
STATS 701
Data Analysis using Python

Lecture 14: Advanced pandas



Recap
Previous lecture: basics of pandas

Series and DataFrames
Indexing, changing entries
Function application

This lecture: more complicated operations
Statistical computations
Group-By operations
Reshaping, stacking and pivoting



Recap
Previous lecture: basics of pandas

Series and DataFrames
Indexing, changing entries
Function application

This lecture: more complicated operations
Statistical computations
Group-By operations
Reshaping, stacking and pivoting

Caveat: pandas is a large, complicated 
package, so I will not endeavor to mention 
every feature here. These slides should be 
enough to get you started, but there’s no 
substitute for reading the documentation.



Percent change over time

pct_change  method is supported by both Series and 
DataFrames. Series.pct_change  returns a new 
Series representing the step-wise percent change.

pct_change  includes control over how missing 
data is imputed, how large a time-lag to use, etc. 
See documentation for more detail: 
https://pandas.pydata.org/pandas-docs/stable/ge
nerated/pandas.Series.pct_change.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html


Percent change over time

pct_change  operates on columns of a DataFrame, by 
default. Periods argument specifies the time-lag to use 
in computing percent change. So periods=2 looks at 
percent change compared to two time steps ago.

pct_change  includes control over how missing 
data is imputed, how large a time-lag to use, etc. 
See documentation for more detail: 
https://pandas.pydata.org/pandas-docs/stable/ge
nerated/pandas.Series.pct_change.html

Note: pandas has extensive support for time series 
data, which we mostly won’t talk about in this course.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html


Computing covariances
cov method computes covariance 
between a Series and another Series.

cov method is also supported by DataFrame, 
but instead computes a new DataFrame of 
covariances between columns.

cov supports extra arguments for further specifying behavior: 
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.cov.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.cov.html


Pairwise correlations

DataFrame corr method computes 
correlations between columns (use axis 
keyword to change this behavior). 
method argument controls which 
correlation score to use (default is 
Pearson’s correlation.



Ranking data

rank method returns a new Series 
whose values are the data ranks.

Ties are broken by assigning the 
mean rank to both values.



Ranking data
By default, rank ranks columns 
of a DataFrame individually.

Rank rows instead by supplying 
an axis argument.

Note: more complicated ranking of whole rows (i.e., sorting 
whole rows rather than sorting columns individually) is possible, 
but requires we define an ordering on Series.



Group By: reorganizing data
“Group By” operations are a concept from databases

Splitting data based on some criteria
Applying functions to different splits
Combining results into a single data structure

Fundamental object: pandas GroupBy objects



Group By: reorganizing data

DataFrame groupby method 
returns a pandas groupby object.



Group By: reorganizing data

Every groupby object has an attribute groups, 
which is a dictionary with maps group labels to 
the indices in the DataFrame.

In this example, we are splitting on the 
column ‘A’, which has two values: 
‘plant’ and ‘animal’ , so the groups 
dictionary has two keys.



Group By: reorganizing data

Every groupby object has an attribute groups, 
which is a dictionary with maps group labels to 
the indices in the DataFrame.

In this example, we are splitting on the 
column ‘A’, which has two values: 
‘plant’ and ‘animal’ , so the groups 
dictionary has two keys.

The important point is that the groupby object is 
storing information about how to partition the rows 
of the original DataFrame according to the 
argument(s) passed to the groupby method.



Group By: aggregation

Split on group ‘A’, then compute the means 
within each group. Note that columns for which 
means are not supported are removed, so 
column ‘B’ doesn’t show up in the result.



Group By: aggregation

Here we’re building a hierarchically-indexed 
Series (i.e., multi-indexed), recording (fictional) 
scores of students by major and handedness.

Suppose I want to collapse over handedness to get 
average scores by major. In essence, I want to group by 
major and ignore handedness.



Group By: aggregation
Suppose I want to collapse over handedness to get 
average scores by major. In essence, I want to group by 
major and ignore handedness.

Group by the 0-th level of the hierarchy 
(i.e., ‘major’), and take means.

We could have equivalently written 
groupby(‘major’) , here.



Group By: examining groups

groupby.get_group  lets us pick out 
an individual group. Here, we’re 
grabbing just the data from the ‘econ’ 
group, after grouping by ‘major’.



Group By: aggregation

Similar aggregation to what we did a 
few slides ago, but now we have a 
DataFrame instead of a Series. 



Group By: aggregation

Similar aggregation to what we did a 
few slides ago, but now we have a 
DataFrame instead of a Series. 

Groupby objects also support the aggregate  
method, which is often more convenient.



Transforming data
From the documentation: “The transform 
method returns an object that is indexed the 
same (same size) as the one being grouped.”

Building a time series, 
indexed by year-month-day.

Suppose we want to 
standardize these scores 
within each year. Group the data according to the output 

of the key function, apply the given 
transformation within each group, then 
un-group the data.

Important point: the result of groupby.transform  has 
the same dimension as the original DataFrame or Series.



Filtering data From the documentation: “The 
argument of filter must be a function 
that, applied to the group as a whole, 
returns True or False.”

So this will throw out all the 
groups with sum <= 2.

Like transform , the 
result is ungrouped.



Combining DataFrames

pandas concat function concatenates 
DataFrames into a single DataFrame. 

Repeated indices remain repeated 
in the resulting DataFrame.

Missing values 
get NaN.

pandas.concat  accepts numerous 
optional arguments for finer control over 
how concatenation is performed. See the 
documentation for more.



Merges and joins
pandas DataFrames support many common database operations

Most notably, join and merge operations

We’ll learn about these when we discuss SQL later in the semester
So we won’t discuss them here

Important: What we learn for SQL later has analogues in pandas

If you are already familiar with SQL, you might like to read this:
https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html


Pivoting and Stacking Data in this format is usually called stacked. It 
is common to store data in this form in a file, but 
once it’s read into a table, it often makes more 
sense to create columns for A, B and C. That is, 
we want to unstack this DataFrame.



Pivoting and Stacking
The pivot method takes care of unstacking 
DataFrames. We supply indices for the new 
DataFrame, and tell it to turn the variable 
column in the old DataFrame into a set of 
column names in the unstacked one.

https://en.wikipedia.org/wiki/Pivot_table

https://en.wikipedia.org/wiki/Pivot_table


Pivoting and Stacking

How do we stack this? That is, how do we get a 
non-pivot version of this DataFrame? The answer 
is to use the DataFrame stack method.



Pivoting and Stacking

The DataFrame stack method makes a stacked version 
of the calling DataFrame. In the event that the resulting 
column index set is trivial, the result is a Series. Note that 
df.stack()  no longer has columns A or B. The column 
labels A and B have become an extra index.



Pivoting and Stacking

Here is a more complicated example. 
Notice that the column labels have a 
three-level hierarchical structure.

There are multiple ways to stack this data. At 
one extreme, we could make all three levels 
into columns. At the other extreme, we could 
choose only one to make into a column.



Pivoting and Stacking
Stack only according to level 1 
(i.e., the animal column index).

Missing animal x cond x hair_length 
conditions default to NaN.



Pivoting and Stacking

Stacking across all three levels 
yields a Series, since there is no 
longer any column structure. This is 
often called flattening a table.

Notice that the NaN entries are not 
necessary here, since we have an 
entry in the Series only for entries of 
the original DataFrame.



Plotting DataFrames 

cumsum gets partial sums, 
just like in numpy.

Note: this requires that you 
have imported matplotlib.

Note that legend is automatically 
populated and x-ticks are 
automatically date formatted.


