
STATS 507
Data Analysis in Python
Lecture 17: Hadoop and the mrjob package

Some slides adapted from C. Budak

Recap
Previous lecture: Hadoop/MapReduce framework in general

This lecture: actually doing things

In particular: mrjob Python package
https://pythonhosted.org/mrjob/
Installation: pip install mrjob (or conda, or install from source...)

https://pythonhosted.org/mrjob/

Recap: Basic concepts
Mapper: takes a (key,value) pair as input

Outputs zero or more (key,value) pairs
Outputs grouped by key

Combiner: takes a key and a subset of values for that key as input
Outputs zero or more (key,value) pairs
Runs after the mapper, only on a slice of the data
Must be idempotent

Reducer: takes a key and all values for that key as input
Outputs zero or more (key,value) pairs

Recap: a prototypical MapReduce program

<k2,v2> <k2,v2’> <k3,v3>map combine reduce

Input

<k1,v1>

Output

Note: this output could be made the input to another MR program.

Recap: Basic concepts
Step: One sequence of map, combine, reduce

All three are optional, but must have at least one!

Node: a computing unit (e.g., a server in a rack)

Job tracker: a single node in charge of coordinating a Hadoop job
Assigns tasks to worker nodes

Worker node: a node that performs actual computations in Hadoop
e.g., computes the Map and Reduce functions

Python mrjob package
Developed at Yelp for simplifying/prototyping MapReduce jobs
https://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html

mrjob acts like a wrapper around Hadoop Streaming
Hadoop Streaming makes Hadoop computing model available to languages other than Java

But mrjob can also be run without a Hadoop instance at all!
e.g., locally on your machine

https://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html

Why use mrjob?
Fast prototyping

Can run locally without a Hadoop instance...
...but can also run atop Hadoop or Spark

Much simpler interface than Java Hadoop

Sensible error messages
i.e., usually there’s a Python traceback error if something goes wrong
Because everything runs “in Python”

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_word_count.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_word_count.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_word_count.keith.20171105.022629.949354/output[
...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_word_count.keith.20171105.022629.949354...
keith@Steinhaus:~$

Basic mrjob script

Each mrjob program you write requires defining
a class, which extends the MRJob class.

These mapper and reducer methods are
precisely the Map and Reduce operations in our
job. Recall the difference between the yield
keyword and the return keyword.

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

This if-statement will run precisely when we call
this script from the command line.

Basic mrjob script

MRJob class already provides a method run(),
which MRWordFrequencyCount inherits, but we
need to define at least one of mapper, reducer
or combiner .

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

This if-statement will run precisely when we call
this script from the command line.

Basic mrjob script

In mrjob, an MRJob object implements one or
more steps of a MapReduce program. Recall that
a step is a single Map->Reduce->Combine chain.
All three are optional, but must have at least one
in each step.

If we have more than one step, then we have to
do a bit more work… (we’ll come back to this)

Methods defining the steps go here.

Basic mrjob script

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

Warning: do not forget these two lines,
or else your script will not run!

Basic mrjob script: recap
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$ python mr_word_count.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_word_count.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_word_count.keith.20171105.022629.949354/output.
..
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_word_count.keith.20171105.022629.949354...
keith@Steinhaus:~$

More complicated jobs: multiple steps

keith@Steinhau:~$ python mr_most_common_word.py moby_dick.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 2...
Creating temp directory
/tmp/mr_most_common_word.keith.20171105.032400.702113
Running step 2 of 2...
Streaming final output from
/tmp/mr_most_common_word.keith.20171105.032400.702113/output...
14711 "the"
Removing temp directory
/tmp/mr_most_common_word.keith.20171105.032400.702113...
keith@Steinhaus:~$

To have more than one step, we need to override
the existing definition of the method steps() in
MRJob. The new steps() method must return a
list of MRStep objects.

An MRStep object specifies a mapper, combiner
and reducer. All three are optional, but must
specify at least one.

First step: count words

This pattern should look
familiar. It implements
word counting.

One key difference, because
this reducer output is going to
be the input to another step.

Second step: find the largest count.

Note: word_count_pairs is like a
list of pairs. Refer to how Python
max works on a list of tuples.

Note: combiner and reducer are the
same operation in this example,
provided we ignore the fact that
reducer has a special output format

MRJob.{mapper, combiner, reducer}

MRJob.mapper(key, value)
key – parsed from input; value – parsed from input.
Yields zero or more tuples of (out_key, out_value).

MRJob.combiner(key, values)
key – yielded by mapper; value – generator yielding all values from node corresponding to key.
Yields one or more tuples of (out_key, out_value)

MRJob.reducer(key, values)
key – key yielded by mapper; value – generator yielding all values from corresponding to key.
Yields one or more tuples of (out_key, out_value)

Details: https://pythonhosted.org/mrjob/job.html

https://pythonhosted.org/mrjob/job.html

More complicated reducers: Python’s reduce
So far our reducers have used Python built-in functions sum and max

More complicated reducers: Python’s reduce
So far our reducers have used Python built-in functions sum and max

What if I want to multiply the values instead of sum?
Python does not have product() function analogous to sum()...

What if my values aren’t numbers, but I have a sum defined on them?
e.g., tuples representing vectors
Want (a,b)+(x,y)=(a+x,b+y), but tuples don’t support addition

Solution: use functools.reduce

More complicated reducers: Python’s reduce

Using reduce and lambda, we can
get just about any reducer we want.

Note: this example was run in Python 2.
You’ll need to import functools to do this.

Running mrjob on a Hadoop cluster
We’ve already seen how to run mrjob from the command line.

Previous examples emulated Hadoop
But no actual Hadoop instance was running!

That’s fine for prototyping and testing…

...but how do I actually run it on my Hadoop cluster?
E.g., on Fladoop

Open a terminal if you’d like to follow along.

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ls
moby_dick.txt mr_most_common_word.py my_file.txt
mr_bigproduct.py mr_word_count.py numlist.txt

Here I have downloaded the mrjob
demo zip archive from the website,
unzipped it, and cd (changed directory)
into the resulting directory.

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ls
moby_dick.txt mr_most_common_word.py my_file.txt
mr_bigproduct.py mr_word_count.py numlist.txt

Here I have downloaded the mrjob
demo zip archive from the website,
unzipped it, and cd (changed directory)
into the resulting directory.We can tell from the prompt what my

username is, what machine I’m on, and
where I am in the directory structure.

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ls
moby_dick.txt mr_most_common_word.py my_file.txt
mr_bigproduct.py mr_word_count.py numlist.txt

mr_word_count.py
I need to get this file from my laptop (the “local” machine)
to the flux hadoop cluster (the “remote” machine).

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ls
moby_dick.txt mr_most_common_word.py my_file.txt
mr_bigproduct.py mr_word_count.py numlist.txt
keith@Steinhaus:~/mrjob_demo$ scp mr_word_count.py
klevin@flux-hadoop-login.arc-ts.umich.edu:~/mr_word_count.py

mr_word_count.py

Copy the local file mr_word_count.py...

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ls
moby_dick.txt mr_most_common_word.py my_file.txt
mr_bigproduct.py mr_word_count.py numlist.txt
keith@Steinhaus:~/mrjob_demo$ scp mr_word_count.py
klevin@flux-hadoop-login.arc-ts.umich.edu:~/mr_word_count.py

mr_word_count.py

...to the remote machine, and save it with
the same name, in the home directory.

Copy the local file mr_word_count.py...

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ls
moby_dick.txt mr_most_common_word.py my_file.txt
mr_bigproduct.py mr_word_count.py numlist.txt
keith@Steinhaus:~/mrjob_demo$ scp mr_word_count.py
klevin@flux-hadoop-login.arc-ts.umich.edu:~/mr_word_count.py
[...prompted for authentication...]
mr_word_count.py 100% 325 0.3KB/s 00:00

mr_word_count.py

I hit enter and I am asked to give my password and
2-factor authentication. Once I authenticate successfully,
the file is copied, and scp shows its progress
(percentage, file size, rate of copying, total time).

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ssh klevin@flux-hadoop-login.arc-ts.umich.edu
[...authentication and greeting from the flux-hadoop cluster...]
[klevin@flux-hadoop-login2 ~]$

mr_word_count.py

Now I’ll ssh to the flux-hadoop cluster. Once I authenticate
successfully I get a command line prompt. Notice that from
the prompt I can see that I am now signed on to a different
machine (flux-hadoop-login2), and I am currently in
the home (~) directory on that machine.

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ssh klevin@flux-hadoop-login.arc-ts.umich.edu
[...authentication and greeting from the flux-hadoop cluster...]
[klevin@flux-hadoop-login2 ~]$ ls
ASEOOS hotelling_tsquared.m mr_word_count.py scripts cmdfiles
matlab multinet R stats507w19
data matlabdata

mr_word_count.py

ls lists the contents of the current directory, and we see
that mr_word_count.py is there, as it should be.

Step 1: Moving your mrjob script to the grid
keith@Steinhaus:~/mrjob_demo$ ssh klevin@flux-hadoop-login.arc-ts.umich.edu
[...authentication and greeting from the flux-hadoop cluster...]
[klevin@flux-hadoop-login2 ~]$ ls
ASEOOS hotelling_tsquared.m mr_word_count.py scripts cmdfiles
matlab multinet R stats507w19
data matlabdata
[klevin@flux-hadoop-login2 ~]$ head mr_word_count.py
from mrjob.job import MRJob

class MRWordFrequencyCount(MRJob):

def mapper(self, _, line):
 yield "chars", len(line)
 yield "words", len(line.split())
 yield "lines", 1

[klevin@flux-hadoop-login2 ~]$

mr_word_count.py

Just to be sure, let’s look at the first few lines using head.
Comparing with our original file, it looks like it worked!

Running mrjob on Fladoop
[klevin@flux-hadoop-login2]$ python mr_word_count.py -r hadoop
hdfs:///var/stats507w19/moby_dick.txt
[...output redacted…]
Copying local files into
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680/files/

[...Hadoop information redacted…]
Counters from step 1:
 (no counters found)
Streaming final output from
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680/output
"chars" 1230866
"lines" 22614
"words" 215717
removing tmp directory /tmp/mr_word_count.klevin.20171113.145355.093680
deleting hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680 from HDFS
[klevin@flux-hadoop-login2]$

Running mrjob on Fladoop
[klevin@flux-hadoop-login2]$ python mr_word_count.py -r hadoop
hdfs:///var/stats507w19/moby_dick.txt
[...output redacted…]
Copying local files into
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680/files/

[...Hadoop information redacted…]
Counters from step 1:
 (no counters found)
Streaming final output from
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680/output
"chars" 1230866
"lines" 22614
"words" 215717
removing tmp directory /tmp/mr_word_count.klevin.20171113.145355.093680
deleting hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680 from HDFS
[klevin@flux-hadoop-login2]$

Tells mrjob that you want to use the Hadoop
server, not the local machine.

[klevin@flux-hadoop-login2]$ python mr_word_count.py -r hadoop
hdfs:///var/stats507w19/moby_dick.txt
[...output redacted…]
Copying local files into
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680/files/

[...Hadoop information redacted…]
Counters from step 1:
 (no counters found)
Streaming final output from
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680/output
"chars" 1230866
"lines" 22614
"words" 215717
removing tmp directory /tmp/mr_word_count.klevin.20171113.145355.093680
deleting hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20171113.145355.093680 from HDFS
[klevin@flux-hadoop-login2]$

Running mrjob on Fladoop

This is a path to a file on HDFS,
not on the local file system!

hdfs:///var/stats507w19 is a
directory created specifically for our
class. Some problems in the
homework will ask you to use files
that I’ve put here.

[klevin@flux-hadoop-login2 ~]$ python mr_word_count.py -r hadoop
hdfs:///var/stats507w19/moby_dick.txt > melville.txt

Running mrjob on Fladoop: redirecting output

Here I’m running the same command, but I’m redirecting
the output to the file melville.txt , instead of letting
the output get written to the terminal.

[klevin@flux-hadoop-login2 ~]$ python mr_word_count.py -r hadoop
hdfs:///var/stats507w19/moby_dick.txt > melville.txt
[...output redacted...]
job output is in
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20190320.145525.603643/output
Streaming final output from
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20190320.145525.603643/output...
Removing HDFS temp directory
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20190320.145525.603643...
Removing temp directory /tmp/mr_word_count.klevin.20190320.145525.603643...
[klevin@flux-hadoop-login2 ~]$

Running mrjob on Fladoop: redirecting output

Notice that the messages on the screen look basically the same as
before, except we never see the “chars”, “words” or “lines” counts get
written out. That’s because we’ve redirected stdout of this process to
the file mellville.txt . The result is that only stderr (i.e., errors,
warnings and information for the user) is written to the terminal.

[klevin@flux-hadoop-login2 ~]$ python mr_word_count.py -r hadoop
hdfs:///var/stats507w19/moby_dick.txt > melville.txt
[...output redacted...]
job output is in
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20190320.145525.603643/output
Streaming final output from
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20190320.145525.603643/output...
Removing HDFS temp directory
hdfs:///user/klevin/tmp/mrjob/mr_word_count.klevin.20190320.145525.603643...
Removing temp directory /tmp/mr_word_count.klevin.20190320.145525.603643...
[klevin@flux-hadoop-login2 ~]$ cat melville.txt
"chars" 1215296
"lines" 22614
"words" 215717
[klevin@flux-hadoop-login2 ~]$

Running mrjob on Fladoop: redirecting output

...and catting melville.txt shows that it does
indeed contain the counts.as expected.

keith@Steinhaus:~/mrjob_demo$ scp klevin@flux-hadoop-login.arc-ts.umich.edu:~/melville.txt .

Running mrjob on Fladoop: retrieving files

Instead of copying from my machine to the cluster,
now I’m doing the opposite. I’m copying the file
melville.txt from my home directory on the flux
hadoop cluster to the current directory.

Recall that the dot (.) refers to the current directory, so this
command basically says copy the file melville.txt from
the cluster and save it (with the same name) right here in
the current directory (i.e., mrjob_demo).

keith@Steinhaus:~/mrjob_demo$ scp klevin@flux-hadoop-login.arc-ts.umich.edu:~/melville.txt .
[...authentication...]
melville.txt 100% 45 0.0KB/s 00:00
keith@Steinhaus:~/mrjob_demo$

Running mrjob on Fladoop: retrieving files

Once I hit enter I have to authenticate and
wait for the file transfer to complete...

keith@Steinhaus:~/mrjob_demo$ scp klevin@flux-hadoop-login.arc-ts.umich.edu:~/melville.txt .
[...authentication...]
melville.txt 100% 45 0.0KB/s 00:00
keith@Steinhaus:~/mrjob_demo$ ls
melville.txt mr_most_common_word.py numlist.txt
moby_dick.txt mr_word_count.py
mr_bigproduct.py my_file.txt
keith@Steinhaus:~/mrjob_demo$

Running mrjob on Fladoop: retrieving files

And notice that melville.txt is
now here on my local machine.

keith@Steinhaus:~/mrjob_demo$ scp klevin@flux-hadoop-login.arc-ts.umich.edu:~/melville.txt .
[...authentication...]
melville.txt 100% 45 0.0KB/s 00:00
keith@Steinhaus:~/mrjob_demo$ ls
melville.txt mr_most_common_word.py numlist.txt
moby_dick.txt mr_word_count.py
mr_bigproduct.py my_file.txt
keith@Steinhaus:~/mrjob_demo$ cat melville.txt
"chars" 1215296
"lines" 22614
"words" 215717
keith@Steinhaus:~/mrjob_demo$

Running mrjob on Fladoop: retrieving files

...and if we cat it, it
looks like we expected.

HDFS is a separate file system

/home/klevin

/home/klevin/stats507

/home/klevin/myfile.txt

Local file system
Accessible via ls, mv, cp, cat...

(and lots of other files…)

/var/stats507w19

/var/stats507w19/fof

/var/stats507w19/populations_small.txt

Hadoop distributed file system
Accessible via hdfs...

(and lots of other files…)

Shell provides commands for moving files around, listing files, creating new files,
etc. But if you try to use these commands to do things on HDFS... no dice!

Hadoop has a special command line tool for dealing with HDFS, called hdfs

Basics of hdfs
Usage: hdfs dfs [options] COMMAND [arguments]

Where COMMAND is, for example:
-ls, -mv, -cat, -cp, -put, -tail
All of these should be pretty self-explanatory except -put
For your homework, you should only need -cat and perhaps -cp/-put

Getting help:
[klevin@flux-hadoop-login1 mrjob_demo]$ hdfs dfs -help
[...tons of help prints to shell...]
[klevin@flux-hadoop-login1 mrjob_demo]$ hdfs dfs -help | less

hdfs essentially replicates shell command line
[klevin@flux-hadoop-login2 mrjob_demo]$ cat demo_file.txt
This is just a demo file.
Normally, a file this small would have no reason to be on HDFS.
[klevin@flux-hadoop-login2 mrjob_demo]$ hdfs dfs -put demo_file.txt
hdfs:/var/stats507w19/demo_file.txt
[klevin@flux-hadoop-login2 mrjob_demo]$ hdfs dfs -cat
hdfs:/var/stats507w19/demo_file.txt
This is just a demo file.
Normally, a file this small would have no reason to be on HDFS.
[klevin@flux-hadoop-login2 mrjob_demo]$

Important points:
hdfs:/var and /var are different directories on different file systems
hdfs dfs -CMD because hdfs supports lots of other stuff, too
Don’t forget a hyphen before your command! -cat, not cat

To see all our HDFS files
[klevin@flux-hadoop-login2 mrjob_demo]$ hdfs dfs -ls hdfs:/var/stats507w19
Found 8 items
-rw-r--r-- 3 klevin stats507w19admins 1291775 2019-03-12 12:47 hdfs:///var/stats507w19/darwin.txt
-rw-r--r-- 3 klevin stats507w19admins 90 2019-03-12 10:30 hdfs:///var/stats507w19/demo_file.txt
drwxr-xr-x - klevin stats507w19admins 0 2018-04-04 20:56 hdfs:///var/stats507w19/fof
-rw-r--r-- 3 klevin stats507w19admins 1276097 2019-03-12 10:35 hdfs:///var/stats507w19/moby_dick.txt
-rw-r--r-- 3 klevin stats507w19admins 48 2019-03-12 10:59 hdfs:///var/stats507w19/numbers.txt
-rw-r--r-- 3 klevin stats507w19admins 48 2019-03-12 11:30 hdfs:///var/stats507w19/numbers_weird.txt
-rw-r--r-- 3 klevin stats507w19admins 0 2019-03-13 12:35 hdfs:///var/stats507w19/populations_large.txt
-rw-r--r-- 3 klevin stats507w19admins 251 2019-03-12 11:22 hdfs:///var/stats507w19/scientists.txt

You’ll use some of these files in your homework.

mrjob hides complexity of MapReduce
We need only define mapper, reducer, combiner

Package handles everything else
Most importantly, interacting with Hadoop

But mrjob does provide powerful tools for specifying Hadoop configuration
https://pythonhosted.org/mrjob/guides/configs-basics.html

You don’t have to worry about any of this in this course, but you
should be aware of it in case you need it in the future.

https://pythonhosted.org/mrjob/guides/configs-basics.html

mrjob: protocols
mrjob assumes that all data is “newline-delimited bytes”

That is, newlines separate lines of input
Each line is a single unit to be processed in isolation

(e.g., a line of words to count, an entry in a database, etc)

mrjob handles inputs and outputs via protocols
Protocol is an object that has read() and write() methods
read(): convert bytes to (key,value) pairs
write(): convert (key,value) pairs to bytes

mrjob: protocols
Controlled by setting three variables in config file mrjob.conf:

INPUT_PROTOCOL, INTERNAL_PROTOCOL, OUTPUT_PROTOCOL

Defaults:
INPUT_PROTOCOL = mrjob.protocol.RawValueProtocol
INTERNAL_PROTOCOL = mrjob.protocol.JSONProtocol
OUTPUT_PROTOCOL = mrjob.protocol.JSONProtocol

Again, you don’t have to worry about this in this

course, but you should be aware of it.

Data passed around internally via
JSON. This is precisely the kind of
thing that JSON is good for.

