
STATS 507
Data Analysis in Python

Lecture 2: Functions, Conditionals,
Recursion and Iteration

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Python math module provides a number of math
functions. We have to import (i.e., load) the module
before we can use it.

math.sqrt() takes one argument,
returns its square root.

math.pow() takes two arguments. Returns the value
obtained by raising the first to the power of the second.

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Python math module provides a number of math
functions. We have to import (i.e., load) the module
before we can use it.

math.sqrt() takes one argument,
returns its square root.

math.pow() takes two arguments. Returns the value
obtained by raising the first to the power of the second.

Note: in the examples below, we write math.sqrt() to
call the sqrt() function from the math module. This
notation will show up a lot this semester, so get used to it!

Functions in Python
We’ve already seen examples of functions: e.g., type()and print()

Function calls take the form function_name(function arguments)

A function takes zero or more arguments and returns a value

Note: in the examples below, we write math.sqrt() to
call the sqrt() function from the math module. This
notation will show up a lot this semester, so get used to it!

Documentation for the Python math module:
https://docs.python.org/3/library/math.html

https://docs.python.org/3/library/math.html

Functions in Python
Functions can be composed

Supply an expression as the argument of a function
Output of one function becomes input to another

math.sin() has as its
argument an expression, which
has to be evaluated before we
can compute the answer.

Functions can even have the
outputs of other functions as
their arguments.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Let’s walk through this line by line.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

This line (called the header in some
documentation) says that we are defining a
function called print_wittgenstein ,
and that the function takes no argument.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

The def keyword tells Python
that we are defining a function.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Any arguments to the function are giving
inside the parentheses. This function takes
no arguments, so we just give empty
parentheses. In a few slides, we’ll see a
function that takes arguments.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

The colon (:) is required by Python’s
syntax. You’ll see this symbol a lot, as
it is commonly used in Python to signal
the start of an indented block of code.
 (more on this in a few slides).

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

This is called the body of the function.
This code is executed whenever the
function is called.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Note: in languages like R, C/C++ and
Java, code is organized into blocks using
curly braces ({ and }). Python is
whitespace delimited. So we tell Python
which lines of code are part of the function
definition using indentation.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

Note: in languages like R, C/C++ and
Java, code is organized into blocks using
curly braces ({ and }). Python is
whitespace delimited. So we tell Python
which lines of code are part of the function
definition using indentation.

This whitespace can be tabs, or spaces, so
long as it’s consistent. It is taken care of
automatically by most IDEs.

Defining Functions
We can make new functions using function definition

Creates a new function, which we can then call whenever we need it

We have defined our function. Now, any
time we call it, Python executes the code in
the definition, in order.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

This function takes one argument,
prints it, then prints our
Wittgenstein quote, then prints the
argument again.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

This function takes one argument,
which we call bread. All the
arguments named here act like
variables within the body of the
function, but not outside the body.
We’ll return to this in a few slides.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

Body of the function specifies what
to do with the argument(s). In this
case, we print whatever the
argument was, then print our
Wittgenstein quote, and then print
the argument again.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

Now that we’ve defined our function, we can call
it. In this case, when we call our function, the
variable bread in the definition gets the value
‘here is a string’ , and then proceeds to
run the code in the function body.

Defining Functions
After defining a function, we can use it anywhere, including in other functions

Now that we’ve defined our function, we can call
it. In this case, when we call our function, the
variable bread in the definition gets the value
‘here is a string’, and then proceeds to run the
code in the function body.

Note: this last line is not part of the function
body. We communicate this fact to Python
by the indentation. Python knows that the
function body is finished once it sees a line
without indentation.

Defining Functions
Using the return keyword, we can define functions that produce results

Defining Functions
Using the return keyword, we can define functions that produce results

double_string takes one
argument, a string, and returns that
string, concatenated with itself.

Defining Functions
Using the return keyword, we can define functions that produce results

So when Python executes this line, it
takes the string ‘bird’, which
becomes the parameter string in the
function double_string , and this line
evaluates to the string ‘birdbird’ .

Defining Functions
Using the return keyword, we can define functions that produce results

Alternatively, we can call the function and
assign its result to a variable, just like we
did with the functions in the math module.

Defining Functions

Variables are local. Variables defined inside a
function body can’t be referenced outside.

Defining Functions
When you define a function, you are actually creating a variable of type function

Functions are objects that you can treat just like other variables

This number is the address in memory
where print_wittgenstein is stored.
It may be different on your computer.

Boolean Expressions
Boolean expressions evaluate the truth/falsity of a statement

Python supplies a special Boolean type, bool
variable of type bool can be either True or False

Boolean Expressions
Comparison operators available in Python:

Expressions involving comparison
operators evaluate to a Boolean.

Note: In true Pythonic style, one can compare many
types, not just numbers. Most obviously, strings can
be compared, with ordering given alphabetically.

Boolean Expressions
Can combine Boolean expressions into larger expressions via logical operators

In Python: and, or and not

Note: technically, any
nonzero number or any
nonempty string will
evaluate to True, but you
should avoid comparing
anything that isn’t Boolean.

Boolean Expressions: Example
Let’s see Boolean expressions in action

Note: in practice, we would want to include some extra code to
check that n is actually a number, and to “fail gracefully” if it
isn’t, e.g., by throwing an error with a useful error message.
More about this in future lectures.

Reminder: x % y returns the
remainder when x is divided by y.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

This is an if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

This Boolean expression is called the test
condition, or just the condition.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

If the condition evaluates to True,
then Python runs the code in the
body of the if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

If the condition evaluates to False,
then Python skips the body and
continues running code starting at the
end of the if-statement.

Conditional Expressions
Sometimes we want to do different things depending on certain conditions

Note: the body of a conditional statement
can have any number of lines in it, but it
must have at least one line. To do
nothing, use the pass keyword.

Conditional Expressions
More complicated logic can be handled with chained conditionals

Conditional Expressions
More complicated logic can be handled with chained conditionals

This is treated as a single if-statement.

Conditional Expressions
More complicated logic can be handled with chained conditionals

If this expression evaluates to True...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...then this block of code is executed...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...and then Python exits the if-statement

Conditional Expressions
More complicated logic can be handled with chained conditionals

If this expression evaluates to False...

Conditional Expressions
More complicated logic can be handled with chained conditionals

...then we go to the condition. If this
condition fails, we go to the next
condition, etc.

Note: elif is short for else if.

Conditional Expressions
More complicated logic can be handled with chained conditionals

If all the other tests fail, we execute the
block in the else part of the statement.

Conditional Expressions
Conditionals can also be nested

This if-statement...

Conditional Expressions
Conditionals can also be nested

...contains another if-statement.

This if-statement...

Conditional Expressions
Often, a nested conditional can be simplified

When this is possible, I recommend it for the sake of your sanity,
because debugging complicated nested conditionals is tricky!

These two if-statements
are equivalent, in that
they do the same thing!

But the second one is
(arguably) preferable, as
it is simpler to read.

Recursion
A function is a allowed to call itself, in what is termed recursion

Countdown calls itself!

But the key is that each time it calls itself, it is passing an argument
with its value decreased by 1, so eventually, n <= 0 is true.

With a small change, we can make it so that
countdown(1) encounters an infinite
recursion, in which it repeatedly calls itself.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

This block specifies a while-loop. So
long as the condition is true, Python will
run the code in the body of the loop,
checking the condition again at the end
of each time through.

Repeated actions: Iteration
Recursion is the first tool we’ve seen for performing repeated operations

But there are better tools for the job: while and for loops.

Warning: Once again, there is a danger of creating an infinite
loop. If, for example, n never gets updated, then when we call
countdown(10) , the condition n>0 will always evaluate to
True, and we will never exit the while-loop.

Repeated actions: Iteration

One always wants to try and ensure that a while loop will
(eventually) terminate, but it’s not always so easy to know!
https://en.wikipedia.org/wiki/Collatz_conjecture

“Mathematics may not be ready for such problems."
Paul Erdős

https://en.wikipedia.org/wiki/Collatz_conjecture

Repeated actions: Iteration
We can also terminate a while-loop using the break keyword

Newton-Raphson method:
https://en.wikipedia.org/wiki/Newton's_method

The break keyword terminates the
current loop when it is called.

https://en.wikipedia.org/wiki/Newton's_method

Repeated actions: Iteration
We can also terminate a while-loop using the break keyword

Newton-Raphson method:
https://en.wikipedia.org/wiki/Newton's_method

Notice that we’re not testing for equality
here. That’s because testing for equality
between pairs of floats is dangerous.
When I write x=1/3, for example, the
value of x is actually only an
approximation to the number 1/3.

https://en.wikipedia.org/wiki/Newton's_method

