectively.

3. Now, we will use the functions defined in the previous two subproblems to ex-
plore the behavior of these three sorting algorithms on different kinds of input
lists. First, let’s see what happens when we pass an already-sorted list. For
n = 500, 1000, 1500, 2000, 2500, call run_timing_expt(list(range(n))) twenty
times. Make a plot that shows the average runtime of the three sorting algorithms
as a function of the input size n. Please include error bars in your plot indicating 2
standard errors of the mean. Give your plot an appropriate title, and label the axes.
Save your plot as ascending.pdf and include it in your submission. Note that if
you call quicksort on an already-sorted list of size much larger than 2500 you will
encounter a recursion depth error (assuming that you are running with the default
maximum recursion depth of 5000). Why is this the case? Under more realistic
conditions, this would cause quicksort to be slow. In this case, it simply causes
quicksort to be unusable for even moderately large inputs.

4. Run the same experiment, but this time with the input being a list sorted in de-
scending order. That is, you should run twenty trials of

run_timing_expt(sorted(list(range(n)), reverse=True))

for n = 500, 1000, 1500, 2000, 2500. Again make a plot summarizing the results and
including an appropriate title and axis labels. Please include error bars in your plot
indicating 2 standard errors of the mean. Save your plot as descending.pdf and
include it in your submission.

5. Run the same experiment, but this time on random inputs. That is, for each value
of n in the previous subproblem, run 20 independent trials of

run_timing_expt([random.random() for _ in range(n)])

Again make a plot summarizing the results and including an appropriate title and
axis labels. Please include error bars in your plot indicating 2 standard errors of the
mean. Save your plot as random.pdf and include it in your submission.

https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms
https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms

	Implementing a Basic Data Structure (6 points)
	Comparing Sorting Algorithms (4 points)

