
STATS 701
Data Analysis using Python

Lecture 14: Databases with SQL



Last lecture: HTML, XML and JSON
Each provided a different (though similar) way of storing data

Key motivation of JSON (and, sort of, HTML and XML): self-description

But we saw that JSON could get quite unwieldy quite quickly…



Example of a more complicated JSON object

What if I have hundreds of different 
kinds of cakes or donuts? The 
nestedness of JSON objects makes 
them a little complicated. Generally, 
JSON is good for delivering (small 
amounts of) data, but for storing and 
manipulating large, complicated 
collections of data, there are better 
tools, namely databases.

Note: there are also security and 
software engineering reasons to 
prefer databases over JSON for 
storing data, but that’s beyond the 
scope of our course.



Why use a database?
Database software hides the problem of actually handling data

As we’ll see in a few slides, this is a complicated thing to do!
Indexing, journaling, archiving handled automatically

Allow fast, concurrent (i.e., multiple users) access to data
ACID transactions (more on this in a few slides)

Access over the web
DBs can be run, e.g., on a server

Again, JSON/XML/HTML/etc good for delivering data, DBs good for storing



Databases (DBs)
Information, organized so as to make retrieval fast and efficient

Examples: Census information, product inventory, library catalogue

This course: relational databases
https://en.wikipedia.org/wiki/Relational_database
So-named because they capture relations between entities
In existence since the 1970s, and still the dominant model in use today

Outside the scope of this course: other models (e.g., object-oriented)
https://en.wikipedia.org/wiki/Database_model
Textbook: Database System Concepts by Silberschatz, Korth and Sudarshan.

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Database_model


Relational DBs: pros and cons
Pros:

Natural for the vast majority of applications
Numerous tools for managing and querying

Cons:
Not well-suited to some data (e.g., networks, unstructured text)
Fixed schema (i.e., hard to add columns)
Expensive to maintain when data gets large (e.g., many TBs of data)



Fundamental unit of relational DBs: the record
Each entity in a DB has a corresponding record

● Features of a record are stored in fields
● Records with same “types” of fields collected into tables
● Each record is a row, each field is a column

Table with six fields and three records.

ID Name UG University Field Birth Year Age at Death

101010 Claude Shannon University of Michigan Electrical Engineering 1916 84

314159 Albert Einstein ETH Zurich Physics 1879 76

21451 Ronald Fisher University of Cambridge Statistics 1890 72



Fields can contain different data types
ID Name UG University Field Birth Year Age at Death

101010 Claude Shannon University of Michigan Electrical Engineering 1916 84

314159 Albert Einstein ETH Zurich Physics 1879 76

21451 Ronald Fisher University of Cambridge Statistics 1890 72

Unsigned int, String, String, String, Unsigned int, Unsigned int

Of course, can also contain floats, signed ints, etc. Some DB software allows 
categorical types (e.g., letter grades).



By convention, each record has a primary key
ID Name UG University Field Birth Year Age at Death

101010 Claude Shannon University of Michigan Electrical Engineering 1916 84

314159 Albert Einstein ETH Zurich Physics 1879 76

21451 Ronald Fisher University of Cambridge Statistics 1890 72

Primary key used to uniquely identify the entity associated 
to a record, and facilitates joining information across tables.

ID PhD Year PhD University Thesis Title

101010 1940 MIT An Algebra for Theoretical Genetics

314159 1905 University of Zurich A New Determination of Molecular Dimensions

21451



ACID: Atomicity, Consistency, Isolation, Durability
Atomicity: to outside observer, every transaction (i.e., changing the database) 
should appear to have happened “instantaneously”.

Consistency: DB changes should leave the DB in a “valid state” (e.g., changes to 
one table that affect other tables are propagated before the next transaction)

Isolation: concurrent transactions don’t “step on each other’s toes”

Durability: changes to DB are permanent once they are committed

Note: some RDBMSs achieve faster performance, at cost of one or more of above
Related: Brewer’s Theorem https://en.wikipedia.org/wiki/CAP_theorem

https://en.wikipedia.org/wiki/CAP_theorem


Relational Database Management Systems (RDBMSs)
Program that facilitates interaction with database is called RDBMS

Public/Open-source options:
MySQL, PostgreSQL, SQLite

Proprietary:
IBM Db2, Oracle, SAP, SQL Server (Microsoft)

We’ll use SQLite, because it comes built-in to Python. More later.



SQL (originally SEQUEL, from IBM)
Structured Query Language (Structured English QUEry Language)

Language for interacting with relational databases
Not the only way to do so, but by far most popular
Slight variation from platform to platform (“dialects of SQL”)

Good tutorials/textbooks:
https://www.w3schools.com/sql/sql_intro.asp
O’Reilly books: Learning SQL by Beaulieu
SQL Pocket Guide by Gennick
Severance, Chapter 14: http://www.pythonlearn.com/html-270/book015.html

https://www.w3schools.com/sql/sql_intro.asp
http://www.pythonlearn.com/html-270/book015.html


Examples of database operations

ID Name GPA Major Birth Year

101010 Claude Shannon 3.1 Electrical Engineering 1916

500100 Eugene Wigner 3.2 Physics 1902

314159 Albert Einstein 4.0 Physics 1879

214518 Ronald Fisher 3.25 Statistics 1890

662607 Max Planck 2.9 Physics 1858

271828 Leonard Euler 3.9 Mathematics 1707

999999 Jerzy Neyman 3.5 Statistics 1894

112358 Ky Fan 3.55 Mathematics 1914

● Find names of all 
physics majors

● Compute average GPA 
of students born in the 
19th century

● Find all students with 
GPA > 3.0

SQL allows us to easily 
specify queries like these (and 
far more complex ones).



Common database operations
Extracting records: find all rows in a table

Filtering records: retain only the records (rows) that match some criterion

Sorting records: reorder selected rows according to some field(s)

Adding/deleting records: insert new row(s) into a table or remove existing row(s)

Grouping records: gather rows according to some field

Adding/deleting tables: create new or delete existing tables

Merging tables: combine information from multiple tables into one table



Common database operations
Extracting records: find all rows in a table

Filtering records: retain only the records (rows) that match some criterion

Sorting records: reorder selected rows according to some field(s)

Adding/deleting records: insert new row(s) into a table or remove existing row(s)

Grouping records: gather rows according to some field

Adding/deleting tables: create new or delete existing tables

Merging tables: combine information from multiple tables into one table

SQL includes keywords for succinctly 
expressing all of these operations.



Retrieving records: SQL SELECT Statements
Basic form of a SQL SELECT statement:

SELECT [column names] FROM [table]

Example: we have table t_customers of customer IDs, names and companies

Retrieve all customer names: SELECT name FROM t_customers

Retrieve all company names: SELECT company FROM t_customers

Note: by convention (and good practice), one often names tables to be prefixed with “TB_” or “t_”. In our 
illustrative examples, I won’t always do this for the sake of space and brevity, but I highly recommend it in 
practice. See https://launchbylunch.com/posts/2014/Feb/16/sql-naming-conventions/ and 
http://leshazlewood.com/software-engineering/sql-style-guide/ for two people’s (differing) opinions.

https://launchbylunch.com/posts/2014/Feb/16/sql-naming-conventions/
http://leshazlewood.com/software-engineering/sql-style-guide/


id name gpa major birth_year pets favorite_color

101010 Claude Shannon 3.1 Electrical Engineering 1916 2 Blue

314159 Albert Einstein 4.0 Physics 1879 0 Green

999999 Jerzy Neyman 3.5 Statistics 1894 1 Red

112358 Ky Fan 3.55 Mathematics 1914 2 Green

SELECT id, name, birth_year FROM t_students

Table t_students

id name birth_year

101010 Claude Shannon 1916

314159 Albert Einstein 1879

999999 Jerzy Neyman 1894

112358 Ky Fan 1914



Filtering records: SQL WHERE Statements
To further filter the records returned by a SELECT statement:

SELECT [column names] FROM [table] WHERE [filter]

Example: table t_inventory of product IDs, unit cost, and number in stock

Retrieve IDs for all products with unit cost at least $1:

SELECT id FROM t_inventory WHERE unit_cost>=1

Note: Possible to do much more complicated filtering, e.g., regexes, 
set membership, etc. We’ll discuss that more in a few slides.



id name gpa major birth_year pets favorite_color

101010 Claude Shannon 3.1 Electrical Engineering 1916 2 Blue

314159 Albert Einstein 4.0 Physics 1879 0 Green

999999 Jerzy Neyman 3.5 Statistics 1894 1 Red

112358 Ky Fan 3.55 Mathematics 1914 2 Green

SELECT id, name FROM t_students WHERE birth_year >1900

Table t_students

id name

101010 Claude Shannon

112358 Ky Fan



NULL means Nothing!

id phd_year phd_university thesis_title

101010 1940 MIT An Algebra for Theoretical Genetics

314159 1905 University of Zurich A New Determination of Molecular Dimensions

214511

774477 1970 MIT

Table t_thesis

SELECT id FROM t_thesis WHERE phd_year IS NULL

id

21451

NULL matches the empty string, i.e., matches the case 
where the field was left empty. Note that if the field 
contains, say, ‘ ’, then NULL will not match that row!



Ordering records: SQL ORDER BY Statements
To order the records returned by a SELECT statement:

SELECT [columns] FROM [table] ORDER BY [column] [ASC|DESC]

Example: table t_inventory of product IDs, unit cost, and number in stock

Retrieve IDs, # in stock, for all products, ordered by descending # in stock:

SELECT id, number_in_stock FROM t_inventory

ORDER BY number_in_stock DESC

Note: most implementations order ascending by default, but best 
to always specify, for your sanity and that of your colleagues!



id name gpa major birth_year pets favorite_color

101010 Claude Shannon 3.1 Electrical Engineering 1916 2 Blue

314159 Albert Einstein 4.0 Physics 1879 0 Green

999999 Jerzy Neyman 3.5 Statistics 1894 1 Red

112358 Ky Fan 3.55 Mathematics 1914 2 Green

SELECT id, name, gpa FROM t_students ORDER BY gpa DESC

Table t_students

id name gpa

314159 Albert Einstein 4.0

112358 Ky Fan 3.55

999999 Jerzy Neyman 3.5

101010 Claude Shannon 3.1



More filtering: DISTINCT Keyword
To remove repeats from a set of returned results:

SELECT DISTINCT [columns] FROM [table]

Example: table t_student of student IDs, names, and majors

Retrieve all the majors:

SELECT DISTINCT major FROM t_student



id name gpa major birth_year pets favorite_color

101010 Claude Shannon 3.1 Electrical Engineering 1916 2 Blue

314159 Albert Einstein 4.0 Physics 1879 0 Green

999999 Jerzy Neyman 3.5 Statistics 1894 1 Red

112358 Ky Fan 3.55 Mathematics 1914 2 Green

SELECT DISTINCT pets FROM t_students ORDER BY pets ASC

Table t_students

Test your understanding: what should this return?



id name gpa major birth_year pets favorite_color

101010 Claude Shannon 3.1 Electrical Engineering 1916 2 Blue

314159 Albert Einstein 4.0 Physics 1879 0 Green

999999 Jerzy Neyman 3.5 Statistics 1894 1 Red

112358 Ky Fan 3.55 Mathematics 1914 2 Green

SELECT DISTINCT pets FROM t_students ORDER BY pets ASC

Table t_students

pets

0

1

2



More on WHERE Statements
WHERE keyword supports all the natural comparisons one would want to perform

(Numberical) Operation Symbol/keyword

Equal =

Not equal <>

Less than <

Less than or equal to <=

Greater than >

Greater than or equal to >=

Within a range BETWEEN … AND ...

Examples:

SELECT id from t_student WHERE …

… gpa>=3.2

… pets=1

… gpa BETWEEN 2.9 AND 3.1

… birth_year > 1900

… pets <> 0

Caution: different implementations define 
BETWEEN differently (i.e., inclusive vs 
exclusive)! Be sure to double check!



More on WHERE Statements
WHERE keyword also allows (limited) regex support and set membership

Regex-like matching with LIKE keyword, wildcards ‘_’and ‘%’

SELECT id, major from t_student WHERE major IN (“Mathematics”,”Statistics”)

SELECT id, major from t_student WHERE major NOT IN (“Physics”)

SELECT id,name from t_simpsons_characters WHERE first_name LIKE “M%”

SELECT id,name from t_simpsons_characters WHERE first_name LIKE “B_rt”

Matches ‘Bart’, ‘Bert’, ‘Bort’...



Aggregating results: GROUP BY
I have a DB of transactions at my internet business, and I want to know how much 
each customer has spent in total.

customer_id customer order_id dollar_amount

101 Amy 0023 25

200 Bob 0101 10

315 Cathy 0222 50

200 Bob 0120 12

310 Bob 0429 100

315 Cathy 0111 33

101 Amy 0033 25

315 Cathy 0504 70

SELECT customer_id,SUM(dollar_amount) 
FROM t_transactions GROUP BY customer_id

GROUP BY field_x  combines the rows 
with the same value in the field field_x

customer_id dollar_amount

101 50

200 22

310 100

315 153



More about GROUP BY
GROUP BY supports other operations in addition to SUM:

COUNT, AVG, MIN, MAX
Called aggregate functions

Can filter results after GROUP BY using the HAVING keyword

SELECT customer_id, SUM(dollar_amount) AS total_dollar FROM t_transactions 
GROUP BY customer_id HAVING total_dollar>50

customer_id dollar_amount

101 50

200 22

310 100

315 153

customer_id total_dollar

310 100

315 153



More about GROUP BY
GROUP BY supports other operations in addition to SUM:

COUNT, AVG, MIN, MAX
Called aggregate functions

Can filter results after GROUP BY using the HAVING keyword

SELECT customer_id, SUM(dollar_amount) AS total_dollar FROM t_transactions 
GROUP BY customer_id HAVING total_dollar>50

customer_id dollar_amount

101 50

200 22

310 100

315 153

customer_id total_dollar

310 100

315 153

Note: the difference between 
the HAVING keyword and the 
WHERE keyword is that HAVING 
operates after applying filters 
and GROUP BY .

The AS keyword just lets 
us give a nicer name to 
the aggregated field. 



Merging tables: JOIN
ID Name GPA Major Birth Year

101010 Claude Shannon 3.1 Electrical Engineering 1916

314159 Albert Einstein 4.0 Physics 1879

999999 Jerzy Neyman 3.5 Statistics 1894

112358 Ky Fan 3.55 Mathematics 1914

ID #Pets Favorite Color

101010 2 Blue

314159 0 Green

999999 1 Red

112358 2 Green

ID Name GPA Major Birth Year #Pets Favorite Color

101010 Claude Shannon 3.1 Electrical Engineering 1916 2 Blue

314159 Albert Einstein 4.0 Physics 1879 0 Green

999999 Jerzy Neyman 3.5 Statistics 1894 1 Red

112358 Ky Fan 3.55 Mathematics 1914 2 Green

Join tables based on primary key



Merging tables: INNER JOIN

id name gpa major birth_year

101010 Claude Shannon 3.1 Electrical Engineering 1916

314159 Albert Einstein 4.0 Physics 1879

999999 Jerzy Neyman 3.5 Statistics 1894

112358 Ky Fan 3.55 Mathematics 1914

id pets favorite_color

101010 2 Blue

314159 0 Green

999999 1 Red

112358 2 Green

Join tables based on primary key
SELECT id, name,favorite_color
FROM
t_student INNER JOIN t_personal
ON t_student.id=t_personal.id

t_student t_personal

id name favorite_color

101010 Claude Shannon Blue

314159 Albert Einstein Green

999999 Jerzy Neyman Red

112358 Ky Fan Green



Merging tables: INNER JOIN

id name gpa major birth_year

101010 Claude Shannon 3.1 Electrical Engineering 1916

314159 Albert Einstein 4.0 Physics 1879

999999 Jerzy Neyman 3.5 Statistics 1894

112358 Ky Fan 3.55 Mathematics 1914

id pets favorite_color

101010 2 Blue

314159 0 Green

999999 1 Red

112358 2 Green

Join tables based on primary key
SELECT id, name,favorite_color
FROM
t_student INNER JOIN t_personal
ON t_student.id=t_personal.id

t_student t_personal

id name favorite_color

101010 Claude Shannon Blue

314159 Albert Einstein Green

999999 Jerzy Neyman Red

112358 Ky Fan Green



Other ways of joining tables: OUTER JOIN

(INNER) JOIN : Returns records that have matching values in both tables

LEFT (OUTER) JOIN : Return all records from the left table, and the matched records from the right table

RIGHT (OUTER) JOIN:  Return all records from the right table, and the matched records from the left 
table

FULL (OUTER) JOIN:  Return all records when there is a match in either left or right table

https://www.w3schools.com/sql/sql_join.asp



Creating/modifying/deleting rows

Insert a row into a table: INSERT INTO
INSERT INTO table_name [col1, col2, col3, …]
VALUES value1, value2, value3, … 
Note: if adding values for all columns, you only need to specify the values.

Modify a row in a table: UPDATE
UPDATE table_name SET col1=value1,col2=value2,
WHERE condition

Delete rows from a table: DELETE
DELETE FROM table_name WHERE condition

Caution: if WHERE clause is 
left empty, you’ll delete/modify 
the whole table!



Creating and deleting tables

Create a new table: CREATE TABLE
CREATE TABLE table_name [col1 datatype, col2 datatype, …]

Delete a table: DROP TABLE
DROP TABLE table_name; 

Be careful when 
dropping tables!



Python sqlite3 package implements SQLlite
Connection object represents a database

Connection object can be used to create a Cursor object
Cursor facilitates interaction with database

conn = sqlite3.connect(‘example.db’)
establish connection to given DB file (creating it if necessary)
return Connection object

c = conn.cursor()
Creates and returns a Cursor object for interacting with DB

c.execute( [SQL command] )
runs the given command; cursor now contains query results



Python sqlite3 package
Important point: unlike many other RDBMSs, SQLite does not allow multiple 
connections to the same database at the same time.

So, if you’re working in a distributed environment, you’ll need something else
e.g., MySQL, Oracle, etc.



Python sqlite3 in action



Python sqlite3 in action Create the table. Note that 
we need not specify a data 
type for each column. 
SQLite is flexible about this.

Insert rows in the table. 

Note: sqlite3 has special 
syntax for parameter substitution 
in strings. Using the built-in 
Python string substitution is 
insecure-- vulnerable to SQL 
injection attack.

Executing a query returns an 
iterator over query results.



Python sqlite3 annotated
Establishes a connection to the 
database stored in example.db.

cursor object is how we interact with the 
database. Think of it kind of like the cursor 
for your mouse. It points to, for example, a 
table, row or query results in the database.

cursor.execute will run the specified 
SQL command on the database.

executemany runs a 
list of SQL commands.

commit writes changes back to 
the file. WIthout this, the next time 
you open example.db, the table 
t_student will be empty!Close the connection to the database. 

Think of this like Python file close.



Metainformation: sqlite_master

Special table that holds information about the “real” tables in the database

Two tables, named 
t_student  and t_thesis



Retrieving column names in sqlite3

description attribute contains 
the column names; returned as a 
list of tuples for agreement with a 
different Python DB API.

Note: this is especially useful in 
tandem with the mysql_master 
table when exploring a new 
database, like in your homework!


