
STATS 507
Data Analysis in Python

Lecture 4: Dictionaries and Tuples

Two more fundamental built-in data structures
Dictionaries

Python dictionaries generalize lists
Allow indexing by arbitrary immutable objects rather than integers
Fast lookup and retrieval
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Tuples
Similar to a list, in that it is a sequence of values
But unlike lists, tuples are immutable
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Generalized lists: Python dict()
Python dictionary generalizes lists

list(): indexed by integers
dict(): indexed by (almost) any data type

Dictionary contains:
a set of indices, called keys
A set of values (called values, shockingly)

Each key associated with one (and only one) value
key-value pairs, sometimes called items
Like a function f: keys -> values

‘cat’

‘dog’

‘goat’

12

3.1415

‘one’

35

2.718

[1,2,3]

keys values

dictionary

‘cat’

‘dog’

‘goat’

12

3.1415

‘one’

35

2.718

[1,2,3]

keys values

dictionary
Dictionary maps keys to values.

E.g., ‘cat’ mapped to the float 2.718

Of course, the dictionary at the left is kind of
silly. In practice, keys are often all of the
same type, because they all represent a
similar kind of object

Example: might use a dictionary to map
UMich unique names to people

‘cat’

‘dog’

‘goat’

12

3.1415

‘one’

35

2.718

[1,2,3]

keys values

dictionary

Access the value
associated to key x by
dictionary[x] .

‘cat’

‘dog’

‘goat’

12

3.1415

‘one’

35

2.718

[1,2,3]

keys
values

dictionary

Attempting to access the value associated to a
non-existent key results in a KeyError , an error
that Python supplies specifically for this situation.

Observe that bird is not a key in
this dictionary, so when we try to
index with it, we get an error.

Creating and populating a dictionary

Example: University of Mishuges IT
wants to store the correspondence
between the usernames (UM IDs) of
students to their actual names. A
dictionary is a very natural data
structure for this.

Creating and populating a dictionary

Create an empty dictionary (i.e., a
dictionary with no key-value pairs
stored in it. This should look familiar,
since it is very similar to list creation.

Creating and populating a dictionary

Populate the dictionary. We are adding
four key-value pairs, corresponding to
four users in the system.

Creating and populating a dictionary

Retrieve the value associated with a
key. This is called lookup.

Creating and populating a dictionary

Emmy Noether’s actual legal name
was Amalie Emmy Noether, so we
have to update her record. Note that
updating is syntactically the same as
initial population of the dictionary.

Displaying Items Printing a dictionary lists its items (key-value
pairs), in this rather odd format...

...but I can use that format to
create a new dictionary.

Note: the order in which items are printed
isn’t always the same, and (usually) isn’t
predictable. This is due to how dictionaries
are stored in memory. More on this soon.

Dictionaries have a length

Length of a dictionary is just
the number of items.

Empty dictionary has length 0.

Note: we said earlier than all sequence objects
support the length operation. But there exist objects
that aren’t sequences that also have this attribute.

Checking set membership
Suppose a new student, Andrey Kolmogorov
is enrolling at UMish. We need to give him a
unique name, but we want to make sure we
aren’t assigning a name that’s already taken.

Dictionaries support checking whether or
not an element is present as a key, similar
to how lists support checking whether or
not an element is present in the list.

Checking set membership: fast and slow

Lists and dictionaries provide our first example
of how certain data structures are better for
certain tasks than others.

Example: I have a large collection of phone
numbers, and I need to check whether or not a
given number appears in the collection. Both
dictionaries and lists support membership
checks of this sort, but it turns out that
dictionaries are much better suited to the job.

Checking set membership: fast and slow

This block of code generates 1000000
random “phone numbers”, and creates (1)
a list of all the numbers and (2) a
dictionary whose keys are all the numbers.

Checking set membership: fast and slow
The random module supports a bunch of
random number generation operations. We’ll
see more on this later in the course.
https://docs.python.org/3/library/random.html

https://docs.python.org/3/library/random.html

Checking set membership: fast and slow

Initialize a list (of all zeros) and
an empty dictionary.

Checking set membership: fast and slow

Generate listlen random numbers, writing
them to both the list and the dictionary.

Checking set membership: fast and slow

This is slow.

This is fast.

Checking set membership: fast and slow

Let’s get a more quantitative look at the
difference in speed between lists and dicts.

The time module supports accessing the system
clock, timing functions, and related operations.
https://docs.python.org/3/library/time.html
Timing parts of your program to find where
performance can be improved is called profiling
your code. Python provides some built-in tools for
more profiling, which we’ll discuss later in the
course, if time allows.
https://docs.python.org/3/library/profile.html

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/profile.html

Checking set membership: fast and slow

To see how long an operation takes, look at
what time it is, perform the operation, and then
look at what time it is again. The time difference
is how long it took to perform the operation.

Warning: this can be influenced by other processes
running on your computer. See documentation for
ways to mitigate that inaccuracy.

Checking set membership: fast and slow

Checking membership in the dictionary is orders
of magnitude faster! Why should that be?

Checking set membership: fast and slow

The time difference is due to how the in operation
is implemented for lists and dictionaries.

Python compares x against each element in the list
until it finds a match or hits the end of the list. So
this takes time linear in the length of the list.

Python uses a hash table. For now, it suffices to
know that this lets us check if x is in the dictionary
in (almost) the same amount of time, regardless of
how many items are in the dictionary.

Crash course: hash tables

Let’s say I have a set of 4 items:

I want to find a way to know quickly
whether or not an item is in this set.

Universe of objects

Bucket 1

Bucket 2

Bucket 3

Bucket 4

f() = 1

Crash course: hash tables
Hash function f maps objects to “buckets”

f() = 3
f() = 2
f() = 1Assign objects to buckets based on

the outputs of the hash function.

Let’s say I have a set of 4 items:

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

f() = 4
Look in bucket 4. Nothing’s there, so
the item wasn’t in the set.

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

f() = 2
Look in bucket 2, and we find the
object, so it’s in the set.

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

f() = 1
Look in bucket 1, and there’s more than
one thing. Compare against each of
them, eventually find a match.

When more than one object falls in the same
bucket, we call it a hash collision.

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

Q: is this item in the set?

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Crash course: hash tables
Hash function maps objects to “buckets”

Let’s say I have a set of 4 items:

f() = 1
Look in bucket 1, and there’s more than
one thing. Compare against each of
them, no match, so it’s not in the set.

Worst possible case: have to check everything in
the bucket only to conclude there’s no match.

Crash course: hash tables
Hash function maps objects to “buckets”

Key point: hash table lets us avoid comparing against every object in the set
(provided we pick a good hash function that has few collisions)

More information:
Downey Chapter B.4
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_function

For the purposes of this course, it suffices to know that dictionaries
(and the related set object, which we’ll see soon), have faster
membership checking than lists because they use hash tables.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_function

Common pattern: dictionary as counter
Example: counting word frequencies

Naïve idea: keep one variable to keep track of each word
We’re gonna need a lot of variables!

Better idea: use a dictionary, keep track of only the words we see

This code as written won’t work! It’s your job in one of
your homework problems to flesh this out. You may
find it useful to read about the dict.get() method:
https://docs.python.org/3/library/stdtypes.html#dict.get

https://docs.python.org/3/library/stdtypes.html#dict.get

Traversing a dictionary
Suppose I have a dictionary representing word counts…

...and now I want to display the counts for each word.

Traversing a dictionary yields the keys, in no particular
order. Typically, you’ll get them in the order they were
added, but this is not guaranteed, so don’t rely on it.

(Deconstructed) poem credit: Alfred, Lord Tennyson, The Charge of the Light Brigade

This kind of traversal is, once again, a very common pattern
when dealing with dictionaries. Dictionaries support iteration
over their keys. They, like sequences, are iterators. We’ll see
more of this as the course continues.
https://docs.python.org/dev/library/stdtypes.html#iterator-types

https://docs.python.org/dev/library/stdtypes.html#iterator-types

Common Pattern: Reverse Lookup and Inversion
Returning to our example, what if I want to map a (real) name to a uniqname?

E.g., I want to look up Emmy Noether’s username from her real name

The keys of umid2name are the values
of name2umid and vice versa. We say
that name2umid is the reverse lookup
table (or the inverse) for umid2name .

Common Pattern: Reverse Lookup and Inversion
Returning to our example, what if I want to map a (real) name to a uniqname?

E.g., I want to look up Emmy Noether’s username from her real name

The keys of umid2name are the values
of name2umid and vice versa. We say
that name2umid is the reverse lookup
table (or the inverse) for umid2name .

What if there are duplicate values? In the word count
example, more than one word appears 2 times in the
text… How do we deal with that?

Common Pattern: Reverse Lookup and Inversion

Here’s our original word count dictionary
(cropped for readability). Some values
(e.g., 1 and 3) appear more than once.

Solution: map values with multiple keys
to a list of all keys that had that value.

What if there are duplicate values? In the word count
example, more than one word appears 2 times in the
text… How do we deal with that?

Common Pattern: Reverse Lookup and Inversion

Here’s our original word count dictionary
(cropped for readability). Some values
(e.g., 1 and 3) appear more than once.

What if there are duplicate values? For example, in the
word count example, more than one word appears 2
times in the text… How do we deal with that?

Solution: map values with multiple keys
to a list of all keys that had that value.

Note: there is a more
graceful way to do this part
of the operation, mentioned
in homework 2.

Keys Must be Hashable

From the documentation: “All of Python’s immutable
built-in objects are hashable; mutable containers (such
as lists or dictionaries) are not.”
https://docs.python.org/3/glossary.html#term-hashable

https://docs.python.org/3/glossary.html#term-hashable

Dictionaries can have dictionaries as values!
Suppose I want to map pairs (x,y) to numbers.

Each value of x maps to another dictionary.

Note: We’re putting this if-statement here to illustrate
that in practice, we often don’t know the order in which
we’re going to observe the objects we want to add to the
dictionary.

Dictionaries can have dictionaries as values!
Suppose I want to map pairs (x,y) to numbers.

In a few slides we’ll see a more natural
way to perform this mapping in particular,
but this “dictionary of dictionaries” pattern
is common enough that it’s worth seeing.

Common pattern: memoization

Raise an error. You’ll need this in many of your future homeworks.
https://docs.python.org/3/tutorial/errors.html#raising-exceptions

https://docs.python.org/3/tutorial/errors.html#raising-exceptions

Common pattern: memoization

Raise an error. You’ll need this in many of your future homeworks.
https://docs.python.org/3/tutorial/errors.html#raising-exceptions

This gets slow as soon as the argument
gets even moderately big. Why?

https://docs.python.org/3/tutorial/errors.html#raising-exceptions

Common pattern: memoization
The inefficiency is clear when we draw the call graph of the function

We’re doing extra work, computing
the same thing over and over.
This quickly gets out of hand.

naive_fibo(5)

naive_fibo(4)

naive_fibo(3)

naive_fibo(3)

naive_fibo(2)

naive_fibo(2)

naive_fibo(1)

naive_fibo(1)

naive_fibo(2)

naive_fibo(1)

naive_fibo(0)

naive_fibo(1)

naive_fibo(0)

naive_fibo(1)

naive_fibo(0)

Common pattern: memoization
The inefficiency is clear when we draw the call graph of the function

We’re doing extra work, computing
the same thing over and over.
This quickly gets out of hand.

naive_fibo(5)

naive_fibo(4)

naive_fibo(3)

naive_fibo(3)

naive_fibo(2)

naive_fibo(2)

naive_fibo(1)

naive_fibo(1)

naive_fibo(2)

naive_fibo(1)

naive_fibo(0)

naive_fibo(1)

naive_fibo(0)

naive_fibo(1)

naive_fibo(0)

Solution: store our computations for future
reuse. This is called memoization.

Common pattern: memoization
This is the dictionary that we’ll use
for memoization. We’ll store
known[n] = fibo(n)
the first time we compute fibo(n),
and every time we need it again, we
just look it up!

Common pattern: memoization

If we already know the n-th Fibonacci
number, there’s no need to compute it
again. Just look it up!

Common pattern: memoization

If we don’t already know it, we have
to compute it, but before we return
the result, we memoize it in known
for future reuse.

Common pattern: memoization

The time difference is enormous!

If you try to do this with naive_fibo ,
you’ll be waiting for quite a bit!

Note: this was done with known set to its
initial state, so this is a fair comparison.

I cropped some of the error message for readability.

I cropped this huge
number for readability.

Python runs out of levels of recursion. You
can change this maximum recursion depth,
but it can introduce instability:
https://docs.python.org/3.5/library/sys.html#sy
s.setrecursionlimit

Our memoized Fibonacci function can
compute some truly huge numbers!

https://docs.python.org/3.5/library/sys.html#sys.setrecursionlimit
https://docs.python.org/3.5/library/sys.html#sys.setrecursionlimit

I cropped some of the error message for readability.

I cropped this huge
number for readability.

Python runs out of levels of recursion. You
can change this maximum recursion depth,
but it can introduce instability:
https://docs.python.org/3.5/library/sys.html#sy
s.setrecursionlimit

Our memoized Fibonacci function can
compute some truly huge numbers!

https://docs.python.org/3.5/library/sys.html#sys.setrecursionlimit
https://docs.python.org/3.5/library/sys.html#sys.setrecursionlimit

Common pattern: memoization

Congratulations! You’ve seen your first example of
dynamic programming! Lots of popular interview
questions fall under this purview.
E.g., https://en.wikipedia.org/wiki/Tower_of_Hanoi

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Common pattern: memoization

Note: the dictionary known is declared outside the
function fibo. There is a good reason for this: we don’t
want known to disappear when we finish running fibo!
We say that known is a global variable, because it is
defined in the “main” program.

Name Spaces
A name space (or namespace) is a context in which code is executed

The “outermost” namespace (also called a frame) is called __main__
Running from the command line or in Jupyter? You’re in __main__
Often shows up in error messages, something like,

“Error … in __main__: blah blah blah”
Variables defined in __main__ are said to be global

Function definitions create their own local namespaces
Variables defined in such a context are called local
Local variables cannot be accessed from outside their frame/namespace
Similar behavior inside for-loops, while-loops, etc

Name Spaces
Example: we have a program simulating a light bulb

Bulb state is represented by a global Boolean variable, lightbulb_on

Bulb is initially off.

Calling this function sets the
bulb to the “on” state.

But after calling lights_on , the state
variable is still False. What’s going on?

Name Spaces
The fact that this code causes an error shows what
is really at issue. By default, Python treats the
variable lightbulb_on inside the function
definition as being a different variable from the
lightbulb_on defined in the main namespace.
This is, generally, a good design. It prevents
accidentally changing global state information.

Name Spaces
We have to tell Python that we want lightbulb_on to mean the global variable

Tell Python that we want
lightbulb_on to refer to the global
variable of the same name.

Now, when we call flip_switch ,
the value of lightbulb_on is
changed successfully.

Warning: this is all well and good, but it is considered best practice to
avoid global variables in large programs, as they can make debugging
hard. This isn’t so crucial for our course, since we won’t be building
anything especially large, but you should be aware of it.

Important note
Why is this okay, if known isn’t declared global?

known is a dictionary, and thus mutable. Maybe
mutable variables have special powers and don’t have
to be declared as global?

Correct answer: global vs local distinction is only important
for variable assignment. We aren’t performing any variable
assignment in fibo, so no need for the global declaration.
Contrast with lights_on , where we were reassigning
lightbulb_on . Variable assignment is local by default.

Tuples
Similar to a list, in that it is a sequence of values

But unlike lists, tuples are immutable

Because they are immutable, they are hashable
So we can use tuples where we wanted to key on a list

Documentation:
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.html#tuples

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.html#tuples

Creating Tuples

Tuples created either with “comma notation”,
optional parentheses.

Python always displays tuples with parentheses.

Creating a tuple of one element requires a
trailing comma. Failure to include this comma,
even with parentheses, yields… not a tuple.

Creating Tuples

Can also create a tuple using the tuple() function,
which will cast any sequence to a tuple whose
elements are those of of the sequence.

Tuples are Sequences

As sequences, tuples support indexing, slices, etc.

And of course, sequences have a length.

Reminder: sequences support all the operations listed here:
https://docs.python.org/3.3/library/stdtypes.html#typesseq

https://docs.python.org/3.3/library/stdtypes.html#typesseq

Tuple Comparison Tuples support comparison, which works
analogously to string ordering.

0-th elements are compared. If they are equal,
go to the 1-th element, etc.

Just like strings, the “prefix” tuple is ordered first.

Tuple comparison is element-wise, so
we only need that each element-wise
comparison is allowed by Python.

Tuples are Immutable
Tuples are immutable, so changing
an entry is not permitted.

As with strings, have to make a new
assignment to the variable.

Note: even though ‘grapefruit’,
is a tuple, Python doesn’t know how to
parse this line. Use parentheses!

Useful trick: tuple assignment

Common pattern: swap the values of two variables.

Tuples in Python allow us to make many variable assignments at
once. Useful tricks like this are sometimes called syntactic sugar.
https://en.wikipedia.org/wiki/Syntactic_sugar

This line achieves the same end, but in a
single assignment statement instead of three,
and without the extra variable tmp.

https://en.wikipedia.org/wiki/Syntactic_sugar

Useful trick: tuple assignment
Tuple assignment requires one variable on
the left for each expression on the right.

If the number of variables doesn’t
match the number of expressions,
that’s an error.

Useful trick: tuple assignment
The string.split() method returns a list
of strings, obtained by splitting the calling
string on the characters in its argument.

Tuple assignment works so long as the
right-hand side is any sequence, provided
the number of variables matches the number
of elements on the right. Here, the right-hand
side is a list, [‘klevin’, ‘umich.edu’] .

A string is a sequence, so tuple assignment
is allowed. Sequence elements are
characters, and indeed, x, y and z are
assigned to the three characters in the string.

Tuples as Return Values
This function takes a list of numbers and returns a
tuple summarizing the list.
https://en.wikipedia.org/wiki/Five-number_summary

Test your understanding: what
does this list comprehension do?

https://en.wikipedia.org/wiki/Five-number_summary

Tuples as Return Values
More generally, sometimes you want more than one return value

divmod is a Python built-in function that takes a pair
of numbers and outputs the quotient and remainder,
as a tuple. Additional examples can be found here:
https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Useful trick: variable-length arguments

A parameter name prefaced with * gathers all
arguments supplied to the function into a tuple.

Note: this is also one of several ways that one
can implement optional arguments, though we’ll
see better ways later in the course.

Gather and Scatter
The opposite of the gather operation is scatter

divmod takes two arguments, so this is an error.

Instead, we have to “untuple” the tuple, using the
scatter operation. This makes the elements of
the tuple into the arguments of the function.

Note: gather/scatter only works in certain
contexts (e.g., for function arguments).

Combining lists: zip
Python includes a number of useful functions for combining lists and tuples

zip() returns a zip object, which is an iterator containing
as its elements tuples formed from its arguments.
https://docs.python.org/3/library/functions.html#zip

Iterators are, in essence, objects that support for-loops. All
sequences are iterators. Iterators support, crucially, a method
__next__() , which returns the “next element”. We’ll see this
in more detail later in the course.
https://docs.python.org/3/library/stdtypes.html#iterator-types

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/stdtypes.html#iterator-types

Combining lists: zip
zip() returns a zip object, which is an iterator containing
as its elements tuples formed from its arguments.
https://docs.python.org/3/library/functions.html#zip

Given arguments of different lengths,
zip defaults to the shortest one.

zip takes any number of arguments, so long as
they are all iterable. Sequences are iterable.

Iterables are, essentially, objects that can become iterators.
We’ll see the distinction later in the course.
https://docs.python.org/3/library/stdtypes.html#typeiter

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/stdtypes.html#typeiter

Combining lists: zip
zip is especially useful for iterating
over several lists in lockstep.

Test your understanding: what should this return?

Combining lists: zip
zip is especially useful for iterating
over several lists in lockstep.

Test your understanding: what should this return?

Related function: enumerate()

enumerate returns an enumerate object, which is an
iterator of (index,element) pairs. It is a more graceful way of
performing the pattern below, which we’ve seen before.
https://docs.python.org/3/library/functions.html#enumerate

https://docs.python.org/3/library/functions.html#enumerate

Dictionaries revisited

dict.items() returns a dict_items object, an
iterator whose elements are (key,value) tuples.

Conversely, we can create a dictionary by
supplying a list of (key,value) tuples.

Tuples as Keys

Keying on tuples is especially useful for representing
sparse structures. Consider a 20-by-20 matrix in
which most entries are zeros. Storing all the entries
requires 400 numbers, but if we only record the
entries that are nonzero...

In (most) Western countries, the family name is said
last (hence “last name”), but it is frequently useful to
key on this name before keying on a given name.

Data Structures: Lists vs Tuples
Use a list when:

Length is not known ahead of time and/or may change during execution
Frequent updates are likely

Use a tuple when:
The set is unlikely to change during execution
Need to key on the set (i.e., require immutability)
Want to perform multiple assignment or for use in variable-length arg list

Most code you see will use lists, because mutability is quite useful

