
STATS 507
Data Analysis in Python
Lecture 9: numpy, scipy and matplotlib

Some examples adapted from A. Tewari

Reminder!
If you don’t already have a Flux/Fladoop username, request one promptly!

Make sure you can ssh to Fladoop: http://arc-ts.umich.edu/hadoop-user-guide/
UNIX/Linux/MacOS: you should be all set!
Windows:

install PuTTY:
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

and you may also want cygwin https://www.cygwin.com/

You also probably want to set up VPN to access Flux from off-campus:
http://its.umich.edu/enterprise/wifi-networks/vpn

http://arc-ts.umich.edu/hadoop-user-guide/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.cygwin.com/
http://its.umich.edu/enterprise/wifi-networks/vpn

Numerical computing in Python: numpy
One of a few increasingly-popular, free competitors to MATLAB

Numpy quickstart guide: https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

For MATLAB fans:
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html

Closely related package scipy is for optimization
See https://docs.scipy.org/doc/

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/

Installing packages
So far, we have only used built-in modules

But there are many modules/packages that do not come preinstalled

Ways to install packages:
At the conda prompt or in terminal: conda install numpy

https://conda.io/docs/user-guide/tasks/manage-pkgs.html
Using pip (recommended): pip install numpy

https://pip.pypa.io/en/stable/
Using UNIX/Linux package manager (not recommended)
From source (not recommended)

https://conda.io/docs/user-guide/tasks/manage-pkgs.html
https://pip.pypa.io/en/stable/

Installing packages with pip

keith@Steinhaus:~$ pip3 install beautifulsoup4
Collecting beautifulsoup4
 Downloading beautifulsoup4-4.6.0-py3-none-any.whl (86kB)

100% |████████████████████████████████| 92kB 1.4MB/s
Installing collected packages: beautifulsoup4
Successfully installed beautifulsoup4-4.6.0

If you have both Python 2 and Python 3
installed, make sure you specify which
one you want to install in!

The above command installs the package beautifulsoup4 .
We will use that later in the semester. To install numpy, type the
same command, but use numpy in place of beautifulsoup4 .

numpy data types
Five basic numerical data types:

boolean (bool)
integer (int)
unsigned integer (uint)
floating point (float)
complex (complex)

Many more complicated data types are available
e.g., each of the numerical types can vary in how many bits it uses
https://docs.scipy.org/doc/numpy/user/basics.types.html

import … as … lets us
import a package and
give it a shorter name.

Note that this is not the
same as a Python int.

https://docs.scipy.org/doc/numpy/user/basics.types.html

numpy data types

32-bit and 64-bit
representations are distinct!

As a rule, it’s best never to check for
equality of floats. Instead, check
whether they are within some error
tolerance of one another.

Data type followed by
underscore uses the default
number of bits. This default
varies by system.

numpy.array: numpy’s version of Python array (i.e., list)
Can be created from a Python list…

...by “shaping” an array…

...by “ranges”...

...or reading directly from a file
see https://docs.scipy.org/doc/numpy/user/basics.creation.html

np.zeros and np.ones
generate arrays of 0s or 1s,
respectively.

https://docs.scipy.org/doc/numpy/user/basics.creation.html

numpy allows arrays of arbitrary dimension (tensors)
1-dimensional arrays:

2-dimensional arrays (matrices):

3-dimensional arrays (“3-tensor”):

More on numpy.arange creation
np.arange(x): array version of Python’s range(x), like [0,1,2,...,x-1]

np.arange(x,y): array version of range(x,y), like [x,x+1,...,y-1]

np.arange(x,y,z): array of elements [x,y) in z-size increments.

Related useful functions, that give better/clearer control of start/endpoints and
allow for multidimensional arrays:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html

More on numpy.arange creation
np.arange(x): array version of Python’s range(x), like [0,1,2,...,x-1]

np.arange(x,y): array version of range(x,y), like [x,x+1,...,y-1]

np.arange(x,y,z): array of elements [x,y) in z-size increments.

numpy array indexing is highly expressive

Not very relevant to us right now…

...but this will come up again in a few weeks when we cover TensorFlow

Slices, strides, indexing from the end, etc.
Just like with Python lists.

More array indexing
Numpy allows MATLAB/R-like indexing by Booleans

Believe it or not, this error is by design! The designers of numpy were
concerned about ambiguities in Boolean vector operations, so they split
the two operations into two separate methods, x.any() and x.all()

More array indexing

From the documentation: When the index consists
of as many integer arrays as the array being indexed
has dimensions, the indexing is straight forward, but
different from slicing. Advanced indexes always are
broadcast and iterated as one.
https://docs.scipy.org/doc/numpy/reference/arrays.ind
exing.html#integer-array-indexing

If we specify fewer than the number
of indices, numpy assumes we mean
: in the remaining indices.

Warning: if you’re used to MATLAB or
R, this behavior will seem weird to you.

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-broadcasting
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-broadcasting
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#integer-array-indexing
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#integer-array-indexing

Boolean operations: np.any(), np.all()

axis argument picks which axis
along which to perform the Boolean
operation. If left unspecified, it treats
the array as a single vector.

Setting axis to be the first (i.e., 0-th)
axis yields the entrywise behavior we
wanted.

Just like the any and all
functions in Python proper.

Boolean operations: np.logical_and()
numpy also has built-in Boolean vector operations, which are simpler/clearer at
the cost of the expressiveness of np.any(), np.all().

This is an example of a numpy
“universal function” (ufunc), which
we’ll discuss more in a few slides.

Random numbers in numpy
np.random contains methods for generating random numbers

Lots more distributions:
https://docs.scipy.org/doc/numpy/reference/routines.random.html#distributions

https://docs.scipy.org/doc/numpy/reference/routines.random.html#distributions

np.random.choice(): random samples from data
np.random.choice(x,[size,replace,p])

Generates a sample of size elements from the array x, drawn with
(replace=True) or without (replace=False) replacement, with element
probabilities given by vector p.

shuffle() vs permutation()
np.random.shuffle(x)

randomly permutes entries of x in place
so x itself is changed by this operation!

np.random.permutation(x)
returns a random permutation of x
and x remains unchanged.

Statistics in numpy
numpy implements all the standard statistics functions you’ve come to expect

Statistics in numpy (cont’d)
Numpy deals with NaNs more gracefully than MATLAB/R:

For more statistical functions, see:
https://docs.scipy.org/doc/numpy-1.8.1/reference/routines.statistics.html

https://docs.scipy.org/doc/numpy-1.8.1/reference/routines.statistics.html

Probability and statistics in scipy
(Almost) all the distributions you could possibly ever want:

https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#multivariate-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#discrete-distributions

More statistical functions (moments, kurtosis, statistical tests):
https://docs.scipy.org/doc/scipy/reference/stats.html#statistical-functions

Second argument is the name of a
distribution in scipy.stats

Kolmogorov-Smirnov test

Scipy is a distinct Python
package, part of the numpy
ecosystem.

https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#multivariate-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#discrete-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#statistical-functions
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Matrix-vector operations in numpy

Trying to multiply two arrays, and
you get broadcast behavior, not a
matrix-vector product.

Broadcast multiplication still requires
that dimensions agree and all that.

Matrix-vector operations in numpy

Create a numpy matrix from a numpy
array. Can also create matrices from
strings with MATLAB-like syntax. See
documentation.

Numpy matrices support a whole bunch of
useful methods. See documentation:
https://docs.scipy.org/doc/numpy/reference/
generated/numpy.matrix.html

Now matrix-vector and vector-matrix
multiplication work as we want.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html

numpy/scipy universal functions (ufuncs)
From the documentation:

A universal function (or ufunc for short) is a function that operates on ndarrays in an
element-by-element fashion, supporting array broadcasting, type casting, and several other
standard features. That is, a ufunc is a “vectorized” wrapper for a function that takes a fixed number
of scalar inputs and produces a fixed number of scalar outputs.
https://docs.scipy.org/doc/numpy/reference/ufuncs.html

So ufuncs are vectorized operations, just like in R and MATLAB

https://docs.scipy.org/doc/numpy/reference/ufuncs.html

ufuncs in action
List comprehensions are great, but they’re not well-suited to numerical computing

Unlike Python lists, numpy arrays
support vectorized operations.

Sorting with numpy/scipy

Sorting is along the “last” axis by default.
Note contrast with np.any() . To treat
the array as a single vector, axis must
be set to None.

ASCII rears its head-- capital letters are
“earlier” than all lower-case by default.

Original array is unchanged by
use of np.sort() , like
Python’s built-in sorted()

A cautionary note
numpy/scipy have several similarly-named functions with different behaviors!

Example: np.amax, np.ndarray.max, np.maximum

The best way to avoid these confusions is to
1) Read the documentation carefully
2) Test your code!

Plotting with matplotlib
matplotlib is a plotting library for use in Python

Similar to R’s ggplot2 and MATLAB’s plotting functions

For MATLAB fans, matplotlib.pyplot implements MATLAB-like plotting:
http://matplotlib.org/users/pyplot_tutorial.html

Sample plots with code:
http://matplotlib.org/tutorials/introductory/sample_plots.html

http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/tutorials/introductory/sample_plots.html

Basic plotting: matplotlib.pyplot.plot
matplotlib.pyplot.plot(x,y)

plots y as a function of x.

matplotlib.pyplot(t)
sets x-axis to np.arange(len(t))

Basic plotting: matplotlib.pyplot.plot

Jupyter “magic” command to make
images appear in-line.

Reminder: Python ‘_’ is a
placeholder, similar to MATLAB
‘~’. Tells Python to treat this like
variable assignment, but don’t store
result anywhere.

Customizing plots
Second argument to pyplot.plot
specifies line type, line color, and
marker type. Specify broader array
of colors, line weights, markers, etc.,
using long-hand arguments.

Customizing plots

Long form of the command on the
previous slide. Same plot!

A full list of the long-form arguments available to
pyplot.plot are available in the table titled
“Here are the available Line2D properties.”:
http://matplotlib.org/users/pyplot_tutorial.html

http://matplotlib.org/users/pyplot_tutorial.html

Multiple lines in a single plot

Note: more complicated specification
of individual lines can be achieved by
adding them to the plot one at a time.

Multiple lines in a single plot: long form

Note: same plot as previous slide,
but specifying one line at a time so
we could, if we wanted, use more
complicated line attributes.

plt.grid turns grid lines on/off.

Titles and axis labels

Specifying titles and axis labels
couldn’t be more straight-forward.

Titles and axis labels
Change font sizes

Legends

pyplot.legend generates legend based on
label arguments passed to pyplot.plot .
loc=‘best’ tells pyplot to place the
legend where it thinks is best.

Can use LaTeX in
labels, titles, etc.

Annotating figures

Specify text coordinates and
coordinates of the arrowhead
using the coordinates of the plot
itself. This is pleasantly different
from many other plotting
packages, which require
specifying coordinates in pixels!

Plotting histograms: pyplot.hist()

Plotting histograms: pyplot.hist()

Bin counts. Note that if normed=1 ,
then these will be proportions
between 0 and 1 instead of counts.

Bar plots
bar(x, height, *, align='center', **kwargs)

Full set of available arguments to
bar(...) can be found at
http://matplotlib.org/api/_as_gen/matplotlib.p
yplot.bar.html#matplotlib.pyplot.bar

Horizontal analogue given by barh
http://matplotlib.org/api/_as_gen/matplotlib.p
yplot.barh.html#matplotlib.pyplot.barh

http://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar
http://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar
http://matplotlib.org/api/_as_gen/matplotlib.pyplot.barh.html#matplotlib.pyplot.barh
http://matplotlib.org/api/_as_gen/matplotlib.pyplot.barh.html#matplotlib.pyplot.barh

Tick labels

Can specify what the x-axis tick labels
should be by using the tick_label
argument to plot functions.

Box & whisker plots

plt.boxplot(x,...) : x is the data.
Many more optional arguments are available,
most to do with how to compute medians,
confidence intervals, whiskers, etc. See
http://matplotlib.org/api/_as_gen/matplotlib.py
plot.boxplot.html#matplotlib.pyplot.boxplot

http://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot
http://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot

Don’t use pie charts!

But if you must…
pyplot.pie(x, …)
http://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie

Pie Charts

A table is nearly always better than a dumb pie chart; the
only worse design than a pie chart is several of them, for
then the viewer is asked to compare quantities located in
spatial disarray both within and between charts [...]
Given their low [information] density and failure to order
numbers along a visual dimension, pie charts should
never be used.

Edward Tufte
The Visual Display of Quantitative Information

http://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie

Heatmaps and tiling

imshow is matplotlib analogue of
MATLAB’s imagesc, R’s image. Lots of
optional extra arguments for changing scale,
color scheme, etc. See documentation:
https://matplotlib.org/api/pyplot_api.html#mat
plotlib.pyplot.imshow

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow

Drawing contours These three lines create an object,
mvn1, representing a multivariate
normal distribution.

Drawing contours

mgrid is short for “mesh grid”. Note the syntax:
square brackets instead of parentheses. mgrid
is an object, not a function!

Drawing contours

Here, mgrid generates a grid of (x,y) pairs, so
this line actually generates a 100-by-100 grid of
(x,y) coordinates, hence the tuple assignment.

Drawing contours

pos is a 3-dimensional array. Like a box of
numbers. We’re going to plot a surface, but at
each (x,y) coordinate, the surface value
depends on both x and y.

Drawing contours

The reason for building pos the way we did is
apparent if we read the documentation for
scipy.stats.(dist).pdf.

Drawing contours

matplotlib.contour takes a set of x
coordinates, a set of y coordinates, and an
array of their corresponding values.

matplotlib.contour offers plenty of
optional arguments for changing color
schemes, spacing of contour lines, etc.
https://matplotlib.org/api/contour_api.html

https://matplotlib.org/api/contour_api.html

Subplots
subplot(nrows, ncols, plot_number)

Shorthand: subplot(XYZ)
Makes an X-by-Y plot
Picks out the Z-th plot
Counting in row-major order

tight_layout() automatically tries to clean
things up so that subplots don’t overlap.
Without this command in this example, the
labels “sqrt” and “logarithmic” overlap with the
x-axis tick labels in the first row.

Specifying axis ranges
plt.ylim([lower,upper]) sets y-axis limits

plt.xlim([lower,upper]) for x-axis

For-loop goes through all of the
subplots and sets their y-axis limits

Nonlinear axes
Scale the axes with plt.xscale
and plt.yscale

Built-in scales:
Linear (‘linear’)
Log (‘log’)
Symmetric log (‘symlog’)
Logit (‘logit’)

Can also specify customized scales:
https://matplotlib.org/devel/add_new_
projection.html#adding-new-scales

https://matplotlib.org/devel/add_new_projection.html#adding-new-scales
https://matplotlib.org/devel/add_new_projection.html#adding-new-scales

Saving images
plt.savefig(filename) will try to
automatically figure out what file type
you want based on the file extension.

Can make it explicit using
plt.savefig(‘filename’,

format=‘fmt’)

Options for specifying resolution, padding, etc:
https://matplotlib.org/api/_as_gen/matplotlib.pypl
ot.savefig.html

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

Animations
matplotlib.animate package generates animations

I won’t require you to make any, but they’re fun to play around with (and they can
be a great visualization tool)

The details are a bit tricky, so I recommend starting by looking at some of the
example animations here: http://matplotlib.org/api/animation_api.html#examples

http://matplotlib.org/api/animation_api.html#examples

