
STATS 507
Data Analysis in Python

Lecture 21: Advanced Command Line

Why UNIX/Linux?
As a data scientist, you will spend most of your time dealing with data

Data sets never arrive “ready to analyze”
Cleaning data, fixing formatting, etc is 80% of the process

These “data wrangling” tasks are (often) best done on the command line

The Unix philosophy: do one thing well
1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is a universal interface.

https://en.wikipedia.org/wiki/Unix_philosophy

input

Program 1

output 1

Program 2

output 2

https://en.wikipedia.org/wiki/Unix_philosophy

Reminder: Basic concepts
Shell : the program through which you interact with the computer.

provides the command line and facilitates typing commands and reading outputs.
Popular shells: bash (Bourne Again Shell), csh (C Shell), ksh (Korn Shell)

Redirect : take the output of one program and make it the input of another.
we’ll see some simple examples in a few slides

stdin, stdout, stderr : three special “file handles”
for reading inputs from the shell (stdin)
and writing output to the shell (stderr for error messages, stdout other information).

input

Program 1

output 1

Program 2

output 2

Special file handles: stdin, stdout, stderr
File handles are pointers to files

Familiar if you’ve programmed in C/C++
Similar: object returned by python open()

By default, most command line programs
● take input from stdin
● Write output to stdout
● Write errors and status information to stderr

keith@Steinhaus:~$ echo "hello world."
hello world.
keith@Steinhaus:~$ echo "hello world." > myfile.txt
keith@Steinhaus:~$ cat myfile.txt
hello world.
keith@Steinhaus:~$ echo "!"
-bash: !: event not found
keith@Steinhaus:~$

echo sends its output to stdout,
which is printed to the screen.

Special file handles: stdin, stdout, stderr

echo writes to stdout, which is
redirected to the file myfile.txt .

cat writes the contents of myfile.txt to
stdout, which is printed to the screen.

bash encounters an error, so it writes an
error message to stderr. Both stdout
and stderr are printed to the screen, but
behave differently in other contexts.

keith@Steinhaus:~$ echo "hello world."
hello world.
keith@Steinhaus:~$ echo "hello world." > myfile.txt
keith@Steinhaus:~$ cat myfile.txt
hello world.
keith@Steinhaus:~$ echo "!"
-bash: !: event not found
keith@Steinhaus:~$

echo sends its output to stdout,
which is printed to the screen.

Special file handles: stdin, stdout, stderr

echo writes to stdout, which is
redirected to the file myfile.txt .

cat writes the contents of myfile.txt to
stdout, which is printed to the screen.

We haven’t learned any programs that use
stdin, yet, but we will in a few slides.

echo encounters an error, so it writes an
error message to stderr. Both stdout
and stderr are printed to the screen, but
behave differently in other contexts.

Reminder: redirections using >
Redirect sends output to a file instead of stdout

keith@Steinhaus:~$ echo -e "hello\tworld." > myfile.txt
keith@Steinhaus:~$

Redirect tells the shell to send the
output of the program on the
“greater than” side to the file on the
“lesser than” side. This creates
the file on the RHS, and
overwrites the old file, if it
already exists!

Command line regexes: grep
Command line regex tool

keith@Steinhaus:~$ grep 'hello' myfile.txt
hello world.
keith@Steinhaus:~$ grep 'goat' myfile.txt
keith@Steinhaus:~$
keith@Steinhaus:~$ cat myfile.txt | grep 'hello'
hello world.
keith@Steinhaus:~$

Searches for the string hello in
the file myfile.txt , prints all
matching lines to stdout.

String goat does not occur in
myfile.txt , so no lines to print.

grep can also be made to search
for a pattern in its stdin. This is
our first example of a pipe.

This writes the contents of myfile.txt to the stdin of grep,
which searches its stdin for the string hello

Command line regexes: grep
Command line regex tool

keith@Steinhaus:~$ grep 'hello' myfile.txt
hello world.
keith@Steinhaus:~$ grep 'goat' myfile.txt
keith@Steinhaus:~$
keith@Steinhaus:~$ cat myfile.txt | grep 'hello'
hello world.
keith@Steinhaus:~$

Searches for the string hello in
the file myfile.txt , prints all
matching lines to stdout.

String goat does not occur in
myfile.txt , so no lines to print.

grep can also be made to search
for a pattern in its stdin. This is
our first example of a pipe.

Note: the grep pattern can also be a regular expression. Use grep -E to tell
grep to use “extended regular expressions”, which are (mostly) identical to those
in Python re. See man re_format for more information.

Pipe (|) vs Redirect (>)
Pipe (|) reads the stdout from its left, and writes to stdin on its right.

Redirect (>) reads the stdout from its left and writes to a file on its right.

This is an important difference!

Warning: the example below is INCORRECT. It is an example of what NOT to do!

This writes the contents of myfile.txt to a file called grep and then
cats the file ‘hello’ to stdout, which is not what was intended.

keith@Steinhaus:~$ cat myfile.txt > grep 'hello'

Running example: Fisher’s Iris data set
Widely-used data set in machine learning

Collected by E. Anderson, made famous by R. A. Fisher
Three different species: Iris setosa, Iris virginica and Iris versicolor
Each observation is a set of measurements of a flower:

Petal and sepal width and height (cm)
Along with species label

Common tasks:
clustering, classification

Available at UCI ML Repository: https://archive.ics.uci.edu/ml/datasets/Iris

petal

sepal

https://archive.ics.uci.edu/ml/datasets/Iris

Downloading the data
Following the download link on UCI ML repo leads to this index page

What’s the difference between
these two files? The documentation
actually doesn’t say.

Downloading the data
keith@Steinhaus:~$ mkdir demodir
keith@Steinhaus:~$ cd demodir
keith@Steinhaus:~/demodir$ mv ~/Downloads/iris.data .
keith@Steinhaus:~/demodir$ mv ~/Downloads/bezdekIris.data .
keith@Steinhaus:~/demodir$ ls
bezdekIris.data iris.data myfile.txt
keith@Steinhaus:~/demodir$ ls -l
total 40
-rw-r--r--@ 1 keith staff 4551 Nov 15 13:47 bezdekIris.data
-rw-r--r--@ 1 keith staff 4551 Nov 15 13:47 iris.data
-rw-r--r--@ 1 keith staff 13 Nov 2 12:56 myfile.txt
keith@Steinhaus:~/demodir$

Move the data files from downloads
folder to project directory. Not
mandatory, just convenient!

Files are there, now.

From man ls:
-l (The lowercase letter “ell”.) List in long format. (See
below.) If the output is to a terminal, a total sum for all
the file sizes is output on a line before the long listing.

Create a project directory and cd into it.

Comparing files: diff
diff takes two files and compares them line by line

By default, prints only the lines that differ:

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

XcY means Xth
line in FILE1 was
replaced by Yth
line in FILE2 < : lines from FILE1

> : lines from FILE2

Comparing files: diff
So, the two files differ in precisely two lines…

What’s up with that?

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

From UCI Documentation:
This data differs from the data presented in Fisher’s
article (identified by Steve Chadwick, spchadwick '@'
espeedaz.net). The 35th sample should be:
4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the
fourth feature. The 38th sample:
4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the
second and third features.

Comparing files: diff
So, the two files differ in precisely two lines…

What’s up with that?

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

From UCI Documentation:
This data differs from the data presented in Fisher’s
article (identified by Steve Chadwick, spchadwick '@'
espeedaz.net). The 35th sample should be:
4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the
fourth feature. The 38th sample:
4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the
second and third features.

So bezdekIris.data is a corrected version of
iris.data . That’s nice of them!

Comparing files: diff
Often useful: get the diff of two files and save it to another file

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data > diff.txt
keith@Steinhaus:~/demodir$ cat diff.txt
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

Before we go on...
It’s a good habit to always look at the data. Go exploring!

keith@Steinhaus:~/demodir$ head bezdekIris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

Before we go on...
It’s a good habit to always look at the data. Go exploring!

keith@Steinhaus:~/demodir$ head -n 70 bezdekIris.data | tail
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
keith@Steinhaus:~/demodir$

Before we go on...
It’s a good habit to always look at the data. Go exploring!

keith@Steinhaus:~/demodir$ tail bezdekIris.data
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

keith@Steinhaus:~/demodir$

File contains a trailing newline. We’ll
probably want to remove that!

Species types are contiguous in the file. That
means if we are going to, for example, make
a train/dev/test split, we can’t just take the
first and second halves of the file!

Counting: wc
wc counts the number of lines, words, and bytes in a file or in stdin

Prints result to stdout

keith@Steinhaus:~/demodir$ wc bezdekIris.data
 151 150 4551 bezdekIris.data
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc
 151 150 4551
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -l
 151
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -w
 150
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -c

4551
keith@Steinhaus:~/demodir$ Note: a word is a group of one or more

non-whitespace characters.

Counting: wc
wc counts the number of lines, words, and bytes in a file or in stdin

Prints result to stdout

keith@Steinhaus:~/demodir$ wc bezdekIris.data
 151 150 4551 bezdekIris.data
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc
 151 150 4551
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -l
 151
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -w
 150
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -c

4551
keith@Steinhaus:~/demodir$

Test your understanding: we saw using head and tail
that each line is a single word (group of non-whitespace
characters), so number of words should be same as
number of lines. Why isn’t that the case?

Note: a word is a group of one or more
non-whitespace characters.

Making small changes: tr
Right now, bezdekIris.data is comma-separated.

What if I want to make it tab-separated, instead?

tr is a good tool for the job

From the man page: The tr utility
copies the standard input to the
standard output with substitution or
deletion of selected characters.

keith@Steinhaus:~/demodir$ cat bezdekIris.data | tr ',' '\t' > iris.tsv
keith@Steinhaus:~/demodir$ head -n 5 iris.tsv
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5.0 3.6 1.4 0.2 Iris-setosa
keith@Steinhaus:~/demodir$

Replace commas with tabs. So we turn
a comma-separated (.csv) file into a
tab-separated (.tsv) file.

Making small changes: tr

keith@Steinhaus:~/demodir$ cat bezdekIris.data | tr '.,' ',\t' > iris_euro.tsv
keith@Steinhaus:~/demodir$ head iris_euro.tsv
5,1 3,5 1,4 0,2 Iris-setosa
4,9 3,0 1,4 0,2 Iris-setosa
4,7 3,2 1,3 0,2 Iris-setosa
4,6 3,1 1,5 0,2 Iris-setosa
5,0 3,6 1,4 0,2 Iris-setosa
5,4 3,9 1,7 0,4 Iris-setosa
4,6 3,4 1,4 0,3 Iris-setosa
5,0 3,4 1,5 0,2 Iris-setosa
4,4 2,9 1,4 0,2 Iris-setosa
4,9 3,1 1,5 0,1 Iris-setosa
keith@Steinhaus:~/demodir$

Turn decimal points into decimal
commas, change from
comma-separated to tab-separated.

From the man page: The tr utility
copies the standard input to the
standard output with substitution or
deletion of selected characters.

Note: tr ‘abc’ ‘xyz’ turns all a
into x, b into y, c into z. Importantly,
tr ‘ab’ ‘bc’ turns a to b and b to
c, but no a turns into c. tr doesn’t
“apply the transformation twice”

Picking out columns: cut
I want to make a new data set: only petal data and species

Could load everything into spreadsheet and edit there, or...

keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 3,4,5 > petal.data
keith:~/demodir$ head -n 3 petal.data
1.4,0.2,Iris-setosa
1.4,0.2,Iris-setosa
1.3,0.2,Iris-setosa
keith:~/demodir$ head -n 3 bezdekIris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
keith:~/demodir$

Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica

Columns delimited by ‘,’
Pick out fields 3,4 and 5.
Equivalent command:

cut -d ‘,’ -f 3-5

Picking out columns: cut
What if I want to split the attributes into their own files?

keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 1 > sepal_len.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 2 > sepal_wid.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 3 > petal_len.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 4 > petal_wid.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 5 > species.data
keith:~/demodir$

Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica

Aggregation: paste and lam
Okay, I changed my mind. I want to put the five separate files back together!

keith:~/demodir$ paste sepal_len.data sepal_wid.data petal_len.data
petal_wid.data species.data > pasted.data
keith:~/demodir$ diff pasted.data iris.tsv
151c151
<

>
keith:~/demodir$

paste (from the man page):
concatenates the corresponding lines of
the given input files, replacing all but the
last file's newline characters with a single
tab character, and writes the resulting
lines to standard output.

Recall that last line was blank, so we
have some strange behavior here.

Aggregation: paste and lam
Okay, I changed my mind. I want to put the five separate files back together!

keith:~/demodir$ lam sepal_len.data -s ',' sepal_wid.data -s ','
petal_len.data -s ',' petal_wid.data -s ',' species.data | head -n 3
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
keith:~/demodir$ lam sepal_len.data -s ',' sepal_wid.data -s ','
petal_len.data -s ',' petal_wid.data -s ',' species.data | tail -n 3
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
,,,,
keith:~/demodir$

lam (from the man page): copies
the named files side by side onto
the standard output.

Have to specify a separator character
with -s everywhere I want one.

Recall that the last line is blank, which lam
handles as required, but here’s a good reason to
have removed that blank line sooner.

Sorting: sort

keith:~$ cat bezdekIris.data | cut -d ',' -f 4 | sort > sorted_petal_width.data
keith:~$

full data

cut -d ‘,’ -f 4cat bezdekIris.data

Petal widths

sort

Petal widths, sorted

sorted_petal_width.data

Important: difference
between pipes and redirects!
One is for passing data
between programs, the other
is for creating files!

sort reads from stdin, sorts the lines,
and sends the result to stdout.

Sorting: sort

keith:~$ cat bezdekIris.data | cut -d ',' -f 4 | sort > sorted_petal_width.data
keith:~$ head -n 8 sorted_petal_width.data

0.1
0.1
0.1
0.1
0.1
0.2
0.2
keith:~$ tail -n 2 sorted_petal_width.data
2.5
2.5
keith:~$

Blank line is still giving us trouble!

Editing text streams: sed
sed is short for stream editor

One of the most powerful and versatile UNIX tools

Commonly paired with awk
small command line language for string processing

Has lots of features, so we’ll focus on one: substitutions

keith:~$ echo "hello world" | sed 's/hello/goodbye/g'
goodbye world

s for substitute Replace this... ...with this.

g for globally, meaning
everywhere in the input.

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

‘*’ Works like in Python re

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

Test your understanding: is
the sed regex matcher greedy?

‘*’ Works like in Python re

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

Test your understanding: is
the sed * operator greedy?

‘*’ Works like in Python re

Answer: yes! If it were lazy,
above would output just a
mess of ‘b’s

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

Test your understanding: is
the sed * operator greedy?

‘*’ Works like in Python re

Answer: yes! If it were lazy,
above would output just a
mess of ‘b’s

As promised, most of your
knowledge of regexes in
Python re package will
transfer directly to sed, as
well as other tools (e.g.,
grep and perl)

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

‘*’ Works like in Python re

Basic syntax of sed s commands:
sed ‘s/regexp/replacement/flags’

keith:~$ echo "a aa aaa" | sed -E 's/a+/b/g'
b b b
keith:~$

To use “extended” regexes,
need to give -E flag.

Editing text streams: sed
Basic syntax of sed s commands:
sed ‘s/regexp/replacement/flags’

keith:~$ echo "a aa aaa" | sed -E 's/a+/b/g'
b b b
keith:~$ echo "a aa aaa" | sed -E 's|a+|b|g'
b b b
keith:~$ echo "a| aa| aaa| aaaa" | sed -E 's/a+\|/b/g'
b b b aaaa
keith:~$

Can use any single
character in place of /.

Special characters have
to be escaped.

All the power of Python regexes, but with the convenience of the
command line! And we’re only barely scratching the surface:
https://www.gnu.org/software/sed/manual/html_node/index.html#Top

https://www.gnu.org/software/sed/manual/html_node/index.html#Top

Basic Shell Scripting
Bash (and other shells) support scripting

Useful for automating repetitive tasks:
E.g., Renaming files; processing files in batches

The Bash command line supports its own programming language
Has variables, conditionals, for-loops, etc.

We’ll only scratch the surface of this, here. See, for example,
the Linux Documentation Project (TLDP, www.tldp.org) or
Learning the Bash ShellI by C. Newham for more.

http://www.tldp.org

Basic Shell Scripting

keith:~$ MYVAR='cat dog bird goat'
keith:~$ echo $MYVAR
cat dog bird goat
keith:~$ FILENAME="myfile.txt"
keith:~$ echo "here is some text" > $FILENAME
keith:~$ cat $FILENAME
here is some text
keith:~$ echo FILENAME
FILENAME
keith:~$

Variable assignment in bash is of the form
VARIABLE=[value]
Note that there should be NO spaces between the
variable name and the assignment operator and
between the assignment operator and the value.

To retrieve the value of a variable,
prepend it with a dollar sign $.

Once FILENAME has a value, we can treat
it just as though we were writing the actual
name of a file in its place.

Common error: forgetting to
prepend with a dollar sign $.

Basic Shell Scripting

keith:~$ MYVAR='cat dog bird goat'
keith:~$ for s in $MYVAR; do echo $s; done
cat
dog
bird
goat
keith:~$ for x in `echo "1 2 3 4 5"`; do echo "$x" > ${x}.txt; done
keith:~$ ls
1.txt 2.txt 3.txt 4.txt 5.txt myfile.txt
keith:~$

For loops take the form
for vname in <set>; do <expr>; done

Enclosing in backticks (`) turns the output of the
expression to a string-like expression that can be
assigned to a variable or iterated over.

Enclosing a variable in curly braces is a good
habit when putting a variable in a longer
string. Prevents ambiguity of $x.txt or
$xfile.txt vs ${x}file.txt .

Basic Shell Scripting

keith:~$ for x in `echo "1 2 3 4 5"`; do echo "$x" > ${x}.txt; done
keith:~$ ls
1.txt 2.txt 3.txt 4.txt 5.txt myfile.txt
keith:~$ for f in `ls .`; do echo -n "${f} : "; cat $f; done
1.txt : 1
2.txt : 2
3.txt : 3
4.txt : 4
5.txt : 5
myfile.txt : here is some text
keith:~$

This line lists each file in the current
directory along with its contents.

Basic Shell Scripting

keith:~$ for x in `echo "1 2 3 4 5"`; do echo "$x" > ${x}.txt; done
keith:~$ ls
1.txt 2.txt 3.txt 4.txt 5.txt myfile.txt
keith:~$ for f in `ls .`; do echo -n "${f} : "; cat $f; done
1.txt : 1
2.txt : 2
3.txt : 3
4.txt : 4
5.txt : 5
myfile.txt : here is some text
keith:~$

This line lists each file in the current
directory along with its contents.

Lots more tools available (not in this lecture):
More syntax: conditionals, while-loops, etc.
Scripts: put a sequence of commands into a file
and run it from the command line.

